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Abstract
Humans can acquire knowledge of new motor behavior via different forms of learning. The two forms most commonly
studied have been the development of internal models based on sensory-prediction errors (error-based learning) and
success-based feedback (reinforcement learning). Human behavioral studies suggest these are distinct learning processes,
though the neurophysiological mechanisms that are involved have not been characterized. Here, we evaluated physiological
markers from the cerebellum and the primary motor cortex (M1) using noninvasive brain stimulations while healthy
participants trained finger-reaching tasks. We manipulated the extent to which subjects rely on error-based or
reinforcement by providing either vector or binary feedback about task performance. Our results demonstrated a double
dissociation where learning the task mainly via error-based mechanisms leads to cerebellar plasticity modifications but not
long-term potentiation (LTP)-like plasticity changes in M1; while learning a similar action via reinforcement mechanisms
elicited M1 LTP-like plasticity but not cerebellar plasticity changes. Our findings indicate that learning complex motor
behavior is mediated by the interplay of different forms of learning, weighing distinct neural mechanisms in M1 and the
cerebellum. Our study provides insights for designing effective interventions to enhance human motor learning.

Key words: cerebellar inhibition (CBI), error-based learning, long-term potentiation (LTP)-like plasticity, primary motor cor-
tex (M1), reinforcement learning

Introduction
The ability to learn new motor behaviors is a fundamental fea-
ture of the animal kingdom. Humans constantly carry out
motor behaviors that are essential and define our way of living
from brushing teeth and getting dressed to play sophisticated
sports or musical instruments. The complexity of learning and
performing these ubiquitous behaviors becomes evident fol-
lowing an illness or injury that results in motor deficits. Recent
research focused on understanding how humans acquire

knowledge of new motor tasks indicated that multiple forms of
learning are in play (Haith and Krakauer 2013; Taylor and Ivry
2014), including cognitive strategies (Taylor et al. 2014), devel-
oping internal models of movement dynamics (Shadmehr et al.
2010), use-dependent (Diedrichsen et al. 2010; Verstynen and
Sabes 2011; Mawase et al. 2017) and reinforcement mechanisms
(Huang et al. 2011; Izawa and Shadmehr 2011). Indeed, motor
tasks developed in the laboratory have manipulated the weight
each of these forms of learning have when acquiring new
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motor behaviors (Criscimagna-Hemminger et al. 2010; Izawa
and Shadmehr 2011; Shmuelof et al. 2012; Therrien et al. 2016).
Importantly, it has been argued that these forms of learning
depend on different neuronal mechanisms. For instance,
research on patients with cerebellar damage has shown that
developing internal models to reduce sensory-prediction errors
(i.e., error-based or adaptation learning) (Wolpert et al. 1995)
heavily depends on the cerebellum (Tseng et al. 2007; Synofzik
et al. 2008); while brain stimulation studies indicated that this
type of learning leads to changes in cerebellar excitability
(Jayaram et al. 2011; Schlerf et al. 2012). Yet, little is known
about the potential physiological markers underlying reinforce-
ment forms of learning in humans.

In the motor domain, reinforcement forms of learning have
been referred as a success (reward)-based process in which
actions leading to successful outcome are reinforced, whereas
those leading to unsuccessful outcome are avoided (Sutton and
Barto 1998). This form of learning is traditionally thought to
engage basal ganglia and primary motor cortex (M1) loops
(Doya 2000), relying on dopamine as a main neurotransmitter
(Wickens et al. 2003; Wise 2004). Interestingly, human (Ueki
et al. 2006; Kishore et al. 2012) and animal studies (Molina-Luna
et al. 2009; Guo et al. 2015) indicate that dopaminergic projec-
tions to M1 help drive neurophysiological plasticity in M1 such
as long-term potentiation (LTP)-like plasticity. M1 LTP-like plas-
ticity has also been described as a neurophysiological phenom-
enon associated with motor learning and retention of learned
motor memories (Rioult-Pedotti et al. 1998, 2000; Rosenkranz
et al. 2007; Cantarero et al. 2013a, 2013b), although these stud-
ies used motor tasks that cannot disentangle the exact form of
learning. Considering that the same motor behavior can be
acquired using different forms of learning (Huang et al. 2011),
here we tested two distinct neurophysiological mechanisms
when people learn similar actions by relying on different forms
of learning. We hypothesized that learning heavily via rein-
forcement will result in LTP-like plasticity changes in M1, but
not cerebellar excitability modifications, while learning mainly
via sensory-prediction errors will result in cerebellar modifica-
tions but not LTP-like plasticity changes in M1.

We first investigated the presence of neurophysiological
changes when subjects trained in a visuomotor adaptation task
(experiments 1 and 2). This task introduces a sudden perturba-
tion to the sensorimotor system, requiring subjects to adapt
motor commands in order to minimize prediction errors via
vector feedback (Wolpert et al. 1995). Recent behavioral studies
have suggested that learning this task mainly, but not exclu-
sively, relies on cerebellar-dependent error-based forms of
learning especially early on in the training; while other forms
of learning, such as reinforcement, become relevant later on in
the training when performance becomes asymptotic and suc-
cessful movements are repeated (Huang et al. 2011; Shmuelof
et al. 2012). Therefore, we predicted that learning this task
would be associated with the presence of M1 LTP-like plasticity
changes late but not early on during training, whereas the cere-
bellum would show excitability changes only early on, as previ-
ously described by measuring cerebellar-M1 connectivity
(Schlerf et al. 2012). To further discern the relationship between
reinforcement and error-based forms of learning, we assessed
the same two neurophysiological markers when subjects learned
a similar motor action via training on a task relying on reinforce-
ment mechanisms (Therrien et al. 2016). Here, subjects only
received success-based binary feedback (“success” or “failure”)
instead of vector error feedback (experiment 3).

Materials and Methods
Participants

The study was approved by the Johns Hopkins University
School of Medicine Institutional Review Board and was in
accordance with the Declaration of Helsinki. A total of 59
healthy subjects (24.2 ± 5.1 years, including 32 females, mean ±
standard of deviation (SD)) were recruited for the study. All
individuals were right handed and were naïve to the purpose of
the study. They provided written informed consent before par-
ticipating in the study. None of the subjects had a history of
neurological disease and/or psychological disorders and were
taking medications.

Neurophysiological Assessments

We used a previously described protocol that combines transcra-
nial magnetic stimulation (TMS) and transcranial direct current
stimulation (tDCS) to assess the presence of learning-related LTP-
like plasticity changes in M1 (Cantarero et al. 2013a, 2013b).
Briefly, the protocol consists of determining whether the facilita-
tory anodal tDCS (AtDCS) effects, thought to be mediated through
mechanisms akin to LTP plasticity due to the dependency on
NMDA and TrK B receptors activation via BDNF (Nitsche and
Paulus 2000; Liebetanz et al. 2002; Nitsche et al. 2003; Fritsch et al.
2010), are saturated after learning motor tasks relative to AtDCS
effects in the absence of any motor training. As previously shown,
if motor learning is associated with LTP formation in M1 then the
AtDCS effects to M1 should be occluded after training (Rioult-
Pedotti et al. 1998, 2000; Rosenkranz et al. 2007; Cantarero et al.
2013a, 2013b; Spampinato and Celnik 2017).

To determine cerebellar excitability changes, we used a
paired-pulse TMS technique that probes the strength of the cer-
ebellar inhibition (CBI) exerted over the contralateral M1. A
number of studies demonstrated that TMS to the cerebellum
results in subsequent inhibition of the contralateral M1 (Ugawa
et al. 1995; Pinto and Chen 2001; Daskalakis et al. 2004; Galea
et al. 2009). This has been interpreted as modulation of the
inhibitory output from the cerebellar cortex to dentate nucleus,
which in turn has excitatory connections with M1 via the thala-
mus (Celnik 2015; Grimaldi et al. 2016). Importantly, previous
studies have shown that the magnitude of CBI is modulated by
noninvasive brain stimulation protocols to the cerebellum
(Galea et al. 2009; Popa et al. 2010), and when learning adaptive
motor tasks (Jayaram et al. 2011; Schlerf et al. 2012). These
effects were found in the absence of M1 excitability changes,
indicating that the CBI modulation is predominantly mediated
by cerebellar excitability changes.

MEP Measures
We stimulated the left M1 using a 70-mm-diameter figure-of-
eight coil connected to TMS (Bistim2 stimulator; Magstim) to
elicit motor-evoked potential (MEP) of the first dorsal interosseous
(FDI) muscle of the right hand. We used a neuro-navigation sys-
tem (BrainSight; Rogue Research) to ensure consistency of stimu-
lation location throughout assessments. We first coregistered the
subjects’ heads to a standard magnetic resonance image in the
system. Then, we identified the “hotspot” as the optimal area
for eliciting MEPs in the resting FDI. The coil was placed tan-
gentially to the scalp with the handle pointed backward at a 45°
angle with respect to the anteroposterior axis. MEPs were
recorded with electromyography (EMG) using disposable sur-
face electrodes placed over the FDI. EMG signals were sampled
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at 5 kHz with a band-pass filter of 10–1000 Hz, visually dis-
played online, and analyzed off-line using MATLAB (R2015b;
MathWorks). We defined peak-to-peak MEP amplitude as the
index of corticospinal (M1) excitability.

Potentiation Effects of AtDCS on M1 Excitability
We first determined the stimulus intensity needed to evoke an
MEP with peak-to-peak amplitude of around 1mV (Stimulus
intensity 1mV, S1mV), and recorded 10 MEPs (preAtDCS MEP)
using this intensity with a randomized interstimulus interval
of 4–6 s. Then, we delivered tDCS through two 25 cm2 sponge
electrodes soaked in a saline solution using portable direct cur-
rent stimulator (Chattanooga Ionto; Chattanooga group), with
the anodal electrode centered over the left motor “hotspot” of
FDI, the cathodal electrode positioned over the right supra-
orbital area. In this manner, we applied direct current for 7min
at intensity of 1mA. Immediately after the cessation of tDCS,
we recorded 10 MEPs using predetermined stimulator intensity
of S1mV and repeated the same assessment every 5min for
15min (postAtDCS MEP: P0–P15) to account for possible tempo-
ral variation in the AtDCS response across participants. To
assess the potentiation effects of AtDCS we normalized the
average of 10 MEP amplitudes for each time point to the aver-
age of 10 MEP amplitudes of preAtDCS MEP. In other words,
changes in MEP amplitudes were expressed as a ratio relative
to the preAtDCS MEP amplitude. We have previously shown
that this tDCS protocol resulted in increased excitability after
effects (Cantarero et al. 2013a, 2013b).

Assessment of Learning-Related M1 LTP-like Plasticity Changes
In a “baseline” session, we first evaluated the potentiation
effects of AtDCS on M1 excitability when subjects were at rest
in the absence of any motor training. As an indication of global
potentiation effects of AtDCS, we calculated the grand average
of normalized postAtDCS (P0, P5, P10, and P15) MEP amplitudes.
In a different day, we performed identical measurements after
subjects trained the motor tasks, and compared the potentia-
tion effects with those of the baseline session. We determined
the presence of learning-related LTP-like plasticity changes in
M1 when we observed less increase in postAtDCS MEP ampli-
tudes (i.e., less potentiation effects) after motor training com-
pared to the baseline session (Cantarero et al. 2013a, 2013b).
This implies that the resources needed to increase MEP ampli-
tudes by AtDCS were used during motor learning.

CBI Measures
As an index of cerebellar excitability, we assessed the magni-
tude of CBI to the contralateral M1 using a paired-pulse TMS
technique. This was done by delivering a TMS conditioning
stimulus (CS) over the right cerebellar cortex 5ms before a test
stimulus (TS) over the left M1 (Ugawa et al. 1995; Pinto and
Chen 2001; Daskalakis et al. 2004; Galea et al. 2009; Schlerf et al.
2012). To avoid potential artifacts caused by antidromic stimu-
lation of the pyramidal tract itself with the cerebellar CS (Fisher
et al. 2009), the intensity of cerebellar CS was set at less than
the brainstem active motor threshold. The brainstem threshold
for pyramidal tract activation was tested with a 110-mm-
diameter double-cone coil centered over the inion with the
stimulator current directed downward (Ugawa et al. 1995). The
threshold was defined as the nearest 5% stimulator output that
elicited an MEP of 50 μV in the pre-activated FDI muscle in five
of 10 pulses. Then, the intensity of cerebellar CS was set at 5%
less than the brainstem threshold, or 70% of maximum

stimulator output (MSO) was used if the threshold was not
observed at 80% of MSO. The TS over the left M1 was delivered
using a 70-mm-diameter figure-of-eight coil. Note that the
stimulator intensity was adjusted to S1mV at each time point
(see “Experimental protocols” section). In a set of 20 TS over the
left M1, 10 TS (selected at random) occurred 5ms after a cere-
bellar CS delivered with the double-cone coil centered over the
right cerebellar cortex 3 cm lateral to the inion (conditioned
TS), whereas the remaining 10 TS were collected without a CS
(unconditioned TS). An interstimulus interval across TS was
randomized between 4 and 6 s. The magnitude of CBI was com-
puted as the ratio of the conditioned/unconditioned TS MEPs.

To prove that changes in CBI were not accompanied with
excitability changes in M1, we also assessed M1 excitability
separately but at similar time points to those for CBI measures.
For this, we applied single-pulse TMS to the left M1 with a ran-
domized interstimulus interval of 4–6 s. We recorded 10 MEPs
at a predetermined stimulator intensity of S1mV. Note that the
same stimulator intensity was consistently used for all time
points (see “Experimental protocols” section). We evaluated the
level of M1 excitability by calculating the average of 10 MEP
amplitudes.

Motor Tasks

Reaching with Vector Feedback (Experiments 1 and 2)
Subjects performed a center-out reaching task, moving a visu-
ally displayed cursor from a central starting location through
one of eight radial targets in a slicing movement (Fig. 1a,b).
Subjects were seated approximately 45 cm in front of a vertical
computer monitor (1280 × 1024-pixel resolution). They were
instructed to move a digitizing stylus attached to their right
index finger over a horizontal digitizing tablet (48.8 × 30.5 cm
active area, Intuos4 XL; Wacom) located on a table. Subjects put
their forearm on an arm support with approximately 45° hori-
zontal adduction and 90° flexion in the shoulder, and 45° flex-
ion in the elbow. The tablet and subjects’ forearm were covered
by a box to prevent subjects from directly looking at their hand
while moving. The position of the stylus, sampled at 60 Hz
through a custom Matlab program, corresponded to the posi-
tion of a yellow 1.5-mm-diameter cursor displayed on a black
screen such that moving the stylus forward moved the cursor
upward. The mapping between the stylus and the displayed
cursor displacement was set as 1:2.

Subjects performed rapid “shooting” movements to white 2-
mm-diameter targets displayed in one of eight positions
arrayed radially at 10 cm from a central starting position (0, 45,
90, 135, 180, −135, −90, and −45°). In this manner, subjects
attempted to move the cursor from a white 3-mm-square cen-
tered in the middle of the screen (starting position) through the
visible target in a straight line with no corrections. Subjects were
instructed not to stop at the target but to strike through it as
accurately as possible. In addition, they were instructed to use
finger movements as much as possible to control the cursor dis-
placement instead of using wrist movements.

Each trial started with moving the finger such that the cur-
sor was positioned within the starting position. After maintain-
ing this position for 500ms, one of the targets was presented
and the central starting position turned green. Upon presenta-
tion of the target, subjects started to move their finger so that
the cursor crossed through the target. When the cursor passed
through the invisible boundary circle centered around the start-
ing position with a 10-cm radius, online feedback of the cursor
location was hidden but the boundary point (endpoint) was
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marked with a blue 1.5-mm-diameter circle. Also, the central
starting position turned red. When needed a high- or low-
pitched auditory tone informed subjects that the movement
(time from the starting position to endpoint) was either too fast
(<87.5ms) or too slow (>137.5ms), respectively. In other words,
the task was designed so that the movements were not ballis-
tic, but constrained to be executed within a predefined time
period. This time window was selected based on prior studies
from our group (Galea et al. 2011; Schlerf et al. 2012;
Spampinato and Celnik 2017) and based on our past experience
showing that participants performing reaching movements
within this time window are able to execute the task with no
clear indication of online corrections (i.e., sub-movements,
changes on movement speed). Subjects were reminded to try to

hit the target and, as a secondary goal, try to complete the
movement in the time allowed (Table 1). After each trial, sub-
jects moved back to the starting position during which a yellow
ring indicating a distance from current cursor position to the
starting position was provided. By moving toward the starting
position, a yellow ring became progressively smaller. This ring
was used to guide subjects to the starting position without
additional adaptation occurring between trials. When the cur-
sor was within 1.25 cm from the central starting position, the
ring was transformed into the cursor, allowing subjects to pre-
cisely position the cursor within the central square. The eight
different targets were presented pseudorandomly so that every
set of eight consecutive trials (=epoch) included one of each of
the target positions.
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Figure 1. Experimental protocols. (a) Experimental setups. (b) Motor task for experiments 1 and 2. Subjects performed a center-out reaching controlling a yellow cursor

from a central starting position to one of eight white targets while receiving online and endpoint cursor feedback (blue dot). Right panels show enlarged monitor for

display purpose. (c) Motor task for experiment 3. Subjects performed a reaching from a central starting position to one target. Binary feedback (target color) about task

performance was presented instead of vector cursor feedback. (d) Schematic representation of experiment 1. In a first-day “baseline” session, the AtDCS effects on M1

excitability were evaluated in the absence of motor training. Then in different days subjects participated in two counter-balanced crossover design sessions. Briefly,

they trained the task in three blocks; preperturbation (Pre), perturbation (Perturb), and postperturbation blocks (Post). During the Perturb block, either a 30° (“constant

perturbation” session) or trial-by-trial pseudo-randomized rotations (“random perturbation” session) were applied to cursor movement. The AtDCS effects were eval-

uated after the Perturb block. The numbers under each block represent the amount of trials. Note that the main difference between short and long groups was that

the long group performed one additional Perturb block. (e) Schematic representation of experiment 2. Subjects participated in two-day counter-balanced crossover

design sessions where training the same task as the long group in experiment 1 (the random perturbation session is not shown). CBI was obtained before (Base1) and

after (Base2) the Pre block, and after the first (Early) and the second Perturb blocks (Late). (f) Schematic representation of experiment 3. After a baseline session where

the AtDCS effects were evaluated (not shown in the panel), subjects trained the task through three blocks in a second-day “training” session. During the Perturb block,

a range for task success (shaded area in magenta and gray) was shifted from the original range used in the pre block toward clockwise direction according to a moving

average of the previous 10 reach angles (examples are shown in magenta and gray lines). The Perturb block terminated when the moving average reached a predeter-

mined certain degree (blue horizontal line), otherwise it terminated when the number of trials reached 304. The AtDCS effects were evaluated after the Perturb block,

and CBI measures were performed before (Base1) and after the Pre block (Base2), and after the Perturb block (Post).
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Reaching with Binary Feedback (Experiment 3)
Subjects performed a reaching task involving a rapid finger
movement in the same setup used in the former two experi-
ments (Fig. 1a). The critical difference in this motor task was that
subjects only received binary feedback (“success” or “failure”) at
the end of each trial instead of vector cursor feedback (Therrien
et al. 2016). The cursor on the monitor was invisible when mov-
ing toward the target; while the target’s color turned green if the
invisible cursor passed through a “success range” (e.g., between
the target’s bounds) or red if it missed a range (Fig. 1c). We
adopted this motor task so that subjects acquired a new reaching
that leads to a similar kinematic solution (i.e., similar amount of
angular deviation in reaching from the original movement direc-
tion) with heavily relying on reinforcement mechanisms.

In the task, subjects attempted to move a yellow 1.5-mm-diame-
ter cursor from a white 3-mm-square starting position centered in
themiddle of the screen toward a white 16-mm-diameter target in a
straight line with no corrections. The visible target was always dis-
played at 90°, 10 cm superior to the starting position (Fig. 1c). A trial
begins with a period when subjects moved their finger such that the
cursor was positioned inside the central starting position. Once the
cursor was held in the starting position for 500ms, the target
appeared on the screen. Upon presentation of the target, subjects
started to move their finger so that the cursor crossed through the
target. However, the cursor disappeared immediately after it
moved out (>0.3mm) of the starting position, and therefore, sub-
jects did not receive online and endpoint cursor feedback. Instead,
reinforcing binary color feedback (green: success, red: failure) was
presented to subjects at the moment when the invisible cursor
passed through the invisible 10-cm radius boundary circle centered
around the starting position. When needed a high- or low-pitched
auditory tone informed subjects that their movements were either
too fast (<175ms) or too slow (>375ms). Again, this time window
was selected based on our prior studies (see above) to diminish the
opportunity for online corrections. We verbally instructed subjects
to obtain as many green targets as possible and, as a secondary
goal, to complete the movement in the time window allowed
(Table 1). After each trial, subjects moved back to the starting posi-
tion guided by a yellow ring that indicates the distance of the cur-
rent cursor position from the central starting position. When the
invisible cursor was within 1.25 cm from the central starting posi-
tion, the ring was transformed into the visible cursor.

Experimental Protocols

Experiment 1
We sought to investigate the presence of learning-related LTP-
like plasticity changes in M1 early and later on during training

the visuomotor adaptation task (Fig. 1b). We recruited 28 partici-
pants (23.7 ± 5.2 years, including 15 females, mean ± SD) for
three-day experimental sessions (Fig. 1d). In a first-day baseline
session, we evaluated the AtDCS potentiation effects on M1
excitability when subjects were at rest in the absence of any
motor training. Importantly, recent studies indicated that the
AtDCS effects show between-individual variability, namely a
number of subjects do not show clear potentiation (“non-
responder”) even after the application of AtDCS (Lopez-Alonso
et al. 2014, 2015; Wiethoff et al. 2014). Therefore, we screened out
those subjects based on the results in the baseline session. We
defined subjects as non-responders when we found (1) grand
average of normalized MEP amplitude across postAtDCS time
points (P0, P5, P10, and P15) did not exceed 1.0 (i.e., smaller than
preAtDCS MEP) or (2) normalized MEP amplitude exceeded 1.0 in
less than half (i.e., only once) of the four postAtDCS time assess-
ments. A total of 8 subjects met this exclusion criteria and were
not invited to the subsequent experimental sessions. The other
20 subjects were randomly assigned into one of two groups:
short (n = 10, 25.2 ± 6.3 years, including 5 females) or long (n = 10,
23.4 ± 4.8 years, including 7 females) groups. Both groups partici-
pated in two randomly assigned, counter-balanced crossover
design sessions separated by at least 24 h (Fig. 1d). In a “constant
perturbation” session, the subjects trained in the center-out
reaching task with a constant 30° counter-clockwise visuomotor
transformation (perturbation) in the relationship between the
movement of the finger and a screen cursor, leading to trial-to-
trial adjustments in the finger reaching direction to achieve the
goal of the task (i.e., visuomotor adaptation). In a “random per-
turbation” session, the subjects trained in the same task under
the condition that seven different pseudo-randomized transfor-
mations (−30, −20, −10, 0, 10, 20, and 30°) were applied in each
trial. The random perturbation session was set as a control con-
dition, in which the subjects experienced movement execution
and errors without learning a new visuomotor mapping.

In each session, both groups first performed a preperturbation
block (200 trials = 25 epochs) without any visuomotor perturbation
to familiarize themselves with the task and movement demands.
After this, they performed a perturbation block (48 trials = six
epochs) in which either constant or randomized perturbations
were applied to the cursor movements. Only the long group con-
tinued with an additional perturbation block (144 trials = 18
epochs). Our previous work demonstrated that the process of
adaptation to the constant visuomotor perturbation was still not
completed during the first perturbation block but reached asymp-
tote during the second block (Schlerf et al. 2012). We inserted
catch trials consisting of eight, no visual feedback trials at the
end of the first (early catch: EC) and the second (late catch: LC)
perturbation block. In the catch trials, the cursor disappeared
once it moved out (>0.3mm) of the central starting position so
that subjects did not receive online and endpoint cursor feed-
back. We adopted these trials to evaluate the magnitude of cor-
rected reach angle (i.e., the amount of learning) that subjects
acquired through the perturbation blocks. Note that we did not
provide any explicit cue to make subjects aware of the coming of
catch trials. After completion of the perturbation blocks, the
AtDCS potentiation effects on M1 excitability were evaluated as
done in the baseline session. During the evaluation, we placed a
pillow under the subject’s right hand and instructed them to
relax the entire upper limb without changing their arm position.
By observing the potentiation effects in the short and long
groups, we assessed the presence of learning-related M1 LTP-like
plasticity changes early and late during the training, respectively.
After this, both groups of subjects completed a postperturbation

Table 1 Movement time (ms)

Constant Random

Experiment 1
Short group 132 ± 14 127 ± 11
Long group 135 ± 15 141 ± 12

Experiment 2 126 ± 13 134 ± 17

Training

Experiment 3
Learner group 251 ± 35
Nonlearner group 273 ± 27

Values indicate the average (±SD) movement time (ms) across participants in

each session in each experiment.
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block consisting of no visual feedback trials (168 trials = 21
epochs). We adopted this block to evaluate the robustness of
retention of learnedmovements.

Experiment 2
Weevaluated changes in cerebellar excitability early and late during
the training in the same reaching task as in experiment 1 (Fig. 1b).
A new group of 8 subjects (24.0 ± 6.0 years, including 4 females,
mean ± SD) participated in two randomly assigned, counter-
balanced sessions in which they performed the reaching task with
either constant or randomized visuomotor perturbations (Fig. 1e).
Each session was separated by at least 24h. The subjects com-
pleted the training of the task in the same manner as in the long
group of experiment 1: a 200 trial preperturbation block, a 48 trial
first perturbation block, a 144 trial second perturbation block, and a
168 trial postperturbation block. Eight catch trials were inserted at
the end of each perturbation block (EC, LC). To evaluate the
changes in cerebellar excitability, we assessed the magnitude of
CBI before (Base1) and after the preperturbation block (Base2) as
baseline measurements, and immediately after the first (Early) and
second perturbation blocks (Late). We also evaluated M1 excitabil-
ity at the same time breaks used for the CBImeasures, by recording
MEP amplitudes fromM1 TMS only.

Experiment 3
We recruited a new group of subjects for two-day experimental
sessions (Fig. 1f). A total of 23 subjects (24.9 ± 4.7 years, includ-
ing 13 females, mean ± SD) participated in a first-day baseline
session where we evaluated the AtDCS effects on M1 excitabil-
ity when the subjects were at rest in the absence of any motor
training (Fig. 1d). We screened out 3 subjects as non-responders
as defined in experiment 1. The remaining 20 subjects (24.9 ±
4.9 years, including 11 females) proceeded on to a second-day
“training” session at least 24 h later where they trained in the
reaching task with success-based binary feedback through
three experimental blocks (Fig. 1f). The subjects first performed
a preperturbation block (40 trials = five epochs) in which the
success range was kept constant between the target’s bounds
(90° ± 4.5° on the screen), followed by a perturbation block in
which the success range changed from the original one. Here,
the right bound of the range shifted −30° (i.e., clockwise direc-
tion), which remained the same throughout the block. In con-
trast, the left bound shifted trial-by-trial according to a moving
average of an individual subject’s reach angle in previous 10
trials (Fig. 1f). Reach angle was defined as the angle between
the line connecting the starting position to the center of the
visible target and the line connecting the starting position to
the endpoint in reaching. This manipulation has been shown
to reinforce subjects’ reaching toward a clockwise direction in a
gradual manner (Therrien et al. 2016). Importantly, the pertur-
bation block ended when the mean of the previous 10 reach
angles approached a certain prespecified degree, so that the
total magnitude of reaching corrections made was comparable
to that of the short group from experiment 1. We adopted this
protocol to make a clear contrast that compared two subject
groups that learned similar actions; one group learned heavily
relying on error-based mechanisms (the short group in experi-
ment 1), while the other group learned via reinforcement
mechanisms. To establish the termination criterion, we com-
puted the mean reach angle of the last eight trials (one epoch)
during the perturbation block for each individual in the short
group (−21.4 ± 1.4° ranging from −14.6 to −29.9, mean ± SEM),
and randomly assigned these angles to each subject’s criterion

angle to end the block. In cases where subjects did not
approach their predetermined angle, we terminated the pertur-
bation block when the number of attempts reached 304 trials.
After the perturbation block, subjects performed eight catch
trials (one epoch) consisting of no-feedback trials in which the
target always turned black irrespective of reaching perfor-
mance. Finally, the subjects performed a postperturbation
block (168 trials = 21 epochs) comprising the same setting as
the catch trials. For neurophysiological assessments, we evalu-
ated the magnitude of CBI before (Base1) and after the preper-
turbation block (Base2) as baseline measurements, and
immediately after the perturbation block (Post). We also evalu-
ated changes in M1 excitability at the same time breaks used
for the CBI measures. The AtDCS effects on M1 excitability
were assessed in the period between the perturbation and the
postperturbation blocks.

Importantly, some subjects could successfully reach the cri-
terion angle during the perturbation block (total number of
trials in the block: 107.9 ± 18.3 trials, mean ± SEM), while others
could not reach it even after 304 attempts. In other words, they
could not learn to correct the reaching via success-based binary
feedback. Therefore, we classified the former subject group as
“leaner” (n = 12, 25.1 ± 4.7 years, including 7 females, mean ±
SD) and the latter as “nonlearner” (n = 8, 24.6 ± 5.4 years,
including 4 females), and analyzed them separately. The non-
learner group constituted the ideal control group that helped
dissociate physiological changes related to true learning rather
than simple movement execution.

Data Analysis

Behavioral Analysis
Task performance was quantified in each trial using reach
angle, the angle between the line connecting the starting posi-
tion to the center of the target and the line connecting the start-
ing position to the endpoint in reaching. Trials in which
subjects failed to move the cursor far enough to pass through
the target on the first reaching attempt and then made a second
corrective reaching were excluded from analysis. In addition,
we excluded trials in which reaching angle exceeded 60° or
movement time exceeded 600ms. Excluded trials accounted for
less than 5% of all trials on average (1.6 ± 0.3%, 2.8 ± 0.9%, and
4.3 ± 0.7% for experiments 1, 2, and 3 respectively, mean ± SEM).
To analyze changes in reach angle during task training, we com-
puted the average reach angle across eight consecutive trials
(reaching toward eight different targets = one epoch) for experi-
ments 1 and 2. In a similar vein, to analyze the data of experiment
3 matching the first two experiments we defined the average of
eight trials as one epoch, even though there was only one target
in the task. However, since participants performed different num-
ber of trials during the perturbation block in experiment 3 (recall
that the cutoff threshold here was based on the amount of learn-
ing but not on the trial number), to be able to compare the effects
across groups we defined one epoch as the average across 10% of
the total number of trials. For example, when the total number of
trials was 90 in a participant we used nine trials (10% of 90 trials)
as an epoch for this participant. In case 10% of trials were not a
round number, we rounded up to the nearest integer. For exam-
ple, if the total number of trials was 73 (10% of trials was 7.3), the
trial numbers (trialn) included in each epoch were trial1 to trial7,
trial8 to trial15, and trial16 to trial22, etc.

Using mean reach angle in the catch trials as the outcome
measure, we compared the amount of learning across groups.
For experiment 1, we applied an unpaired t-test (two-tailed)
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between the last catch trials of the short (i.e., EC) and the long
groups (i.e., LC). For experiment 2, we applied a mixed-effect,
repetitive measure, analyses of variance (ANOVARM), to confirm
that the amount of learning was comparable between the subject
group from experiment 2 and the long group from experiment 1,
with between-subject factor for group and within-subject factor
for time (EC, LC). For experiment 3, we applied an unpaired t-test
(two-tailed) between the catch trials of the learner group and the
short group from experiment 1 to check if the amount of learn-
ing was well-controlled. Using mean reach angle at the first and
the last epochs during the postperturbation block, we also com-
pared the robustness of retention of learned movements (i.e.,
resistance to forgetting) between the groups by applying a
mixed-effect ANOVARM with between-subject factor for group
and within-subject factor for time (first, last).

Neurophysiological Analysis
In the process of MEP analysis, MEPs were discarded from the
analysis when there was pre-EMG activation or when ampli-
tudes were greater than two standard deviations from the
mean amplitudes for the given measurement. On average, we
discarded 0.1 ± 0.2 (0.7 ± 0.9%, mean ± SD) and 0.1 ± 0.1 (1.3 ±
1.8%) pulses for the short and the long groups, respectively, in
experiment 1; 0.3 ± 0.2 (3.3 ± 2.4%) in experiment 2; and 0.2 ±
0.2 (1.6 ± 1.6%) and 0.1 ± 0.1 (1.0 ± 0.9%) pulses for the learner
and the nonlearner group respectively in experiment 3.

To assess the presence of learning-related LTP-like plasticity
changes in M1, we first evaluated the magnitude of the AtDCS
potentiation effects for each experimental session by computing
the grand average of normalized MEP amplitude across postAtDCS
time points (P0, P5, P10, and P15). Then, for experiment 1, we com-
pared these values among the groups and sessions by applying a
mixed-effect ANOVARM with between-subject factor for group
(short, long) and within-subject factor for session (baseline, con-
stant, random). We additionally performed Bonferroni’s multiple
comparison test as post hoc analysis to evaluate the difference
between the baseline session and the other sessions for each
group. For experiment 3, we applied a mixed-effect ANOVARM

with between-subject factor for group (learner, nonlearner) and
within-subject factor for session (baseline, training). For post hoc
analysis, we further applied a paired t-test (two-tailed) to evaluate
the difference between the two sessions for each group.

To assess the difference in the magnitude of CBI between
sessions in experiment 2, we applied ANOVARM with within-
subject factors for session (constant, random) and time (Base1,
Base2, Early, Late). For post hoc analysis, we used paired t-tests
(two-tailed) for each time point to compare the difference
between the sessions. For experiment 3, we applied a mixed-
effect ANOVARM with between-subject factor for group (learner,
nonlearner) and within-subject factor for time (Base1, Base2,
Post). We also used the same statistical analysis to compare
MEP amplitudes acquired by single-pulse TMS.

All statistical analyses were performed using SPSS (version
20; IBM, Armonk). Effects were considered significant if P ≤ 0.05.
Effect sizes were reported in Cohen’s d value (d) for t-test, and
partial eta squared value (ηp

2) for ANOVA, respectively.

Results
M1 LTP-like Plasticity Develops Late, but not Early
When Learning via Vector Feedback

We found in experiment 1 that both, the short and the long
groups gradually shifted the reaching direction only when

exposed to the constant perturbation, but not when exposed to
the random perturbation (Fig. 2a,b). This indicates that both
groups accumulated significant amounts of information only
when exposed to constantly transformed visuomotor mapping.
However, when we compared the total amount of learning
between the two groups, we found that the short group
adapted less, whereas the long group seemed to compensate
more for the perturbation. This difference resulted in signifi-
cantly greater angular deviation in the catch trials at the end of
the perturbation block for the long group (−23.17 ± 0.82°, mean
± SEM) relative to the short group (−18.44 ± 1.36°: t18 = 3.0, P =
0.008, d = 1.40, see Supplementary Fig. S1a). This group differ-
ence persisted in the subsequent postperturbation block
(mixed-effect ANOVARM, main effect of group: F1,18 = 5.7, P =
0.03, ηp

2 = 0.24, see Supplementary Fig. S1b), resulting in compa-
rable amounts of gradual shift toward baseline reaching direc-
tions from the first (−9.21 ± 1.65° and −13.68 ± 0.85° for the
short and the long group) to the last epoch (−4.81 ± 1.45° and
−7.19 ± 1.65°; main effect of time: F1,18 = 14.4, P = 0.001; group ×
time interaction: F1,18 = 0.5, P = 0.48, ηp

2 = 0.03). In contrast, nei-
ther group could systematically accumulate trial-to-trial learn-
ing in the random perturbation session (Fig. 2a,b). This is
depicted by both groups showing little and comparable changes
in angular deviation in the catch trials at the end of the pertur-
bation block (−0.06 ± 0.57° and −1.18 ± 1.00° for the short and
the long group: t18 = 1.0, P = 0.34, d = 0.46).

When we evaluated the effects of AtDCS on M1 excitability,
we found clear difference across sessions and groups (mixed-
effect ANOVARM, group × session interaction: F2,36 = 7.3, P =
0.002, ηp

2 = 0.29, Fig. 2c,d). This distinction was not explained by
the difference in the baseline (preAtDCS) MEP amplitude (see
Supplementary Table S1). The short group revealed comparable
magnitude of potentiation effects both after training in the ran-
dom (1.81 ± 0.18, mean ± SEM: Bonferroni correction, P = 0.58)
and the constant perturbation sessions (1.67 ± 0.19: P = 1.00) rela-
tive to the baseline session (1.50 ± 0.13, Fig. 2c). On the contrary,
the long group showed clear occlusion of the potentiation effects
after training in the constant perturbation (0.81 ± 0.07: P > 0.001)
compared to the one in the baseline session (1.60 ± 0.14), an
effect that was not present after training in the random pertur-
bation (1.23 ± 0.14: P = 0.11, Fig. 2d). These findings indicate that
M1 develops LTP-like plastic changes late, but not early, when
adapting to a visuomotor perturbation. This is because later in
the practice more repetitions result in successful movements
(asymptotic phase) weighting more reinforcement contributions.
Importantly, we did not find signs of occlusion after training in
the random perturbation (see Supplementary Fig. S2 for individ-
ual data). This indicates that M1 LTP-like plastic changes are spe-
cifically associated to learning, rather than the simple execution
of movements.

Cerebellar Excitability Changes Early When Learning
via Vector Feedback

In experiment 2, similar to experiment 1, we found gradual
accumulation of trial-to-trial learning only when the subjects
dealt with constant perturbation but not in the randomized sit-
uation (Fig. 3a). Importantly, the magnitude of angular devia-
tion in the catch trials at the end of the first (−16.19 ± 2.12°) and
the second perturbation blocks (−22.43 ± 1.84°) were compara-
ble to that observed in the long group from experiment 1
(mixed-effect ANOVARM, group × time interaction: F1,16 = 0.18,
P = 0.68, ηp

2 = 0.01, see Supplementary Fig. S1c). Similarly, both
groups showed comparable magnitude of angular deviation
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and a return to baseline levels of performance from the first
(−15.57 ± 1.50°) to the last epoch (−8.20 ± 0.99°) during the post-
perturbation block (mixed-effect ANOVARM, main effect of time:
F1,16 = 28.0, P < 0.001, ηp

2 = 0.64; main effect of group: F1,16 = 1.2,

P = 0.29, ηp
2 = 0.07; group × time interaction: F1,16 = 0.1, P = 0.74,

ηp
2 = 0.01, see Supplementary Fig. S1d).
When we assessed CBI, we found a selective reduction only

early during training with the constant perturbation
(ANOVARM, session × time interaction: F3,21 = 3.6, P = 0.03, ηp

2 =
0.34, Fig. 3b). Importantly, we confirmed that there was no sys-
tematic difference in the amplitude of unconditioned TS MEPs
across sessions and time points (see Supplementary Table S2).
While there was no significant difference in CBI between the
sessions (constant and random) at baseline assessments
(Base1, 0.61 ± 0.07 and 0.62 ± 0.08: t7 = 0.2, P = 0.85; Base2, 0.59
± 0.07 and 0.57 ± 0.08: t7 = 0.3, p = 0.80), the magnitude of CBI
decreased early on during learning the constant perturbation
(Early, 0.75 ± 0.08 and 0.54 ± 0.07: t7 = 2.5, P = 0.04). The reduc-
tion of CBI returned to baseline levels later on in the training,
reaching comparable levels between the sessions (Late, 0.62 ±
0.08 and 0.60 ± 0.07: t7 = 0.3, P = 0.81, see Supplementary Fig. S3
for individual data). Importantly, the modulation of CBI was
observed in the absence of M1 excitability changes (ANOVARM,
main effect of time: F3,21 = 0.2, P = 0.86, ηp

2 = 0.03; main effect of
session: F1,7 = 0.9, P = 0.38, ηp

2 = 0.11; time × session interaction:
F3,21 = 1.0, P = 0.41, ηp

2 = 0.13, see Supplementary Table S3).
These findings are consistent with a prior study showing
changes in the magnitude of CBI early on during adaptation to
a constant visuomotor perturbation (Schlerf et al. 2012), when
error-based forms of learning would be critically engaged in
developing an internal model of the new environment.

Learning via Binary Feedback Elicits M1 LTP-like
Plasticity, but not Cerebellar Excitability Changes

Results in experiments 1 and 2 showed that the cerebellum
exhibited excitability changes early on during adapting to a con-
stant visuomotor perturbation, whereas M1 exhibited LTP-like
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plasticity changes late but not early on during the adaptation.
However, it could be argued that the lack of M1 LTP-like plastic-
ity changes early on during adaptation is due to less amount of
learning (i.e., smaller correction in the reaching direction), inde-
pendently of weighted learning mechanisms engaging at each
phase. To exclude this assertion and further discern the relation-
ship between reinforcement and error-based forms of learning,
we assessed the same neurophysiological markers when sub-
jects learned a similar amount of angular deviation in reaching
via training on a task that heavily relies on reinforcement mech-
anisms. We predicted that learning the same magnitude of
angular deviations only via success-based binary feedback (rein-
forcement signals) would lead to M1 LTP-like plasticity, but no
cerebellar excitability changes. In other words, the opposite
neurophysiological pattern to that observed when learning the
same angular deviations through error-based mechanisms.

The subjects in experiment 3 were divided into the learner
and the nonlearner groups based on task performance during
the perturbation block (Fig. 4a). While the percentage of task
success during the preperturbation block was comparable
between the learner (71.0 ± 5.4%, mean ± SEM) and the nonlear-
ner groups (68.8 ± 2.7%, two-tailed unpaired t-test, t18 = 0.4, P =
0.71, d = 0.15), the leaner group showed greater percentage of
success (63.7 ± 1.9%) than the nonlearner group (52.1 ± 0.9%,
two-tailed unpaired t-test, t18 = 6.6, P < 0.001, d = 2.21) during
the perturbation block. Importantly, we confirmed that the
magnitude of angular deviation in the catch trials in the learner
group (−20.77 ± 1.62°, mean ± SEM) was comparable to that in
the short group from experiment 1 (two-tailed unpaired t-test,
t20 = 1.1, P = 0.28, d = 0.48, see Supplementary Fig. S1e). However,
during the postperturbation block, the learner group showed a
trend toward better retention of the learned reaching angle; in
other words, less gradual shift from the first (−8.80 ± 2.73°) to

the last epoch (−10.58 ± 3.61) when compared to the short group
(mixed-effect ANOVARM, group × time interaction: F1,20 = 3.8, P =
0.07, ηp

2 = 0.16, see Supplementary Fig. S1f).
When applying AtDCS after the perturbation block, we found

significant differences in the potentiation effects between the
learner and the nonlearner groups (mixed-effect ANOVARM, group ×
session interaction: F1,18 = 8.6, P = 0.009, ηp

2 = 0.32, Fig. 4b,c). Note
that there was no meaningful difference in the amplitude of
preAtDCS MEP across groups and sessions since it was controlled
to some extent to meet the amplitude around 1mV (see
Supplementary Table S1). The learner group showed significantly
less AtDCS-induced potentiation after the training (1.09 ± 0.09,
mean ± SEM) relative to the baseline session (1.79 ± 0.20: two-
tailed paired t-test, t11 = 4.6, P = 0.001, Fig. 4b). In contrast, this
effect was not present in the nonlearner group (baseline, 1.75 ±
0.24; training, 1.67 ± 0.26: t7 = 0.7, P = 0.53, Fig. 4c). As predicted, we
found no systematic difference in the magnitude of CBI through-
out the experiment regardless of whether the subjects success-
fully learned (Base1, 0.67 ± 0.06; Base2, 0.62 ± 0.07; Post, 0.68 ±
0.06) or not the task (Base1, 0.61 ± 0.09; Base2, 0.64 ± 0.10; Post,
0.58 ± 0.10, Fig. 4d). This was supported by a mixed-effect
ANOVARM that revealed no statistical significance across groups
and time (main effect of group: F1,18 = 0.2, P = 0.65, ηp

2 = 0.01; main
effect of time: F2,36 = 0.1, P = 0.96, ηp

2 = 0.003; group × time interac-
tion: F2,36 = 1.4, P = 0.25, ηp

2 = 0.07, see Supplementary Fig. S4 for
individual data). Importantly, we confirmed that the amplitude of
unconditioned TS MEPs was comparable and approximately 1mV
across groups and time points (see Supplementary Table S2).
Similar to the result of CBI, we found no systematic changes in M1
excitability throughout the experiment (mixed-effect
ANOVARM, main effect of group: F1,18 = 1.6, P = 0.22, ηp

2 = 0.08;
main effect of time: F2,36 = 1.0, P = 0.38, ηp

2 = 0.05; group × time
interaction: F2,36 = 2.65, P = 0.08, ηp

2 = 0.13, Supplementary
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Table S3). These neurophysiological findings further support
our claim that learning motor behavior via reinforcement
mechanisms is exclusively linked to the development of M1
LTP-like plasticity changes but not cerebellar plasticity
modifications.

In summary, the learner group of experiment 3 arrived to a
comparable amount of angular deviation in reaching as the short
group from experiment 1. While the former learned the task via
binary feedback, the latter learned via online and endpoint vector
feedback, weighting differently reinforcement and error-based
learning mechanisms respectively. The learner group heavily
relying on reinforcement showed M1 LTP-like plasticity changes,
but no cerebellar excitability changes; whereas the short group
mainly relying on error-based mechanisms expressed cerebellar
excitability but noM1 LTP-like plasticity changes. This double dis-
sociation clearly points to learning-related LTP-like plasticity
changes in M1 as a marker of engaging reinforcement processes,
whereas cerebellar excitability changes as a marker of error-
based forms of learning.

Discussion
Learning complex motor skills, like hitting a baseball, involves
multiple processes such as reinforcement and sensory-
prediction error-based forms of learning. Here, we added to the
evidence that these different processes can be used to learn
similar motor actions (Huang et al. 2011; Therrien et al. 2016).
Importantly, our study shows in healthy young individuals that
these two forms of learning rely on different neural substrates,
each engaging distinct neurophysiological mechanisms, one
involving the motor cortex and the other one the cerebellum.
These findings suggest that manipulating one form of learning
could be used to compensate another mechanism that has
been damaged due to neurological diseases. For instance, in
patients with cerebellar lesions who experience abnormalities
in error-based learning, Therrien et. al were able to train them
to learn a motor task via reinforcement feedback (Therrien
et al. 2016). However, this concept warrants further testing in
older adults and patient populations.

Reinforcement learning has been defined as one form of
learning that relies on scalar measures of outcome such as suc-
cess or failure, where behavior leading to a successful outcome
is reinforced while another leading to a failure is avoided
(Sutton and Barto 1998). This form of learning is driven by
“reward prediction errors”, consisting of differences between
actual and predicted rewards. Specifically, if the reward is bet-
ter than predicted (positive prediction error) the behavior lead-
ing to the reward will be repeated. In contrast, if the reward is
worse than predicted (negative prediction error) the behavior
will be avoided the next time around (Schultz 2016). This form
of learning is implemented by dopaminergic neurons in the
midbrain that change their level of activity when reward itself
or reward prediction errors are encountered (Schultz 1986;
Schultz et al. 1997; Pan et al. 2005; Pessiglione et al. 2006). It is
likely that a similar dopamine-dependent physiological process
drove the learning of the motor task in our experiment 3. Here,
successful or unsuccessful outcome would result in positive or
negative reward prediction errors prompting subjects to
explore and learn the correct reaching movements. The contri-
bution of dopaminergic activity to this form of learning is sup-
ported by behavioral studies in Parkinson’s disease patients
who experience reduced variation of movements as a function
of unsuccessful outcome (Pekny et al. 2015).

If reinforcement forms of learning rely on dopaminergic activ-
ity in the midbrain, why did we observe the expression of M1
LTP-like plasticity changes in association with greater engage-
ment of this learning? Previous animal research has shown that
dopamine affects neuronal excitability in M1 via direct dopami-
nergic projections from the ventral tegmental area (Molina-Luna
et al. 2009; Hosp et al. 2011). For instance, eliminating dopaminer-
gic terminals in M1 or dopaminergic cells in the ventral tegmental
area impairs the expression of LTP in M1 and interferes with
learning of new motor skills (Molina-Luna et al. 2009; Hosp et al.
2011). Specifically, dopamine-dependent D1 receptors within M1
have been implicated to be critical for structural dendritic spine
plasticity and LTP synaptic plasticity (Guo et al. 2015). Dopamine
is also likely to influence synaptic efficacy in M1 via basal
ganglia-M1 loops receiving inputs from the substantia nigra
(Gaspar et al. 1992; Williams and Goldman-Rakic 1998; Hosp et al.
2011). Indeed, the capacity of M1 to undergo plastic changes in
response to excitability-modulating noninvasive brain stimula-
tion protocols is impaired in Parkinson’s disease patients in the
absence of dopamine agonist medications (Morgante et al. 2006;
Ueki et al. 2006; Suppa et al. 2011; Kishore et al. 2012). Therefore,
it is conceivable to reason that engaging dopamine-dependent
reinforcement forms of learning can lead to the expression of
learning-related LTP-like plasticity changes in M1.

The present study indeed revealed that learning motor tasks
that heavily rely on reinforcement mechanisms is associated
with the expression of learning-related LTP-like plasticity
changes in M1. To learn the motor task in experiment 3, subjects
relied on binary feedback and thus reinforcement processes. As
argued by others (Huang et al. 2011), we also predicted that to
learn the adaptation task of experiments 1 and 2 reinforcement
forms of learning would also be engaged in the later stages of
the training. Although subjects learn to make the cursor reach
the target via vector feedback, a process generally thought to be
mediated by formation of internal models (i.e., error-based learn-
ing) (Shadmehr et al. 2010; Krakauer and Mazzoni 2011), at later
stages of the training when the errors are greatly decreased, the
subjects in the long group experienced significant number of suc-
cessful movements leading to “reward” and increase propensity
to repeat the same movements (Huang et al. 2011). Thus, we
think the reliance on reinforcement mechanisms is what drove
the formation of LTP-like plasticity in M1 when learning via
binary feedback, as well as later on during learning via vector
feedback as in the long group of experiment 1.

Here, we assessed the expression of LTP-like plasticity by
determining the presence of occlusion of AtDCS effects on M1
excitability. Electrophysiological studies demonstrated that the
application of AtDCS over M1 elicits long-lasting increases in
M1 excitability through processes that resemble LTP plasticity
changes due to the involvement of NMDA receptor activity
(Nitsche and Paulus 2000; Liebetanz et al. 2002; Nitsche et al.
2003; Fritsch et al. 2010). However, the exact cellular mecha-
nisms and the specific brain regions modulated by AtDCS
remain incompletely understood. Previously we have shown
that AtDCS effects on M1 excitability are occluded when the
stimulation is applied immediately after learning a skill motor
task (Cantarero et al. 2013a, 2013b; Spampinato and Celnik
2017). This phenomenon, well characterized in animal models
(Rioult-Pedotti et al. 1998, 2000, 2007), can be interpreted by the
learning using up LTP resources resulting in a lack of potentia-
tion when AtDCS is applied after the training.

We found that some subjects in experiment 3 did not suc-
cessfully correct their reaching toward the desired direction
(i.e., nonlearner group) resulting in no M1 LTP-like plasticity
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changes. This was despite the fact that the nonlearner group
performed greater number of trials than the learner group
(number of trials was 304 in the nonlearner group vs. 107 in the
learner group on average). This provided the ideal control to
differentiate learning versus execution effects on plasticity
changes. In other words, mere movement repetition without
learning a new motor pattern was not sufficient to drive LTP-
like M1 plasticity changes. If M1 LTP-like plasticity results from
simple movement execution then the nonlearner group should
have experienced larger plasticity changes. A similar situation
was also present in experiment 1 where training with random
perturbations, resulting in no learning, did not induce cerebel-
lar or M1 plasticity changes.

Unlike experiment 3, we did not find any nonlearner in experi-
ments 1 and 2; (see Supplementary Figs S2 and S3). This is
because the reinforcement-based task is more difficult. Here, par-
ticipants were required to find the correct movements based on
binary feedback signaling only “success” or “failure” in the
absence of any vector error feedback. In other words, in experi-
ment 3, unlike the other two experiments, subjects have no cur-
sor to track and thus no information of the magnitude and
direction of errors. Importantly, the fact that the invisible success
range, but not the visible target, gradually shifted across trials
was not intuitive for naïve participants. Nonetheless, it remains
unclear why some subjects in experiment 3 could not learn the
task using the binary feedback. A recent study suggested that a
balance of two sources of movement variability, exploration vari-
ability and motor noise, are keys to optimize reinforcement forms
of learning (Therrien et al. 2016). In particular, exploration vari-
ability, defined as the one subjects have full awareness, is
thought to help update estimates of correct movements as a
function of binary feedback of performance outcome. Motor
noise, on the other hand, is defined as variability of which sub-
jects are unaware. Based on this model, we could speculate that
the subjects in the nonlearner group might have less exploratory
variability, which was suboptimal to learn the reinforcement-
based task in the course of predetermined number of trials. Other
possibilities remain such as subjects not paying attention or not
really caring to learn the task. Future studies will need to address
why some people are not able to learn a motor task.

In contrast to the link between reinforcement forms of learn-
ing and M1 plasticity, we found cerebellar excitability changes
(i.e., reduction of CBI) early on during visuomotor adaptation
when error-based forms of learning are greatly engaged. This is
consistent with our previous finding in visuomotor and locomotor
adaptation paradigms (Jayaram et al. 2011; Schlerf et al. 2012). We
interpret this reduction of CBI to be indicative of reduced Purkinje
cell activity as described in nonhuman primate investigations
(Medina and Lisberger 2008). This research has shown that
cerebellar-dependent motor learning is linked to a depression of
parallel fiber/Purkinje cell synaptic activity (Ito 2002), triggered by
climbing fiber inputs signaled when movements are inaccurate or
erroneous (Simpson et al. 1996; De Zeeuw et al. 1998; Kitazawa
et al. 1998). Thus, if Purkinje cell activity is reduced due to the
learning, then a conditioning TMS pulse over the cerebellum of
the same intensity as baseline will engage only partially the
cerebello-dentato-thalamo-cortical pathway releasing inhibition
of M1 activity triggered by a subsequent test pulse (Celnik 2015).

Interestingly, although the short group and the subjects that
learned in experiment 3 acquired a similar amount of angular
deviation in reaching, we found less forgetting (i.e., greater
memory retention) in the learner group of experiment 3. Note
that this group learned the new reaching patterns mainly via
reinforcement. This result is consistent with previous

behavioral findings which showed that training motor skills or
adaptive motor tasks under explicit positive reinforcement
feedback (i.e., rewarding) impact the strength of the memory
trace and facilitate retention of learned movements (Abe et al.
2011; Shmuelof et al. 2012; Galea et al. 2015; Therrien et al.
2016). Our finding also implies that motor memories acquired
through different amount of contributions between reinforce-
ment and error-based mechanisms would be represented by
differently weighed neuronal networks (Debas et al. 2010).
Nevertheless, when comparing retention across these experi-
ments it is important to consider that the nature of the tasks is
different across experiments 1–2 and 3. For example, given that
the number of targets and trials are different across the experi-
mental tasks, subjects had to deal with different challenges to
arrive to similar motor commands. In other words, although
the ultimate kinematics executed were comparable across
experiments, it is possible that participants learned slightly dif-
ferent challenges such as to counteract potential interference
across target directions, reduce motor noise related to multiple
targets, different number of trials leading to different fatigue
states, etc. These distinguishing features across tasks might
engage slightly different neuronal substrates and might also
affect the magnitude of memory retention across experiments.

Although our findings indicate a relationship between each
form of learning and a specific neural substrate, it is likely that
other brain regions not tested here are also involved in these
forms of learning. For instance, human imaging studies have
shown that both learning via reinforcement as well as via
error-based mechanisms are associated with functional con-
nectivity changes between sensorimotor regions in cerebral cor-
tex and subcortical structures including the cerebellum and the
basal ganglia (Vahdat et al. 2011; Sidarta et al. 2016). Thus, our
results demonstrate clear dissociable plasticity changes in a sub-
set of the neural substrates likely relevant to the two different
forms of learning. In addition, it should be noted that our find-
ings do not exclude that other forms of learning (c.f., cognitive
strategy and use-dependent mechanism), not tested in the pres-
ent study, are involved when learning our motor tasks.

The purpose of this study was to understand whether learning
results in LTP-like plasticity changes as probed by occlusion of
anodal tDCS effects. To this end, we screened out non-responders
to AtDCS effects at baseline, prior to training. Therefore, we could
not verify whether participants not responding to AtDCS show a
reduced or abnormal capacity to learn motor tasks that rely on
reinforcement mechanisms. This provocative concept that stems
out from our current results could be investigated in future studies.

In conclusion, our study shows a double dissociation where
learning actions via reinforcement processes leads to LTP-like
plasticity changes in M1 but not cerebellar excitability changes;
while learning a similar kinematic direction via error-based
mechanisms results in cerebellar excitability changes but not
M1 LTP-like plasticity. This indicates that learning complex
motor behavior appears to rely on the interplay of different
forms of learning, weighting distinct neural mechanisms in M1
and the cerebellum. The results provide insights for designing
effective interventions using noninvasive brain stimulations to
enhance human motor function in healthy people and patients
with neurological diseases.
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