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Background: Prognostic models are needed that reflect contemporary practice for men with metastatic castration-resistant
prostate cancer (mCRPC). We sought to identify predictive and prognostic variables for overall survival (OS) in chemotherapy-
naı̈ve men with mCRPC treated with enzalutamide.

Patients and methods: Patients from the PREVAIL trial database (enzalutamide versus placebo) were randomly split 2 : 1 into
training (n¼ 1159) and testing (n¼ 550) sets. Using the training set, 23 predefined variables were analyzed and a multivariable
model predicting OS was developed and validated in an independent testing set.

Results: Patient characteristics and outcomes were well balanced between training and testing sets; median OS was 32.7 months
in each. The final validated multivariable model included 11 independent prognostic variables. Median OS for low-, intermediate-,
and high-risk groups (testing set) defined by prognostic risk tertiles were not yet reached (NYR) (95% CI NYR–NYR), 34.2 months
(31.5–NYR), and 21.1 months (17.5–25.0), respectively. Hazard ratios (95% CI) for OS in the low- and intermediate-risk groups versus
high-risk group were 0.20 (0.14–0.29) and 0.40 (0.30–0.53), respectively. Secondary outcomes of response and progression differed
widely in model-defined risk groups. Enzalutamide improved outcomes in all prognostic risk groups.

Conclusions: Our validated prognostic model incorporates variables routinely collected in chemotherapy-naı̈ve men with
mCRPC treated with enzalutamide, identifying subsets of patients with widely differing survival outcomes that provide useful
information for external validation, patient care, and clinical trial design.

Trial registration: ClinicalTrials.gov: NCT01212991.
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Introduction

The majority of men who develop lethal prostate cancer will

first develop metastatic castration-resistant prostate cancer

(mCRPC) [1]. Despite treatments that improve survival [2–11],

heterogeneity between patients in disease biology and burden ac-

count for significant differences in treatment outcomes.
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Prognostic models for survival have been developed and

utilized for patient care and clinical trial design [12, 13]. Prior stud-

ies identified independent prognostic variables for survival in men

with mCRPC treated with docetaxel or abiraterone acetate [13–17],

including both tumor and host factors. How these prognostic

factors together perform in predicting outcomes in chemotherapy-

naı̈ve mCRPC men treated with the novel androgen receptor (AR)-

directed therapies enzalutamide or abiraterone, as is often current

practice, is unknown, and validated prognostic models are needed.

Enzalutamide is a second-generation AR inhibitor approved for

the treatment of men with mCRPC. In the randomized, phase III

PREVAIL trial, enzalutamide significantly reduced the risk of death

by 29% [hazard ratio (HR) 0.71; P< 0.001] compared with placebo

[2]. By analyzing patients from PREVAIL, we sought to validate and

identify novel prognostic and predictive variables associated with

survival in chemotherapy-naı̈ve asymptomatic to minimally symp-

tomatic men with mCRPC treated with enzalutamide.

Patients and methods

Patients and study design

The full methodology and results of the international, randomized, double-
blind, placebo-controlled, phase III PREVAIL trial (NCT01212991) have
been previously reported (also see supplementary Methods, available at
Annals of Oncology online) [2].

Data sets

The primary end point used for the model was overall survival (OS), using
an updated analysis after 784 deaths (46%, data cutoff 1 June 2014) [18]; all
secondary end points used the planned interim data cut at 16 September
2013. Patients from PREVAIL (both enzalutamide and placebo arms) were
randomly divided 2 : 1 into the training and testing sets for this analysis
(supplementary Figure S1, available at Annals of Oncology online).

From the data available in the PREVAIL data set, 23 variables were
selected for analysis (supplementary Table S1, available at Annals of
Oncology online), based on previous work demonstrating their potential
importance in mCRPC outcomes [13, 14, 17, 19, 20]. Skewed data were
log transformed or coded as categorical. Correlations were examined
using the Spearman correlation method.

Model building

Categorical and/or continuous variables associated with the 23 selected
variables with data available in the PREVAIL data set (supplementary
Table S1, available at Annals of Oncology online) were analyzed using
stepwise Cox proportional hazards model and adaptive least absolute
shrinkage and selection operator (ALASSO), with the hypothesis that
results could be considered robust if both methods identified the same or
similar sets of variables. Using the training set, 23 variables were analyzed
in a stepwise Cox proportional hazards model and a penalized Cox
proportional hazards model using ALASSO penalty [2, 21]. The absolute
shrinkage property of the ALASSO method results in more stable variable
selection [21, 22]. The Akaike Information Criterion (AIC) [23] was
used to examine which variables contributed most to the final model.
Model building followed a prospectively defined plan in which prognos-
tic discrimination and parsimony were balanced with the need to include
variables previously established and validated in the mCRPC setting to
maximize generalizability. A predictive treatment interaction term was
created for each candidate variable and was tested in the proportional
hazards regression model for improvement in OS with enzalutamide
relative to placebo.

Model validation

A multivariable Cox proportional hazards model predicting OS using the
training set was developed. The HR and 95% confidence interval (CI)
were computed for each potentially prognostic variable. Predictive accur-
acy was assessed in the testing set using time-dependent area under the
curve (tAUC) and calibration assessed by plotting the predicted probabil-
ity of death at 3-month intervals between 6 and 39 months versus
observed probability.

A risk score was developed from the multivariable model using the
training set. Based on risk scores, the testing set was divided at the median
cut point (high- and low-risk groups) and by tertiles (high-, intermedi-
ate-, and low-risk groups). The OS in the training and testing sets was
analyzed using Kaplan–Meier methodology. In the testing set risk groups,
the primary end point of OS and secondary end points of radiographic
progression-free survival (PFS) and prostate-specific antigen (PSA)–PFS
were analyzed using Kaplan–Meier methodology. Analyses were
carried out using SAS software (version 9.4; SAS Institute, Cary, NC) and
R glmnet and R survAUC packages, R version 3.2.2 [24].

Results

Patients

Baseline demographics, medical history, disease characteristics,

and distribution of treatment assignments (enzalutamide or

placebo) were balanced between the training set (n¼ 1159) and

the testing set (n¼ 550; supplementary Table S2, available at

Annals of Oncology online). Eight patients from the full PREVAIL

population (n¼ 1717) were excluded from this analysis because

of missing baseline values for continuous variables. At the data

cutoff date, median OS times of the training and testing sets were

an estimated 32.7 months (95% CI 31.3–35.5) and 32.7 months,

respectively [95% CI 30.9–not yet reached (NYR); supplementary

Figure S2, available at Annals of Oncology online].

Prognostic variable selection

The stepwise model identified 14 prognostic variables for OS,

whereas ALASSO identified 13. All variables identified with

ALASSO were identified with the stepwise model: albumin, alka-

line phosphatase (ALP), Eastern Cooperative Oncology Group

performance status, hemoglobin, lactate dehydrogenase (LDH),

neutrophil-to-lymphocyte ratio (NLR), number of bone metasta-

ses, presence of pain, pattern of spread (visceral versus bone

versus lymph node only), PSA, time from diagnosis to random-

ization, treatment (enzalutamide versus placebo), and type of

progression at study entry (PSA only versus radiographic). The

only variable not identified by ALASSO was de novo metastatic

(M1) disease.

Before modeling, we tested for the presence of a treatment–

biomarker interaction with all prognostic variables. Each treat-

ment interaction term was not significant (P> 0.05), indicating

that enzalutamide treatment was independently associated with

improved survival in all prognostic biomarker–defined groups;

thus no predictive biomarkers for enzalutamide efficacy were

identified or included in the model.

Given the need for parsimony in model development, we car-

ried out AIC analysis using a stepwise model. The AIC method

avoids overfitting, and the decrease in AIC score began to flatten

at nine parameters (supplementary Figure S3, available at Annals
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of Oncology online), indicating that albumin, LDH, de novo M1

disease, NLR, number of bone metastases, presence of pain, PSA,

time from diagnosis to randomization, and treatment were the

strongest prognostic variables.

The nine variables identified by AIC analysis did not include

visceral pattern of spread, which previously has been demon-

strated to be strongly prognostic of survival in men with mCRPC

[14, 15, 17, 25, 26]. Likewise, neither ALP nor hemoglobin was

included in the AIC analysis, despite their inclusion in the

ALASSO and stepwise models and previous validation studies

[13, 14]. In our data set, ALP had a moderate correlation with the

number of bone metastases, and PSA and hemoglobin had mod-

erate correlation with albumin (supplementary Table S3, avail-

able at Annals of Oncology online). However, to develop a

clinically relevant model and potentially improve external valid-

ity, we included pattern of spread, ALP, and hemoglobin in our

final model. Additionally, because our initial hypothesis was that

variables identified by both ALASSO and the stepwise models

would be more robust, we opted to remove de novo M1 disease,

which was moderately correlated with time from diagnosis

(r¼�0.49; supplementary Table S3, available at Annals of

Oncology online), a variable captured in both models and AIC

analysis. Thus, the final model contained 11 prognostic variables:

albumin, ALP, hemoglobin, LDH, NLR, number of bone meta-

stases, presence of pain, pattern of spread, PSA, time from diag-

nosis to randomization, and treatment. Importantly, our model

did not include 12 variables due to lack of statistical significance

or model improvement, including type of progression, number

of prior secondary hormonal therapies, PSA doubling time, age,

baseline corticosteroid use, or prior prostatectomy.

Multivariable model for predicting OS

In a multivariable Cox proportional hazards model performed

on the training set, all 11 variables were significantly associated

with OS (Table 1). Concordance for predicting OS as assessed by

tAUC score for the 11-variable model was 0.74 in the testing val-

idation set (supplementary Figure S4, available at Annals of

Oncology online).

A risk score was calculated using regression coefficients from

the training set for the 11 variables. An algorithm was developed

accordingly (supplementary Table S4, available at Annals of

Oncology online) and a nomogram was produced in Figure 1.

Patients in the testing set were stratified as being at high or low

risk of death based on median risk score and also stratified as

high, intermediate, or low risk based on risk score tertiles. The

11-variable model provided a significant separation between low-

risk and high-risk patients (HR 0.35; 95% CI 0.27–0.46;

Figure 2A) and between low-risk (HR 0.20; 95% CI 0.14–0.29)

and intermediate-risk (HR 0.40; 95% CI 0.30–0.53) versus high-

risk patients (Figure 2B). The full model description is provided

in supplementary Table S4, available at Annals of Oncology

online.

Next, we examined the impact of enzalutamide treatment

on men in both low- and high-risk prognostic groups of the

testing set. Median OS among low-risk patients was NYR with

both enzalutamide and placebo, whereas among high-risk

patients, median OS was 27.4 and 24.9 months, respectively.

Among low-risk patients, median radiographic PFS was

27.5 months with enzalutamide and 8.2 months with placebo

(Table 2; supplementary Figure S5A, available at Annals of

Oncology online) and in high-risk patients, this was 16.6 and

5.3 months, respectively (Table 2; supplementary Figure S5A,

available at Annals of Oncology online). Median PSA–PFS and

radiographic and PSA responses also differed significantly by risk

groups (Table 2; supplementary Figure S5B, available at Annals of

Oncology online).

Risk group development

We examined the utility of categorizing patients into three risk

groups based on the number of risk variables from our 11-variable

model present at baseline, including enzalutamide or placebo

treatment. Clinically relevant cutoffs based on median values or

lower limit of normal in the testing set were used for variables with

continuous variables (see supplementary Results and Figure S6,

available at Annals of Oncology online, and Table 2), which also

provided broad discrimination of all clinical outcomes.

Table 1. Multivariable analysis of prognostic variables for the training set

Prognostic variable Definition HR (95% CI)

Albumin Continuous, per point rise in lg/dl 0.71 (0.53–0.95)
ALP <ULN versus �ULN 0.79 (0.64–0.98)
Number of bone metastases <10 versus �10 0.68 (0.56–0.83)
Hemoglobin Continuous, g/dl 0.85 (0.78–0.92)
LDH <ULN versus �1�ULN 0.67 (0.54–0.82)
NLR <2.5 versus �2.5 0.69 (0.57–0.82)
Pain score 0–1 versus �2 (linear scale) 0.77 (0.64–0.92)
Pattern of spread No liver metastases versus any liver metastases 0.49 (0.35–0.69)
Loge PSA Continuous, loge of baseline PSA ng/ml 1.23 (1.14–1.32)
Time from diagnosis to randomization Continuous, months 0.997 (0.995–0.998)
Treatment Enzalutamide versus placebo 0.68 (0.57–0.81)

ALP, alkaline phosphatase; CI, confidence interval; HR, hazard ratio; LDH, lactate dehydrogenase; NLR, neutrophil-to-lymphocyte ratio; PSA, prostate-specific
antigen; ULN, upper limit of normal.
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Discussion

We developed a clinically useful prognostic model for OS in

chemotherapy-naı̈ve men with mCRPC treated with enzaluta-

mide. In addition to treatment, this model contains eight trad-

itional prognostic variables associated with survival (i.e. albumin,

ALP, hemoglobin, LDH, number of bone metastases, presence of

pain, pattern of spread, and PSA), and incorporates two novel in-

dependent prognostic variables relevant to this minimally symp-

tomatic setting: NLR and time since diagnosis. A shorter time

from diagnosis to randomization was independently associated

A

B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ve

ra
ll 

su
rv

iv
al

 p
ro

ba
bi

lit
y

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

Total points

One-year survival probability
Two-year survival probability
Three-year survival probability

<10 Any liver metastases

≥10

0 10 20 30 40 50 60 70 80 90 100

0–1

<ULN

<ULN

No liver metastases
≥2

≥2.5

<2.5

≥ULN

≥ULN

Placebo

Enzalutamide

16.8 15.9 15 14 13 12.1 11.2 10.2 9.3 8.3 7.4

0.3 2.3 19 156 1273

1823 14 9 5 0

1621 12 7 2
4.44.9 4 3.5 3 2.5

4.24.7 3.7 3.2 2.7

0.1 0.82 6.7 55 445 3637

Points

Number of bone metastases

Pattern of spread

Pain

Alkaline phosphatase (U/l)

Neutrophil to lymphocyte ratio 

Lactate dehydrogenase, U/l

Treatment

Albumin (g/dl)

Time since diagnosis (years)

Hemoglobin (g/dl)

PSA (ng/ml)

Figure 1. A nomogram is used to assign each of 11 prognostic factors with a point range from 0 to 100 in a graphic interface, based on the
estimated regression coefficients from the final multivariable Cox proportional hazards model predicting overall survival (OS). The nomogram
results match with the algorithm. The 1-, 2-, and 3-year survival probability versus total points were also generated to allow the clinical partition
to predict OS. The nomogram was developed using SASVR enterprise version 7.1 and is based on the following article: http://support.sas.com/
resources/papers/proceedings13/264-2013.pdf. Instructions to physicians: All of the 11 prognostic factors should be available before using this
model. Start from the second top axis by identifying the number of bone metastases. Draw a vertical line to the points axis (top line) to repre-
sent the number of prognostic points the patients will receive for number of bone metastases. Do the same for the other prognostic variables.
Once all prognostic points for the predictors have been determined, add up the prognostic points for each prognostic variable. On the basis of
the total points, one can determine the 1-year survival probability by drawing a vertical line from the total points x-axis to the survival probability.
The same process can be performed to estimate the 2-year and 3-year survival probability.
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with shorter OS in PREVAIL, reflecting metastatic disease at

diagnosis or short duration of castration sensitivity. We validated

our 11-variable model in an independent testing data set and

demonstrated a high level of prognostic accuracy, similar to clin-

ically useful models previously validated in the docetaxel or post-

docetaxel mCRPC treatment settings [13–15]. In addition, our

model provides discrimination for key secondary outcomes in

this setting, including PFS, PSA decline, and radiographic re-

sponse. Interestingly, we did not identify specific predictors of

enzalutamide benefit, indicating that enzalutamide improved

outcomes regardless of prognostic risk group.

This prognostic model provides several advantages to those

previously available because it was developed and validated in a

contemporary treatment setting with first-line enzalutamide in

chemotherapy-naı̈ve men with mCRPC, reflecting current prac-

tice. Although we did not specifically validate our model in men

treated with abiraterone, the inclusion of established risk factors

and the similar survival times with abiraterone and enzalutamide

Number of patients
275
275

Events
81 (29.5%)
167 (60.7%)

Censored
194 (70.5%)
108 (39.3%)

Median (95% CI)
NYR (37.7–NYR)
26.1 (23.0–29.0)

Hazard ratio (95% CI)
0.354 (0.271–0.462)

REF

Low risk 
275
(0)

274
(1)

272
(3)

269
(6)

263
(12)

255
(20)

245
(29)

232
(41)

213
(51)

165
(59)

116
(69)

75
(77)

36
(80)

13
(81)

1
(81) 

0
(81)

Patients at risk
(cumulative events)

High risk 
275
(0)

270
(4)

251
(22)

231
(41)

216
(56)

201
(70)

182
(89)

162
(108)

143
(124)

100
(141)

67
(152)

36
(164)

21
(166)

5
(167)

0
(167)

0
(167)

Patients at risk
(cumulative events)

Low risk 
High risk

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

Duration of overall survival (months)

0

10

20

30

40

50

60

70

80

90

100

S
ur

vi
va

l (
%

)

A

Number of patients
184
182
184

Events
43 (23.4%)
77 (42.3%)
128 (69.6%)

Censored
141 (76.6%)
105 (57.7%)
56 (30.4%)

Median (95% CI)
NYR (NYR–NYR)
34.2 (31.5–NYR)
21.1 (17.5–25.0)

Hazard ratio (95% CI)
0.203 (0.144–0.288)
0.399 (0.300–0.530)

REF

Low risk 
184
(0)

184
(0)

183
(1)

181
(3)

175
(9)

172
(12)

165
(18)

160
(22)

147
(30)

120
(33)

83
(39)

52
(43)

27
(43)

12
(43)

1
(43) 

0
(43)

Patients at risk
(cumulative events)

Intermediate risk 
182
(0)

181
(1)

180
(2)

174
(7)

171
(10)

166
(15)

162
(19)

143
(38)

130
(46)

92
(57)

67
(64)

43
(72)

22
(76)

4
(77)

0
(77)

0
(77)

Patients at risk
(cumulative events)

High risk
184
(0)

179
(4)

160
(22)

145
(37)

133
(49)

118
(63)

100
(81)

91
(89)

79
(99)

53
(110)

33
(118)

16
(126)

8
(127)

2
(128)

0
(128)

0
(128)

Patients at risk
(cumulative events)

Low risk 
Intermediate risk 
High risk 

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

Duration of overall survival (months)

0

10

20

30

40

50

60

70

80

90

100

S
ur

vi
va

l (
%

)

B
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in this setting suggests that this model may provide valuable and

generalizable prognostic information to physicians and patients

who are treated with first-line novel AR pathway inhibition.

Further external validation of this model is critical for generaliz-

ability, however. Additionally, we utilized multiple methods for

model development and incorporated robust clinical variables

previously validated in other treatment settings in the literature,

which broadens the clinical applicability of our model.

Furthermore, we incorporated enzalutamide and placebo treat-

ment into our model to account for the natural history of

mCRPC, which should provide useful information for future

clinical trial designs, stratification schemes, and identification of

risk groups for trial eligibility and outcome assessments. Finally,

our model was developed based on OS, the gold standard end

point for regulatory decisions and patient outcomes for mCRPC.

Our model is not without limitations. Notably, the PREVAIL

data set lacked tissue biopsies, circulating tumor cell (CTC), or

cell-free DNA/RNA biomarkers for inclusion in our model.

Biomarkers such as CTC enumeration, genomic alterations, AR

splice variants, and AR copy number may help better predict sur-

vival and should be incorporated into future studies [27–30].

Despite this, our model identified risk groups with widely differing

survival times, illustrating the heterogeneity of outcomes among

men with chemotherapy-naı̈ve mCRPC based on readily available

clinical parameters.

It should be noted that all validated prognostic models have lim-

itations in informing clinical practice. Although the variables

included have strong biologic rationale and independent valid-

ation, outcomes for individuals in contemporary practice may dif-

fer from those in clinical trial populations, and external validation

is recommended in a broader, nontrial population of men with

mCRPC. Accordingly, the prognostic model presented in this

paper, and in general, should not displace the well-informed clinic-

al judgment of healthcare professionals treating individual

patients. However, knowledge of prognosis may aid decisions

regarding the aggressiveness with which to pursue active therapy

for mCRPC and should help shape trial designs that utilize combi-

nations with AR-directed therapies, using more aggressive

approaches for men with high-risk mCRPC who may benefit from

combination therapies. We did not incorporate posttreatment

PSA declines or radiographic responses in our model, despite their

strong associations with survival [14, 20, 31], in order to develop a

purely pretreatment survival model. However, ongoing work is

characterizing updated prognosis based on responses after enzalu-

tamide treatment. Finally, early use of abiraterone, apalutamide,

and enzalutamide in men with nonmetastatic CRPC and metastat-

ic hormone-sensitive prostate cancer may affect the utility and fu-

ture generalizability of this model.

The independent prognostic value of NLR was a novel finding

that may reflect underlying tumor-associated inflammation or

host immune response. Thus, incorporation of NLR, available

from a complete blood count with differential, may prove useful

for risk stratification in asymptomatic men with mCRPC. Recent

data support use of NLR in other cancer settings [32] and, along

with albumin and functional status, provide useful measures of

host response important in determining long-term survival.

Here, we used a cutoff of 2.5 for NLR, similar to that previously

evaluated in men with mCRPC [17], but more relevant in this

minimally symptomatic setting.

Conclusion

In summary, our prognostic model was constructed and vali-

dated using data routinely collected in chemotherapy-naı̈ve men

with mCRPC treated with enzalutamide, identifying subsets of

patients with widely differing survival outcomes. This model has

potential clinical utility for individual and trial-level survival, po-

tential outcomes prognostication, and clinical trial design of

novel treatment approaches in this population.
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