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Abstract: In this study, a method for the prediction of cyclic stress–strain properties of ferrite-pearlite
steels was proposed. At first, synthetic microstructures were generated based on an anisotropic
tessellation from the results of electron backscatter diffraction (EBSD) analyses. Low-cycle fatigue
experiments under strain-controlled conditions were conducted in order to calibrate material
property parameters for both an anisotropic crystal plasticity and an isotropic J2 model. Numerical
finite element simulations were conducted using these synthetic microstructures and material
properties based on experimental results, and cyclic stress-strain properties were calculated. Then,
two-point correlations of synthetic microstructures were calculated to quantify the microstructures.
The microstructure-property dataset was obtained by associating a two-point correlation and calculated
cyclic stress-strain property. Machine learning, such as a linear regression model and neural network,
was conducted using the dataset. Finally, cyclic stress-strain properties were predicted from the result
of EBSD analysis using the obtained machine learning model and were compared with the results of
the low-cycle fatigue experiments.
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1. Introduction

It is important to consider fatigue problems when we design structural materials. It takes a
considerable time and high cost to obtain enough information on the fatigue properties of new materials.
Consequently, many researchers try to predict fatigue performance. As one way to predict material
performance, machine learning, such as linear regression and neural network, has been attractive [1–7].
In these studies, prediction of performances, such as tensile strength and hardness, from chemical
compositions and heat treatment conditions, was conducted. In many studies to predict material
performance by machine learning, the performance is directly predicted from process conditions.
However, in the case of complicated phenomena, such as fatigue, it is difficult to obtain a prediction
model that can be applied to a wide range of materials. For example, a helpful prediction model for
carbon steels is not always applicable to stainless steel [7].

Model-based machine learning [8] is one approach to predict complicated phenomenon. In
model-based machine learning, one complicated phenomenon is divided into several elementary
phenomena. This framework can be extended to more complex situations. In the case of material
performance prediction, we can divide it into four stages: Process, structure, property, and
performance [9]. Especially in the case of fatigue, there are various methods to connect process
and structure such as phase filed method and Monte Carlo method. Moreover, fatigue life can be
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predicted from the cyclic stress-strain property by using the Tanaka-Mura model and finite element
method (FEM) [10–12]. Therefore, we focused on the linkage between microstructure and cyclic
stress–strain property in this study.

The microstructure-property data is not always sufficient for machine learning. Thus, a lot of finite
element simulations are conducted instead of fatigue experiments to obtain the microstructure-property
dataset. Also, it is necessary to quantify the microstructure for machine learning. Although there
are various kinds of quantification methods, an appropriate method for fatigue prediction has not
been established. We quantify microstructure by using one of the distribution functions: Two-point
correlation [13]. The purpose of this study is to propose the method to predict cyclic stress–strain
property from microstructure by combining finite element simulation, two-point correlation, and
machine learning.

Figure 1 shows the proposed framework. The framework can be divided into the following steps: (i)
microstructure analysis with electron backscatter diffraction (EBSD) analysis, synthetic microstructure
generation and two-point correlations, (ii) calibration of material parameters by strain-controlled
low-cycle fatigue experiments, (iii) finite element simulations with the synthetic microstructure, and
(iv) machine learning using two-point correlation and Ramberg–Osgood relationship. The rest of the
paper is organized as follows. In Section 2, microstructure analysis and strain-controlled low-cycle
fatigue experiments are presented. Finite element models are then created based on the results of
the microstructure analysis, and parameters for simulation are identified from the results of fatigue
experiments in Section 3. A set of finite element simulations is conducted, and stress–strain hysteresis
loops are obtained. In Section 4, two-point correlations are calculated from finite element models,
and the dimension of two-point correlation is reduced by principal component analysis (PCA). Then,
machine learning is conducted with the obtained dataset in Section 5. The inputs are strain amplitude
and principal components of two-point correlations, and the output is maximum stress (σmax) of each
hysteresis loop. Finally, σmax is predicted from the result of microstructure analysis by the obtained
prediction model, and it is compared with the experimental result in Section 6. The validity of the
proposed method for predicting cyclic stress–strain properties is discussed.
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Figure 1. Framework to predict cyclic stress–strain property from microstructure by combining finite
element simulation, two-point correlation, and machine learning.

2. Experiments

2.1. Materials

Five types of low-carbon steel were used. Four were ferrite/pearlite dual-phase steels, and
the other was pearlite single-phase steel. Table 1 shows the chemical composition of the steels.
The chemical composition was measured on the rolled materials mainly by spark discharge optical
emission spectrometry (SD-OES). The volume fraction of ferrite was calculated from the carbon contents
(S25C: 71%, S35C: 60%, S45C: 40%, K1: 92%, Pearlite: 0%).
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Table 1. Chemical composition of steels (in mass%).

Steel C Si Mn P S Cu Ni Cr Al

S25C 0.24 0.18 0.44 0.014 0.003 0.01 0.01 0.01 0.028
S35C 0.32 0.17 0.63 0.014 0.004 0.13 0.07 0.13 0.019
S45C 0.47 0.16 0.60 0.017 0.004 0.18 0.12 0.12 0.018

K1 0.07 <0.01 1.52 0.006 0.003 - - - 0.028
Pearlite steel 0.80 0.006 0.039 0.002 0.001 - - - -

2.2. Microstructure Analysis

Each sample was cut, mechanically polished by emery paper and alumina slurry, and the
cross-section was finally polished with an argon ion cross-section polisher (SM-090010, JEOL, Tokyo,
Japan). EBSD analysis was performed for the four steels (S25C, S35C, S45C, and K1) to characterize the
grain morphology. The observation area was approximately 330 × 540 µm2 and the step size was 2 µm.
To identify the ferrite and pearlite phases, image quality (IQ) was used. The IQ value of pearlite tends
to be smaller than that of ferrite because pearlite is the lath structure of ferrite and cementite. In this
research, we assumed that grain with large IQ value is ferrite, and grain with small IQ value is pearlite.
Based on this assumption, the threshold of IQ value between ferrite and pearlite was determined so
that the area fraction of the IQ map matched the volume fraction calculated in Section 2.

After the phase identification, grains were fitted into ellipses that can be characterized by three
parameters: the major axis a, the aspect ratio b/a (b is the minor axis) and the ellipse orientation angle θ
with the horizontal direction. Phase identification and ellipse fitting were conducted using the software
EDAX TSL OIM Analysis 7 (EDAX Inc., Mahwah, NJ, USA). Figure 2 shows the result of ellipse fitting
for the ferrite grain of S25C steel. The black region represents the pearlite phase. The ellipse data were
then fitted with probability distribution functions (PDF) by using MATLAB R2016a (Math Works Inc.,
Natick, MA, USA) distribution fitting toolbox. Since the major axis distribution exhibited a positive
skewness, it was fitted with the log-normal distribution whose PDF is given by

f (x) =
1

√
2πσSDx

exp

− (ln x− µ)2

2σ2
SD

 (1)

where µ and σSD are the location and scale parameters respectively. The distribution of the aspect
ratio was almost symmetrical. The normal distribution was used as a fitting function. The PDF of the
normal distribution is given by

f (x) =
1

√
2πσSD

exp

− (x− µ)2

2σ2
SD

 (2)

Since the ellipse orientation did not follow a particular distribution, it was fitted with a
nonparametric distribution based on normal kernel smoothing. The fitted cumulative distribution
functions and experimental data for ferrite grain of S25C are displayed in Figure 3. The microstructures
of the other three steels (S35C, S45C, and K1) were also analyzed by the same procedure. Finally, four
sets of probability distributions for grain morphology were obtained.
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Figure 3. Cumulative distribution functions of (a) major axis, (b) aspect ratio, and (c) orientation for
ferrite of S25C steel.

2.3. Low-Cycle Fatigue Experiments

Strain-controlled low-cycle fatigue experiments were conducted to characterize the mechanical
behavior of five materials under cyclic loading. Figure 4 shows the shape of specimens in the
experiments. All experiments were conducted with a constant strain rate of 0.002 s−1 and four different
strain amplitudes of 0.2%, 0.3%, 0.4%, and 0.5% on a 50 kN tension-compression testing machine
(Servopulser 50 kN, Shimadzu, Kyoto, Japan). The frequency was set to a different value for each
strain amplitude to keep the constant strain rate. The strain was measured using an extensometer with
a gauge length of 8 mm (3442-008M-005M-ST, Epsilon Technology Corp., Jackson, WY, USA). The
stabilized stress–strain hysteresis loops were extracted at half of fatigue life. The results are shown
in Figure 5. In each figure, four hysteresis loops with different strain amplitudes were plotted. Also,
the cyclic stress–strain (CSS) curve was calculated by the Ramberg–Osgood relationship [14] using
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the maximum stress of each hysteresis loop. The curve is referred to as the “cyclic flow curve” in the
literature. The Ramberg–Osgood relationship is defined as follow

ε = εe + εp =
σ
E
+

(
σ
K

) 1
n

(3)

where K and n are material constants, and E is Young’s modulus. In this study, Young’s modulus was
210 GPa. The obtained constants of Ramberg–Osgood relationship are shown in Table 2. These results
were used to identify the material parameters for finite element simulations.
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Table 2. Material constants of Ramberg–Osgood relationship.

Steel K/MPa n

S25C 1233 0.228
S35C 1170 0.202
S45C 1719 0.242

K1 1124 0.234
Pearlite steel 1626 0.219

3. Finite Element Analysis of Low-Cycle Fatigue

3.1. Generation of Synthetic Microstructure

The generation of synthetic microstructures can be conducted based on various tessellation
methods. In this study, microstructures were created by an anisotropic tessellation method [11] to
reproduce the detailed grain morphology. In the method, ellipses were sampled until the total area
occupied by the ellipse exceeds a given threshold:

π
n∑

i=1

aibi ≥ (1 + λ)A (4)

where ai and bi respectively correspond to the major and minor axis of the ellipse i randomly extracted
from the probability distribution functions, λ is an efficiency factor set to 20%, and A is the total area.
In the reference to [11], single-phase microstructures were created. In order to generate dual-phase
microstructures, Equation (4) was rewritten to Equation (5).

π
n∑

i=1

aibi ≥ (1 + λ)VA (5)

where V is the volume fraction of each phase.
After the ellipse sampling, the ellipses were positioned in the domain using a relaxed random

sequential addition (RSA) algorithm [15]. The ellipses were allowed overlapping with the condition:

(x− xi)
2

a2 +
(y− yi)

2

b2 > (1 + β)2 (6)

where β is an overlap percentage proposed by St-Pierre et al. [16] and was set to 20%. The domain was
set to 200 × 200 µm2. Figure 6a shows the example of the final configuration of the ellipse filling process
by the relaxed RSA algorithm. The blue and red ellipse show ferrite and pearlite grains, respectively.

Anisotropic tessellation was conducted for the obtained ellipses. The anisotropic metric function
is as follow:

di(x, xi) = ‖Wi(x− xi)‖ (7)

where the anisotropic weight matrix Wi is given by:

Wi =

 cosθi
ai

sinθi
ai

−
sinθi

bi

cosθi
bi

 (8)

where ai, bi, θi are the major axis, minor maxis, and orientation of the ellipse i, respectively? Figure 6b
shows the result of anisotropic tessellation from Figure 6a. The black grains are pearlite, and the colored
grains are ferrite. After the tessellation, a finite element model was created based on the synthetic
microstructure. The mesh size was 5 × 5 µm2 (totally 40 × 40 = 1600 elements per microstructure).
Figure 6c shows the finite element model derived from Figure 6b.
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3.2. Constitutive Models

Two types of constitutive models were used to reproduce some basic phenomena observed
experimentally: Isotropic hardening, kinematic hardening and cyclic hardening/softening. One is
macroscopic J2 model and the other is a crystal plasticity (CP) model. The J2 model is based on the
second invariant of the deviatoric stress J2. The yield function is defined by

f =
√

3J2(s−αdev) − σy =

√
3
2
(σ−α)dev : (σ−α)dev

− σy (9)

where σ is the macroscopic stress tensor, α is the kinematic back stress tensor and σy is the yield stress.
Isotropic hardening is modeled as follow [17]

σy = σ0 + Q∞
(
1− e−bεpl

)
(10)

where σ0 is the yield stress at zero strain, Q∞ is the maximum change in the yield stress, b is the rate of
hardening and εpl is the equivalent plastic strain. On the other hand, kinematic back stress is defined
as follow [18]

α =
N∑

k=1

αk (11)

.
αk =

Ck
σy

(σ−α)
.
ε

pl
− γkαk

.
ε

pl
(12)

where N is the number of back stress αk, and Ck and γk are material parameters. This model is already
implemented in the FEM software Abaqus. In this study, the J2 model was used to analyze the plastic
deformation of pearlite grains.
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The 100% pearlite finite element models were created and used for parameter identification. The
parameters of J2 model were calibrated by using the optimization module of Abaqus software so that
simulation results of hysteresis loops in five cycles reach experimental results for pearlite steel. Table 3
summarizes the parameters and Figure 7 shows the simulated hysteresis loops in five cycles compared
with the experimental stable hysteresis loop for the pearlite steel. The Young’s modulus and Poisson’s
ratio were set to E = 210 GPa and ν = 0.3, respectively.

Table 3. Finite element analysis parameters of pearlite.

Elasticity Isotropic Hardening

E (GPa) ν σ0 (MPa) Q∞ (MPa) b
210 0.3 160 −40 7

Kinematic hardening (N = 5), Ck (GPa)

C1 C2 C3 C4 C5
37, 671 34, 881 59, 554 62, 858 351, 000
γ1 γ2 γ3 γ4 γ5

255.39 645.45 2014.6 1972.6 12, 615

Materials 2019, 12, x FOR PEER REVIEW 10 of 22 

 

shows the simulated hysteresis loops in five cycles compared with the experimental stable hysteresis 

loop for K1 steel. The elastic coefficients were taken from the literature [26]. These materials exhibit 

rate-dependent plasticity behavior. However, the predictions for different strain rates are beyond 

the scope of this paper. The numerical models were loaded at the same strain rate (0.002 s−1) as the 

experiments. 

Table 3. Finite element analysis parameters of pearlite. 

Elasticity Isotropic Hardening 

𝐸 (GPa) 𝜈 𝜎0 (MPa) 𝑄∞ (MPa) 𝑏 

210 0.3 160 −40 7 

Kinematic hardening (𝑁 = 5), 𝐶𝑘 (GPa) 

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

37,671 34,881 59,554 62,858 351,000 

𝛾1 𝛾2 𝛾3 𝛾4 𝛾5 

255.39 645.45 2014.6 19,72.6 12,615 

 

Figure 7. Experimental and calibrated stress–strain hysteresis loop for pearlite steel. 

Table 4. Finite element analysis parameters of ferrite. Elastic coefficients are taken from the literature 

[26]. 

Cubic elasticity 
  

Kinematic law 

𝐶1111 (GPa) 𝐶1122 (GPa) 𝐶1212 (GPa)   
𝛾0̇ 𝑛 

233.3 135.5 118.0 
  

0.001 4 

Figure 7. Experimental and calibrated stress–strain hysteresis loop for pearlite steel.

The CP model considers plastic anisotropy for each grain. In this study, cubic elasticity following
Hooke’s law and characterized by three coefficients, C1111, C1122, and C1212 was considered. The
phenomenological constitutive law from the Damask user material subroutine for Abaqus [19] was
used to analyze the plastic deformation in the ferrite grains. In the CP model, the crystal deformation
gradient F is multiplicatively decomposed into elastic and plastic part,

F = FeFp (13)

The deformation velocity gradient L is defined as

L =
.
FF−1 (14)

By combining Equations (13) and (14), the velocity gradient can be expressed by

L =
.

FeF−1
e + Fe

( .
FpF−1

p

)
F−1

e = Le + Fe
(
Lp

)
F−1

e . (15)
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Assuming that plastic deformation occurs due to only dislocation slip from the {110}
〈
111

〉
slip

system, the plastic velocity gradient Lp is expressed as follow [20]

Lp =
N∑
α=1

.
γ
α
(mα
⊗ nα) (16)

where
.
γ
α, mα and nα are plastic share rate, slip direction vector, and normal to the slip plane of the slip

system α, respectively. The N is the number of slip systems and was set to 12. Plastic shear rate is
expressed by using resolved shear stress (RSS) and critical resolved shear stress (CRSS) [21–24]

.
γ
α
=

.
γ0

∣∣∣∣∣τα − χαταc

∣∣∣∣∣nsgn(τα − χα) (17)

where τα = S : (mα
⊗ nα) and ταc are the RSS and CRSS on the slip system α, respectively. The back

stress χα is incorporated in order to consider kinematic hardening effects. Work hardening is expressed
by increasing the CRSS on each slip system, as proposed by Bronkhorst et al. [25]:

ταc =
N∑
β=1

hαβ
∣∣∣∣ .
γ
β
∣∣∣∣ (18)

with the hardening matrix hαβ defined by

hαβ = qαβh0

1−
τ
β
c
τcs

a

(19)

where α and β areslip systems, qαβ = 1 for coplanar slip systems while qαβ = 1.4 for non-coplanar
systems. The h0, a and τcs are the hardening coefficient, the hardening exponent, and the saturated
CRSS, respectively. Finally, kinematic hardening is modeled following Frederik–Armstrong law [18]

.
χ
α
= A

.
γ
α
− B

∣∣∣ .
γ
α∣∣∣χα. (20)

3.3. Parameter Identification

In order to identify crystal plasticity parameters for ferrite grains, a finite element model of K1
steel was created based on the probability distributions of the K1 steel and volume fraction of 92%. The
detailed identification method is written in the literature [11]. Since the K1 steel is a ferrite–pearlite
steel, material constants of pearlite in Table 3 were used for calculating the plastic deformation in
pearlite grains. Table 4 summarizes the crystal plasticity parameters, and Figure 8 shows the simulated
hysteresis loops in five cycles compared with the experimental stable hysteresis loop for K1 steel. The
elastic coefficients were taken from the literature [26]. These materials exhibit rate-dependent plasticity
behavior. However, the predictions for different strain rates are beyond the scope of this paper. The
numerical models were loaded at the same strain rate (0.002 s−1) as the experiments.

Table 4. Finite element analysis parameters of ferrite. Elastic coefficients are taken from the literature [26].

Cubic Elasticity Kinematic Law

C1111 (GPa) C1122 (GPa) C1212 (GPa)
.
γ0 n

233.3 135.5 118.0 0.001 4

Work hardening Kinematic hardening

τc0 (MPa) τcs (MPa) h0 (MPa) a qαβ A (MPa) B
50 110 150 2.25 1/1.4 26, 000 1000
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3.4. Low-Cycle Fatigue Simulations

Low-cycle fatigue simulations were conducted by FEM. The distribution of major axis and aspect
ratio, the volume fraction of each phase, and the crystal orientation were necessary to create finite
element models by the method explained above. The probability distributions for S25C, S35C, S45C,
and K1 steels obtained in Section 2 were used to create models. The volume fraction of the ferrite
phase was changed under ten conditions (10%, 20%, 100%). In the crystal orientation, three Euler
angles (ϕ1, φ,ϕ2) were randomly assigned. Under the same conditions of the probability distributions,
volume fraction, and orientation, different microstructures are created due to the randomness of ellipse
sampling and positioning. To increase the number of data, five models were created for each condition.
Totally 200 models (four grain morphologies × ten volume fractions × five models) were created.

Periodic boundary conditions were applied in the x and y directions, and analysis was carried out
under plane strain condition. Strain-controlled fatigue simulations for y-direction were conducted
with the same condition as experiments (strain rate of 0.002 s−1, strain amplitudes: 0.2%, 0.3%, 0.4%,
and 0.5%). The number of cycles was set to five.

In total, 800 crystal plasticity finite element method (CPFEM) analyses (200 models × four strain
amplitudes) were conducted in this study. Among these results, results of models that reproduce
the actual materials for both microstructure and volume fraction about S25C, S35C, and S45C steels
were compared with experimental results, as shown in Figure 9. Each point is maximum stress in
the hysteresis loop at half-life for the experiment and five cycles for simulation. Each curve is the
Ramberg–Osgood cyclic stress–strain curve calculated with four maximum stresses. Since the model
reproducing the volume fraction of S25C steel (ferrite volume fraction is 71%) was not created, Figure 9a
shows the comparison result between experimental results for S25C steel and simulated results for
the model with the ferrite volume fraction of 70%. The discrepancy between the experiments and
simulations increased with the carbon content. The main reason is that the crystal plasticity parameters
were calibrated with the polycrystalline model with lower carbon content. In order to realize a more
accurate prediction, it is necessary to improve the microstructure reconstruction using a finer mesh
and to examine a parameter calibration method in the future works.
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4. Microstructure Quantification by Two-Point Correlations

Two-point correlation is one of the correlation functions. In recent years, Kalidindi and co-workers
have presented the mathematical framework for quantification of microstructure based on a two-point
correlation [27–30]. In this study, the two-point correlation of discretized microstructure was used to
quantify microstructure. At first, the discretized microstructure was characterized with microstructure
function mn

s , where s is a spatial location and n is a local state. The microstructure function mn
s is the

probability that the local state of location s is n. mn
s possess the following properties:

N∑
n=1

mn
s = 1, mn

s ≥ 0 (21)

where N is the number of possible local states. One-point correlation is defined by

f n =
1
S

S−1∑
s=0

mn
s (22)

where S is the number of grid points. This one-point correlation corresponds to the volume fraction. In
a similar manner, two-point correlation is defined by

f nn′
t =

1
S

S−1∑
s=0

mn
s mn′

s+t (23)

where t is the vector between two points. Figure 10 shows a simple example of a two-point correlation.
Let n = 1 for the white cell and n = 0 for the gray cell. The microstructure functions are calculated
like m1

(1,0)
= 1, m1

(3,1)
= 0 and m0

(2,3)
= 1. One-point correlation (volume fraction) is also calculated
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as f 1 = 9/16 and f 2 = 7/16. The red arrows mean t = (2, 2), blue arrows mean t = (0, 1) and green
arrows mean t = (3,−1). In general, a periodic boundary condition was applied to microstructure to
calculate the two-point correlation. The two-point correlations have the following properties:

f nn′
t = f nn′

t±S (24)

f nn′
t = f n′n

−t . (25)

The vector t can take a value between −(x− 1) ≤ tx ≤ x− 1, −(y− 1) ≤ ty ≤ y− 1 for x× y domain.
By using Equation (24), two-point correlation is defined in the following range:

−
S−1

2 ≤ t ≤ S−1
2 (S is odd number),

−
S
2 ≤ t ≤ S

2 (S is even number).
(26)

For dual-phase microstructure (n = 0, 1), four two-point correlations, f 00
t , f 11

t , f 01
t , f 10

t can
be calculated. However, only N − 1 two-point correlations are independently defined for N phase
microstructure by various interrelationships [27]. Therefore, only one two-point correlation f FF

t .
(ferrite–ferrite) was used to quantify ferrite-pearlite microstructures.

The two-point correlations were calculated using a fast Fourier transform (FFT) [27,29,30]. At
first, a discrete Fourier transform (DFT) is conducted on Equation (23)

Fnn′
k = F

(
f nn′
t

)
=

1
S

S−1∑
t=0

S−1∑
s=0

mn
s mn′

s+te
−i 2πkt

S =
1
S

S−1∑
s=0

mn
s

S−1∑
t=0

mn′
s+te

−i 2πkt
S (27)

where F means DFT. Now let s + t = z, then

Fnn′
k =

1
S

S−1∑
s=0

mn
s

S−1+s∑
z=s

mn′
z e−i 2πk(z−s)

S =
1
S

S−1∑
s=0

mn
s e−i 2πk(−s)

S

S−1+s∑
z=s

mn′
z e−i 2πkz

S . (28)

Finally, by periodic boundary condition, mn′
z = mn′

z+S, we can get the following equation

Fnn′
k =

1
S

S−1∑
s=0

mn
s e−i 2πk(−s)

S

S−1∑
z=0

mn′
z e−i 2πkz

S =
1
S

(
Mn

k

)∗
Mn′

k (29)

where Mn
k = F (mn

s ) and * is the complex conjugate. Two-point correlation is easily obtained from
Equation (29) by inverse DFT of Fnn′

k .
In this study, two-point correlations f FF

t for 200 finite element models were calculated with the FFT
method. Since the whole data of the two-point correlation was large for machine learning, principal
component analysis (PCA) was conducted to reduce the dimension of two-point correlations. The 15
principal component scores of the two-point correlation were used for machine learning. The two-point
correlation calculations with FFT and PCA were conducted with MATLAB R2016a.
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5. Prediction of Cyclic Stress–Strain Property by Machine Learning

5.1. Linear Regression Model

Linear regression is one way of regression analysis in which the relationship between one or more
parameters is modeled by a linear regression equation. In general, the linear regression model can be
expressed as

y =
n∑
i

aixi + b (30)

where y and xi are input and output value, n is the number of inputs, ai is the coefficient and b is the
constant. We obtained the coefficients and constant using MATLAB R2016a ‘regress’ function. The
algorithm of this function is written in the literature [31].

Generally in linear regression models, the more complex the model becomes, the more accurate
the prediction becomes. However, if the model is too complex, the model becomes over-fitted, and
the prediction for unknown data does not go well [32]. In this study, parameter selection from all
215
− 1 combination of 15 principal components was conducted so that the model became the most

accurate. Moreover, cross validation was conducted to reduce the error depending on how to divide
data into training and test set. In this study, 700 training data was divided into 70 groups of 10 data for
the cross validation. We used RMSE (root mean squared error, Equation (31)) as the criteria for the
model selection.

RMSE =

√√√
1
N

N∑
i=1

(yi − ŷi)
2 (31)

where N is the number of data, yi is the experimental (or simulated by FEM) value and ŷi is the predicted
value. The cross validation was conducted for all 215

− 1 combinations of principal components and
the combination with the smallest RMSE was used as the most accurate principal components. Finally,
by using these components, coefficients and constants were calculated with all 700 training data and
the obtained model was tested for 100 test data. Details of the procedure can be found in reference [7].
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5.2. Neural Network Model

An artificial neural network is one way of machine learning which is inspired by biological neural
networks. It can approximate almost any function by adjusting the weights and biases of each layer
and unit. The general feedforward neural network consists of three layers: Input, hidden, and output
layer. In each unit in hidden layers, calculation, as shown in Equation (32), is conducted and the result
h j is sent to the next layer.

h j = ϕ

 I∑
i=1

wi jxi + b j

 (32)

where xi is the input value from ith unit in the former layer, I is the number of units in the former layer,
wi j and b j are weight and bias, and ϕ is a differentiable non-linear function called “activation function.”
In the output unit, identity function ϕ(x) = x is generally used as the activation function. Thus, the
output is calculated as

o =

J∑
j=1

w jh j + bo (33)

where J is the number of the last hidden units.
Backpropagation [33] is widely used to set weights and biases suitably in neural network training.

Weights and biases are adjusted to minimize the sum of squared of error between dataset and predicted
value as

E =
N∑

k=1

(yk − ok)
2 (34)

where yk and ok are dataset and predicted value, respectively. Various calculation procedures for the
error reduction of backpropagation have been proposed, such as the steepest descent method and
the Gauss–Newton method. Levenberg–Marquardt method [34,35] is the combination of the steepest
descent method and the Gauss–Newton method and can finish training fast and accurately.

As mentioned above, neural networks can approximate almost any function. In other words, it is
important to be careful with over-fitting. The Bayesian framework is widely studied to control this
problem [2,32,36]. In a neural network with Bayesian framework, weights and biases are adjusted to
minimize the following function instead of E in Equation (34):

M(w) = βED + αEw (35)

ED(w) =
1
2

N∑
n=1

(yn − on)
2, Ew(w) =

1
2

w>w. (36)

where ED is the same as Equation (34). Ew is the sum of squared of weights and it works to reduce
the value of weights. Two parameters α and β are at first constant parameters corresponding to the
variance of weights and data in the beginning, respectively. The α and β are updated during the
training process. The parameter adjusting process is a substitute for validation data. Thus only training
and test data are necessary for a neural network with Bayesian framework. In MATLAB R2016a Neural
Network Toolbox, various algorithms for neural network training are prepared. In this study, we used
the Levenberg–Marquardt method with a Bayesian framework from these prepared algorithms.

Various activation functions have been used in neural networks. Sigmoid function (Equation
(37)) was used commonly at the beginning of neural network study because it is simple and easy
to differentiate.

ϕ(x) =
1

1 + e−x . (37)

After that, Glorot and Bengio [37] suggested that hyperbolic tangent (Equation (38)) is better
and later, Glorot et al. [38] presented that Rectified Linear Unit (ReLU, Equation (39)) is better than
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hyperbolic tangent. LeCun et al. [39] reported in 2015 that ReLU is the best activation function.
However, ReLU is a very simple function and expressing ability by itself is poor and is not necessarily
the best activation function for the network with few hidden layers.

ϕ(x) = tanh(x) =
ex
− e−x

ex + e−x (38)

ϕ(x) = max(0, x). (39)

In this study, hyperbolic tangent and ReLU were compared.
In general, input and output values are normalized before training to eliminate the deviation of

data. In this study, both the input and output variables except strain amplitude were normalized so
that the average becomes zero and the variance becomes one (standardization) as follows:

x′i =
xi − x

s
(40)

where xi is the input/output value of ith data, x′i is the normalized value and x and s are the average
and standard deviation.

The training of the neural network with multi hidden layers is called “deep learning.” The
improvement of computer performance and a vast amount of data obtained by the development of
the Internet boost the research of deep neural networks. It is considered that prediction accuracy is
improved with deep learning, but the general deep learning is conducted with more than thousands of
data. Only 800 data is available in this study, and it is not appropriate to use deep learning in this
case. Thus, the number of hidden layers was set to only 1 or 2 in this study. Moreover, the number of
units in hidden layers may affect prediction accuracy. In this study, three conditions of hidden layers
were compared.

• One hidden layer with five units
• One hidden layer with ten units
• Two hidden layers with ten and five units

Together with two activation functions, six neural networks were constructed and trained/tested
with the same data. The network with the minimum RMSE value for test data was used as the best
neural network model.

5.3. Microstructure-Property Dataset

In Section 4, 800 CPFEM analyses (200 models × 4 strain amplitudes) were conducted. The
principal components of two-point correlations of 200 finite element models were calculated in Section 5.
The 15 principal component scores and strain amplitude were set to input values. The calculated
maximum stress σmax in five cycles was set to output value. We have 800 microstructure-property
data in total. The data were sorted randomly and divided into two groups: 700 for training and 100
for testing. Although the dataset is recommended to divide three groups of training, validation, and
testing [32], we used the machine learning algorithm that does not require a validation dataset.

5.4. Results of Machine Learning

Figure 11 shows the result of parameter selection with the cross validation in the linear regression
model. The horizontal axis is the number of principal components, and the vertical axis is the minimum
RMSE value of the model of each number of parameters. It can be seen that RMSE reached a minimum
when the model had ten principal components (1, 2, 6, 7, 8, 9, 11, 13, 14, and 15th principal component).
Figure 12 shows the prediction result with these ten principal components. The horizontal axis is the
maximum stress σmax calculated by CPFEM (dataset value) and the vertical axis is σmax predicted by
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regression formula. This figure means that the prediction accuracy is higher as the plot is closer to the
straight line. The RMSE was 11.6 MPa for training data and 12.1 MPa for test data.
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Table 5 shows the comparison result of six neural network conditions. RMSE for test data became
minimum value when the activation function was hyperbolic tangent, and the number of hidden layers
was two with ten and five units. The prediction result with this condition is shown in Figure 13. It
can be visually confirmed that plots are closer to the straight line than those of the linear regression
model in Figure 12. Also, RMSE was 1.38 MPa for training data and 1.37 MPa for test data. It is clear
both visually and quantitatively that the neural network model was more accurate than the linear
regression model.
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Table 5. RMSE (MPa) for test data in six neural network conditions.

Activation Function
tanh ReLU

Hidden layer condition
(i) 4.24 6.23
(ii) 2.09 3.96
(iii) 1.37 3.63
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Moreover, these obtained models were compared with CPFEM results. Two comparisons were
conducted by changing only one parameter. First, only strain amplitude was changed with fixed
grain morphology (K1) and ferrite volume fraction (50%). The result is shown in Figure 14a. Cyclic
stress–strain curves as Ramberg–Osgood relationships are calculated and also plotted. Second, only
the ferrite volume fraction was changed with fixed grain morphology (S25C) and strain amplitude
(0.3%). The result is shown in Figure 14b. As shown in these figures, machine learning, especially the
neural network model, could predict the fatigue property accurately.
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Figure 14. Comparison results between simulation and machine learning. (a) Only strain amplitude
was changed with fixed grain morphology (K1) and ferrite volume fraction (50%), (b) only ferrite
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6. Discussion

6.1. Comparison of Simulation and Experimental Results

Experimental and simulated cyclic stress–strain curves were shown in Figure 9. As shown in the
figure, the simulated results for S25C matched experimental results, but results for S35C and S45C did
not match well. Since the mesh size was 5 µm in these simulations, the lower limit of grain size was
5 µm. However, the actual specimen, which was used for parameter identification, contains smaller
grains than 5 µm. Thus, there is the possibility that the grain size in 2D modeling was overestimated.
Since the parameters of the crystal plasticity model in ferrite grains were fitted to the K1 steel with
the ferrite volume fraction of 92%, the prediction accuracy of the cyclic stress–strain curve decreased
with increasing the divergence of volume fraction from K1. It seems that this was the reason that the
simulated results for S25C matched experimental result but results for S35C and S45C did not.

There are two approaches to solve this problem. One is to use finer mesh, and the other is to
modify the material parameters. The former method increases the calculation time and is not suitable
for preparing a large dataset. The latter approach can provide a better fitting for S35C and S45C steels
by adjusting the material property parameters. However, this approach may provide poor agreement
with the experimental data of K1 and S25C steels. Therefore, identified parameters in this study were
reasonable in case of analyzing various volume fractions with one material property.

6.2. Comparison of Machine Learning and Experimental Results

Finally, σmax was predicted from the result of microstructure analysis by the obtained prediction
model, and it was compared with the experimental result. The square area of 200 × 200 µm2 was
trimmed from the result of EBSD analysis for S25C, S35C and S35C steels (e.g., Figure 2). These trimmed
images were meshed by 5 µm and binarized to ferrite and pearlite. Then, two-point correlation f FF

t
was calculated and principal component scores were calculated using principal component coefficient
obtained from 200 finite element models. These 15 principal component scores and strain amplitude
(0.2%, 0.3%, 0.4%, 0.5%) were substituted for obtained linear regression/neural network model and
σmax was predicted. Finally, the cyclic stress–strain curve as the Ramberg–Osgood relationship was
calculated and compared with experimental results.

The results are shown in Figure 15. The red points are experimental σmax for each hysteresis
loop and three curves are cyclic stress–strain curves. In the result for S25C (Figure 15a), there is no
large difference between two prediction results and these results showed good agreement with the
experimental result. On the other hand, in the result for S35C and S45C (Figure 15b,c), there is a
difference between the prediction results of linear regression and the neural network model, and the
experimental result lay between two prediction results. For S25C steel, there is a good agreement of
experimental, simulated and predicted results. Therefore, the prediction method proposed in this
study is effective for fatigue property prediction. As shown so far, cyclic stress–strain property could
be predicted from microstructure. Recently, the Tanaka–Mura model has been modified and shown to
be useful for the prediction of crack initiation in various metallic materials [40,41]. By combining the
Tanaka–Mura model and CPFEM, as explained in our previous works [11,12], this prediction can be
linked to fatigue life prediction.



Materials 2019, 12, 3668 19 of 21
Materials 2019, 12, x FOR PEER REVIEW 20 of 22 

 

 

Figure 14. Comparison results between machine learning and experiment for (a) S25C, (b) S35C, and 

(c) S45C. 

7. Conclusions 

In this study, the finite element method, two-point correlation and machine learning were 

combined to propose the new method to predict cyclic stress–strain property from the 

microstructure of ferrite-pearlite steel. Based on the experiment, simulation and prediction results 

and discussion presented in the preceding sections, the following conclusions were obtained. 

 The result of the finite element analysis showed good agreement with the experimental results. 

The results confirmed that the material parameters identified in this study were appropriate for 

fatigue analysis. 

 Cyclic stress–strain property of ferrite-pearlite steel could be predicted with high accuracy by 

combining two-point correlation and machine learning. Also, the prediction error of the neural 

network model was smaller than that of the linear regression model. 

 Cyclic stress–strain property predicted from the result of microstructure analysis by the model 

obtained by machine learning showed a good agreement with the experimental results. Thus, 

the prediction method proposed in this study was shown to be effective for fatigue property 

prediction. 

Author Contributions:  Conceptualization, Y.M. and M.E.; methodology, Y.M., F.B. and T.S.; validation, Y.M., 

F.B. and T.S.; formal analysis, Y.M.; investigation, Y.M., F.B. and T.S.; writing-original draft preparation, Y.M.; 

writing-review and editing, F.B., T.S. and M.E.; supervision, M.E.; project administration, M.E.; funding 

acquisition, M.E. and T.S. 

Funding: This research was funded by Council for Science, Technology and Innovation (CSTI), 

Cross-ministerial Strategic Innovation Promotion Program (SIP), "Structural Materials for Innovation"(Funding 

Figure 15. Comparison results between machine learning and experiment for (a) S25C, (b) S35C, and
(c) S45C.

7. Conclusions

In this study, the finite element method, two-point correlation and machine learning were
combined to propose the new method to predict cyclic stress–strain property from the microstructure
of ferrite-pearlite steel. Based on the experiment, simulation and prediction results and discussion
presented in the preceding sections, the following conclusions were obtained.

• The result of the finite element analysis showed good agreement with the experimental results.
The results confirmed that the material parameters identified in this study were appropriate for
fatigue analysis.

• Cyclic stress–strain property of ferrite-pearlite steel could be predicted with high accuracy by
combining two-point correlation and machine learning. Also, the prediction error of the neural
network model was smaller than that of the linear regression model.

• Cyclic stress–strain property predicted from the result of microstructure analysis by the model
obtained by machine learning showed a good agreement with the experimental results. Thus, the
prediction method proposed in this study was shown to be effective for fatigue property prediction.
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