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Abstract: A new hybrid intelligent model was developed for estimating the compressive strength
(CS) of ground granulated blast furnace slag (GGBFS) concrete, and the synergistic benefits of the
hybrid algorithm as compared with a single algorithm were verified. While using the collected
269 data from previous experimental studies, artificial neural network (ANN) models with three
different learning algorithms namely back-propagation (BP), particle swarm optimization (PSO), and
new hybrid PSO-BP algorithms, were constructed and the performance of the models was evaluated
with regard to the prediction accuracy, efficiency, and stability through a threefold procedure. It was
found that the PSO-BP neural network model was superior to the simple ANNs that were trained by
a single algorithm and it is suitable for predicting the CS of GGBFS concrete.

Keywords: ground granulated blast furnace slag concrete; artificial neural network; particle swarm
optimization; back-propagation; hybrid PSO-BP

1. Introduction

Numerous researchers have attempted to enhance the sustainability of concrete by not only
reducing the amount of carbon dioxide (CO2) generated from the production of the Portland cement, but
also increasing the durability of concrete, which can benefit the environment through the conservation
of resources and the reduction of waste [1]. One commonly used strategy is to utilize recycled
aggregates and mineral admixtures, such as fly ash, ground granulated blast furnace slag (GGBFS),
and silica fume as a partial replacement for cement or aggregate in concrete [1–3]. The use of such
industrial by-products has been found to improve the mechanical properties and durability of concrete,
reducing CO2 emissions, conserving energy, and mitigating the adverse environmental effects of
concrete [4].

Blast furnace slag is a by-product that was obtained in the production of iron in a blast furnace.
When the molten blast furnace slag is quenched with water and finely ground to a cement parcel size,
it is transformed into GGBFS. GGBFS, as a latent hydraulic material, reacts with calcium hydroxide
(Ca(OH)2) in the presence of water, forming calcium silicate hydrate (C-S-H), which is primarily
responsible for the strength of cement-based materials [5,6]. Through this pozzolanic reaction, the use
of GGBFS as a supplementary cementitious material might reduce the early strength, but it increases
the ultimate strength and significantly improves the microstructure and durability of hardened
concrete [7–9].

Several empirical equations and mathematical models have been developed for estimating the
compressive strength (CS) and other properties to minimize the experimental task that is required
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for concrete mix design [10–12]. These equations are generally in regression form based on the
results of a series of experiments. However, selecting a suitable regression equation (linear, nonlinear,
exponential, etc.) for each analysis requires considerable experience and multiple techniques, and the
accuracy of analysis decreases as the number of explanatory variables increases [13–15]. In recent
years, numerical modeling for such relationships has been accomplished by constructing an artificial
neural network (ANN) model, which is capable of learning and generalizing from examples through
the trial-and-error method without any presumptions [13,16]. ANNs can not only produce correct or
nearly correct solutions to incomplete tasks, but also generate evidential results, even when the data
are poor or insufficient [17,18]. Owing to these advantages, numerous researchers have applied ANNs
for predicting the CS and other properties of concrete [4,19–21]. Bilim (2009) [21] used ANN models
that were trained by several different back-propagation (BP) algorithms to predict the CS of GGBFS
concrete based on concrete ingredients and age. Bakhta Boukhatem et al. (2011) [22] investigated the
efficiency factor of GGBFS related with concrete strength by using ANNs.

In most studies employing ANN models for the estimation of concrete properties, a BP algorithm
was used to train the network [19–21]. Nevertheless, the BP algorithm has some disadvantages: it can
be easily trapped in local minima depending on the selection of initial parameters and it may be
unreliable (with a low prediction accuracy), relying on training data [23,24]. Combinations of BP and
several metaheuristic algorithms have been proposed as alternatives to overcome these drawbacks.
Among the metaheuristic algorithms, particle swarm optimization (PSO) has been often integrated
with BP algorithm to improve the performance of predictive models due to its simplicity and wide
applicability. The hybrid PSO-BP algorithm uses the global search ability of PSO algorithm and the
fast-converging capabilities of BP algorithm so that the ANN models with it can converge to true global
optimization more accurately and rapidly than the models with a single algorithm. The effectiveness
and superiority of this hybrid algorithm have been proven in various fields [25–28]. Bo et al. (2017) [27]
proposed a hybrid PSO-BP neural network for wind power forecasting, and its performance was
compared to the network that was trained by the conventional BP algorithm. The results of their study
showed that the performance prediction of the developed hybrid algorithm is superior to the basic
BP algorithm. Wang et al. (2015) [28] used the PSO-BP neural network to enhance the performance
of the integrated navigation system and indicated that neural networks with the hybrid PSO-BP
algorithm can compensate and estimate the navigation error more effectively than the conventional
neural networks. However, few studies have been performed on the use of the hybrid algorithms to
develop ANN models for predicting concrete properties.

In this study, three different ANN models using BP, PSO, and hybrid PSO-BP algorithms were
developed for predicting the CS of GGBFS concrete based on the concrete mix ingredients and curing
temperature. The prediction results of these models were compared to investigate the beneficial effects
of combining the BP and PSO algorithms and select the best intelligent system for the estimation of
GGBFS concrete strength.

2. Database

It is necessary to prepare data and construct a database for training and testing the prediction
model to develop ANN-based models for predicting the CS of GGBFS-incorporated concrete. The 269
experimental data that were used in this study were collected from several reports [11,29–37]. All of
the data contained complete sets of information regarding the mix design proportion, curing condition,
and experimental CS of GGBFS concrete. The variables were selected according to all of the available
data samples. The input parameters included the curing temperature (T), water to binder ratio
(w/b), GGBFS to total binder ratio (GGBFS/B), water (W), fine aggregate (FA), coarse aggregate (CA),
and superplasticizer (SP). The output variable was the CS at 28 days, which ranged from 17 to 80 MPa.
Details regarding the chemical and mechanical properties of the concrete components are presented
in [11,29–37]. Table 1 presents the minimum and maximum values of each parameter, and Appendix A
presents a database containing all of the data.
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Table 1. Ranges of the input and output parameters in the database.

Parameters Symbol Unit Category Min Max

Curing temperature T ◦C Input 5 75
Water to binder ratio w/b % Input 25 88.9

Water W kg/m3 Input 128 295
GGBFS to total binder ratio GGBFS/B % Input 0 85

Fine aggregate FA kg/m3 Input 395 947
Coarse aggregate CA kg/m3 Input 723 1135
Superplasticizer SP % Input 0 2.9

Compressive strength CS MPa Output 17.2 77

3. Methodology

3.1. Artificial Neural Network

ANNs are massive parallel systems that are composed of simple, highly interconnected processing
units, i.e., artificial neurons, which process information. ANNs are effective for engineering
applications and they have been widely used to solve diverse problems due to its ability learning
from examples [16,38]. ANNs can be classified into different types depending on the architecture and
information flow procedure [15]. Among them, the multilayer feedforward network consisting of an
input layer, one or more hidden layer(s), and an output layer is the most commonly used network,
where all of the neurons in each layer only have connections to the neurons of successive layers, not to
neurons in the same layer [15,17]. Every node in a layer is connected to the nodes in the adjacent layers
with different weights. The typical elements of a neuron are shown in Figure 1: inputs, a summation
function, an activation function, a bias, and an output. In every neuron except for the input neurons,
signals from the previous layer (xi) are multiplied by an associated adaptive weight (wij), which
indicates the connection strength of the neuron with a particular input, and the summation function is
then applied to the weighted signals [39]. Finally, the bias of the neuron (bj) is added to the aggregate
signals, which forms the net input of the neurons (ni). This process can be mathematically expressed as:

ni =
∑

wi jx j + bi. (1)

The output (yi) of the neuron is then obtained by applying an activation function (f ) to the net
input (ni):

yi = f (ni). (2)

The activation function limits the amplitude of the output of a neuron within a manageable range
and introduces nonlinear properties to the neuron. In general, the hyperbolic tangent function is a
commonly used activation function in multilayer models [15].

Training ANNs is a process of updating the connection weights and biases, so that the network
exhibits desired or interesting behavior. In the course of training, the network architecture and
parameters are adjusted by the iterative simulation with the given training examples to minimize the
error function, which is often represented as the root mean squared error (RMSE), and to produce
outputs that are equal or close to the targets [39,40]. Instead of following a set of rules that are specified
by experts, ANNs automatically learn underlying rules from the given examples [41]. The steps used
for training the network are called the learning algorithm.
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Figure 1. Artificial neuron model.

3.2. Back-Propagation

The BP algorithm is the most widely used algorithm for training ANNs [42]. It is a gradient-based
procedure to minimize the error between the network outputs and the desired outputs, adjusting the
weights and biases by a small amount at a time [15,17]. It comprises two procedures: a forward stage
and a backward stage. In the forward procedure, the input signals move forward through the network
and the error is calculated in the output layer. Subsequently, the error is propagated backward from
the output layer to the input layer, updating parameters for the direction in which the performance
function most rapidly decreases [40,42]. The change of the weights during each iteration is calculated,
as follows:

∆wk = α∆wk−1 − η
∂E
∂w

, (3)

where w is the weight, ∆wk and ∆wk−1 are the changes in the weight w at k and k−1 iteration, α is the
momentum factor, and η is the learning rate. The entire procedure is repeated until the performance of
the network reaches an acceptable level.

3.3. Particle Swarm Optimization

PSO is a stochastic optimization technique for finding the best solution, which is inspired by the
social behavior of biological organisms to locate desirable positions in a given area through cooperation
and competition [43–46]. In PSO, some entities, called particles, are scattered in the search space,
and the position of each particle represents a possible solution to the optimization problem in the
n-dimensional search space [46,47]. Each particle moves iteratively through the problem space to find
the optimal locations, while remembering the best position it has ever visited and communicating with
other particles.

The position and velocity of the particles are randomly initialized at the beginning of the process
and, during every iteration, each particle accelerates toward its own personal best solution discovered
so far, as well as the global best position found thus far across the whole population [48]. The velocity
and position of each particle are updated via the following equations at every step t [49]:

→
v t+1 = w×

→
v t + c1 × r1 ×

(
→

pbest−
→
x t

)
+ c2 × r2 ×

(
→

gbest−
→
x t

)
, (4)

→
x t+1 =

→
x t +

→
v t+1, (5)

where
→
v t+1,

→
v t,
→
x t+1, and

→
x t represent the new velocity, current velocity, new position, and current

position of the particles. r1 and r2 are random numbers uniformly distributed in the range of (0,
1) [50], giving the particles good state space exploration ability. c1 and c2 are referred to as acceleration

coefficients, which represent the strength of attraction toward the personal best position (
→

pbest) and
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the global best position (
→

gbest), respectively [50,51]. The velocity (
→
v t) is updated based on its current

values multiplied by the inertia weight and the distances from its current position to the personal best
and the global best. The particle position (

→
x t) is adjusted according to the newly computed velocity

(
→
v t+1). Subsequently, the fitness of each updated position is evaluated, and the personal best and

global best are updated during each iteration. This process is repeated until the expected position is
obtained or the termination criteria are satisfied.

3.4. Hybrid PSO-BP Algorithm

The hybrid PSO-BP algorithm that is proposed herein is an optimization method that combines
the PSO with the BP. Although the BP algorithm is the most widely used training algorithm for ANNs,
it can easily fall into the local optimal solution, and its performance depends on the initial weights of
the ANN [23,27]. If the initial weights and biases are far from the optimal values that can give the
global optimal solutions, the ANN might become stuck at the local minimum [23]. Many researchers
have combined the BP algorithm with metaheuristic optimization algorithms, such as PSO, genetic
algorithm, and harmony search algorithm, to overcome these shortcomings of the BP algorithm and
enhance the accuracy of models [23,45,52]. Among them, PSO has been often used to improve the
performance of BP training in ANNs due to its simplicity and wide applicability [27,52].

The hybrid PSO-BP algorithm employs the global search ability of the PSO algorithm to obtain the
initial weights and biases of the ANN that can lead the network to converge to the global minimum of
the error function, and it uses the fast-converging capabilities of the BP algorithm. The near-global
optimal initial weights and biases that were obtained by the PSO algorithm were applied in BP training
to find true global optimization and improve performance of the ANN. Figure 2 describes the overall
calculation process of the PSO-BP algorithm that was used in this study. Section 4 provides details
regarding the determination of the parameters and the modeling of the PSO-BP ANN for predicting
the CS of concrete.
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4. Development of CS Prediction Models

This section presents the procedures for developing the ANN models while using the BP, PSO,
and PSO-BP algorithms for predicting the CS of GGBFS concrete. As previously mentioned, the curing
temperature (T), water to binder ratio (w/b), GGBFS to total binder ratio (GGBFS/B), water (W), fine
aggregate (FA), coarse aggregate (CA), and superplasticizer (SP) were used as the input parameters for
the CS prediction models. To construct and evaluate the network models, the dataset was divided into
training and testing sets; 80% of the data were used for training and the remaining 20% were employed
for testing. For the BP algorithm, 10% of the training dataset was used for validation. The test set was
not applied in training, but it was used to evaluate the generalization performance of the developed
network. All of the models presented in this study were developed while using MATLAB R2018a.

4.1. BP ANN

There are several BP algorithms that can be applied in ANNs, such as the Powell Beale conjugate
gradient, BFGS Quasi Newton, and Bayesian regularization. Among these BP algorithms, the
Levenberg–Marquardt algorithm, which has been used most commonly in training networks, owing to
its high speed and robustness, was adopted in this study to train the ANNs [53,54]. It has been utilized
for developing predictive models for concrete properties, and its effectiveness as compared with other
BP algorithms has been proven [14,15,21].

Before the training of the network, all of the input and target values were normalized within the
range [−1, 1] while using the following equation:

Vnorm = 2
(

V −Vmin
Vmax −Vmin

)
− 1, (6)

where V and Vnorm represent the raw and normalized values, respectively. Vmax and Vmin indicate the
largest and smallest values of V, respectively. Normalization of the data can improve the efficiency of
learning and simplify the design procedure [39].

The performance of ANNs depends strongly on the network architecture and parameters,
including the number of hidden layers, number of neurons in each hidden layer, and activation
functions. According to various researchers, ANNs with only one hidden layer can solve almost
all engineering problems [55–57] and generally produce excellent results [53]. Therefore, all of the
ANN-based predictive models that were constructed in this study had a single hidden layer. Figure 3
shows the architecture of the CS prediction ANN models. The hyperbolic tangent function and linear
function were used as the activation functions of the hidden and output neurons, respectively.
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As highlighted by several researchers, determining the number of neurons in the hidden layer (Nh)
is a critical task, because this number significantly affects the performance of ANNs. However, there is
no theoretical rule for selecting the proper value of Nh. Therefore, in this study, it was determined
through trial and error. Several different ANNs were constructed with various values of Nh within a
reasonable range based on previously proposed empirical equations [55,58–62], and their performances
were evaluated while using the coefficient of determination (R2) to obtain the optimal value. Table 2
presents the equations used to decide the Nh range for the CS model. As shown, the Nh range (2,21)
was selected for the CS prediction BP ANN. The models with different Nh values were each run
10 times, and the average R2 values of both the training and testing sets were computed to determine
the optimal number of hidden neurons. The BP model with 15 hidden neurons exhibited the best
performance; thus, a 7-15-1 architecture was applied to the BP ANN models in this study. Additional
details regarding the specifications of the best BP ANN model for predicting the CS are presented later.

Table 2. Empirical equations for the number of hidden neurons (Nh).

Empirical Equation Reference

0.75Ni Neville (1986) [58]
2Ni + 1 Hecht-Nielsen (1987) [55]

3Ni Hush (1989) [59]
2Ni Gallant (1993) [60]

Ni + 1 Tamura (1997) [61]
(4Ni

2 + 3)/(Ni
2
− 8) Sheela (2013) [62]

Ni is the number of input neurons.

4.2. PSO ANN

The PSO ANN represents the ANN model that was trained by the PSO algorithm, in which
the positions of the particles indicate the weights and biases of the ANN. The parameters that are
associated with PSO and the ANN should be selected properly to achieve the best performance of
the PSO ANN. However, the parameters that lead to the minimum of the cost function are not the
same in all cases, and there is no theoretical approach for identifying the optimal values. In this study,
to construct a robust and accurate predictive model, the ANN parameter, i.e., the network architecture,
and the PSO parameters, including the number of particles in the swarm (Nop) and the acceleration
coefficients (c1, c2), were determined through parametric analyses. The inertia weight (w)—one of the
PSO parameters—was taken as a random number within the range of (0, 1) [25,63]. Various values that
were suggested in the previous studies were considered to find the optimal parameters, as shown in
Table 3.

Table 3. Values of the PSO parameters considered.

Acceleration Coefficient (c1, c2) Swarm Size (Nop) Number of Hidden Neurons (Nh)

c1 = 0.8, c2 = 3.2 c1 = 3.2, c2 = 0.8 10

2–21

c1 = 1.333, c2 = 2.667 c1 = 2, c2 = 1.5 20
c1 = 1.714, c2 = 2.286 c1 = 2, c2 = 1 30

c1 = 2, c2 = 2 c1 = 1, c2 = 2 40
c1 = 2.286, c2 = 1.714 c1 = 1.5, c2 = 2 50
c1 = 1.333, c2 = 2.667 c1 = 1.5, c2 = 1.5 100

Each time that a network was trained, the training was stopped when the termination criteria were
satisfied, i.e., the iteration number reached the limit of 2000 or the improvement in the cost function
was <10−8 for 100 successive iterations [25]. The models with different parameters were each trained
five times, and R2, as a performance measure, was calculated for the training and testing data in every
run. The best model was selected according to the average values of R2 through the same method
that was described in the previous section. The best result was obtained when the number of hidden
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neurons was 15 (as in the case of the BP ANN), the swarm size was 30, and c1 and c2 were 1.5 and
2.5, respectively.

4.3. PSO-BP ANN

Hybrid algorithms combining PSO and BP have been used in ANNs to solve several engineering
problems, owing to their fast convergence and global optimization capability. In the PSO-BP network
model, the PSO algorithm attempted to find the near-global optimal initial points instead of random
initial weights for the BP training of the ANN. The parameters that were associated with both algorithms
were specified as the values determined in Sections 4.1 and 4.2.

5. Evaluation of CS Prediction Models

The CS prediction ANN models trained by the BP, PSO, and PSO-BP algorithms were evaluated
and compared. Each model was run 15 times with different training and testing data, and the
results were evaluated with regard to the prediction accuracy, efficiency, and stability through a
threefold procedure.

The four statistical indices that were employed to evaluate the performance capacity and
prediction accuracy of each CS prediction model. The RMSE, mean absolute error (MAE), mean
absolute percentage error (MAPE), and coefficient of determination (R2) were the main criteria that
were used for performance measurement. These indices are defined as follows:

MAE =
1
n

n∑
i=1

|ti − oi| (7)

RMSE =

√√
1
n

n∑
i=1

(ti − oi)
2 (8)

MAPE =
1
n

n∑
i=1

∣∣∣∣∣ ti − oi
ti

∣∣∣∣∣ (9)

R2 =


∑n

i=1(oi − o)
(
ti − t

)
√∑n

i=1(oi − o)2 ∑n
i=1

(
ti − t

)2


2

(10)

where o is the predicted value of the compressive strength, t is the experimental value, n is the
total number of data, o is the mean value of the predicted strength, and t is the mean value of the
experimental strength. Lower values of the MAE, RMSE, and MAPE and higher values of R2 indicate
a better predictability of the models.

Table 4 presents the performance indices of the best BP ANN, PSO ANN, and PSO-BP ANN
models. As shown, among the developed models, the model that was trained by the hybrid algorithm
had the lowest MAE, RMSE, and MAPE, as well as the highest R2, for both the training and testing
datasets, which indicated that this model could predict the CS with the highest accuracy. Furthermore,
the difference between the statistical performance results for the training and testing data was the
smallest for the hybrid model. This result reveals the PSO-BP network model has better generalization
performance than the other models.

Figures 4–6 present the relationships between the experimental CS and the values that were
predicted by the BP, PSO, and PSO-BP networks, respectively. The BP and PSO-BP models exhibited
R2 values of >0.9 for both the training and testing datasets, which indicated that these models can
provide reliable outputs with a high degree of fitness to the actual values. Thus, they are suitable for
predicting the CS of GGBFS based on the mixture constituents and curing temperature. The relatively
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high R2 values of the proposed PSO-BP model suggest that it has the potential for estimating strength
more accurately than the other models.

Table 4. Obtained statistical performance values for the developed models.

Statistical Indices
BP PSO PSO-BP

TR TS TR TS TR TS

MAE 2.446 3.325 3.196 4.663 1.581 2.689
RMSE 3.123 5.045 4.400 5.822 2.253 3.332
MAPE 0.0595 0.0778 0.0821 0.114 0.0392 0.0644

R2 0.943 0.906 0.884 0.861 0.971 0.961

TR and TS represent the training and testing datasets, respectively.
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To perform a detailed assessment, the computational efficiency of each model was evaluated
while using the SR [64], which is given by the following equations:

epi =

∣∣∣∣∣ ti − oi
ti

∣∣∣∣∣× 100%, SR =
NBep

N
× 100%, (11)
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where epi is the relative error and ti and oi are the measured and predicted values, respectively, of the
ith data entry in the dataset. NBep is the number of data entries, the relative error of which is smaller
than the restrained error bound Bep (i.e., the number of entries within the area epi < Bep), and N is the
total number of data in the considered set. The SR is the percentage of data that have equal or smaller
relative error than the specified error criterion and it has been used for the estimation of the numerical
efficiency and validity of the developed models in several studies [64]. The SR of each model was
computed with the variation of the restrained error Bep from 0 to 100%. Figure 7 and Table 5 show the
obtained results. When Bep was 5%, the SR for the PSO-BP ANN model was 64.1%, and those for the
conventional BP ANN and the PSO ANN were 49.2% and 30.2%, respectively. These results indicate
that 64.1% of the data were well-predicted by the hybrid model, with accuracy of ep < 5%. As shown
in Figure 7, for all values of Bep, including 5%, the SR of the PSO-BP network model was greater than
that of the other models. Additionally, for the PSO-BP ANN, the relative error of the entire data was
not greater than 22%; that is, when the restrained error Bep was 22%, the SR was 100%. In comparison,
the prediction errors of all the data for the ANNs that were trained by the BP algorithm alone and the
PSO algorithm alone were equal to or smaller than 43% and 35%, respectively. These results indicate
that the hybrid prediction model has better validity and efficiency than the other models for predicting
the CS of GGBFS concrete.
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Table 5. Values of the SR for the developed models.

Learning Algorithm
SR (%)

Bep (%) (SR = 100%)
Bep = 5% Bep = 10% Bep = 20% Bep = 30% Bep = 40%

BP 49.2 81.4 94.0 98.8 99.6 44
PSO 30.2 61.7 85.5 95.1 100 36

PSO-BP 64.9 89.5 99.2 100 100 22

Bep represents the restrained error.

Finally, to evaluate the stability of the developed models, the standard deviations of the RMSE
for the models that were trained with 15 randomly selected training samples were calculated and
compared. An ANN-based predictive model can give different outputs and have different performance
for the same inputs, depending on the initial weight and bias values or the data-splitting method [24].
This property can cause significant problems in practical application [53,65]. Therefore, the stability of
an ANN model must be validated prior to use [65,66]. In this study, as mentioned previously, each
model was trained 15 times while using different combinations of training and testing sets and, then,
the standard deviation (S) of the RMSE was computed while using Equation (12) to evaluate the
stability of the developed models. The standard deviation indicates the sensitivity of the prediction
performance of a model to the data used to train and develop it. A model with higher standard
deviation is more strongly dependent on the training observations.

X =
1
N

N∑
k=

Xk, S =

√√√
1
N

N∑
k=1

(Xk −X)
2
. (12)

Here, N is the total number of training data and Xk is the RMSE for the kth training set. X denotes
the mean value of the RMSE for models that are trained by a specific algorithm with 15 randomly
selected training samples. Figure 8 and Table 6 show the standard deviations and mean values for the
BP, PSO, and PSO-BP ANN models that are based on the training and testing datasets. The BP ANN
model had lower means and higher standard deviations of RMSE than PSO ANN model. These results
show that the ANN models trained by BP algorithm have better prediction accuracy, but lower stability
than the PSO ANN models. The standard deviations and means of the PSO-BP ANN model for both
the training and testing data were smaller than those of the other models, which indicates that the
model based on the hybrid algorithm was less influenced by the data splitting. Moreover, the difference
between the standard deviations for the two datasets was the smallest for the PSO-BP model. As a
result, it can be concluded that the PSO-BP neural network model is the most stable and accurate
among the three models for estimating the CS of GGBFS concrete.
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Table 6. Mean and standard deviation of the RMSE for the developed models.

Learning Algorithm
TR TS

Mean Standard Deviation Mean Standard Deviation

BP 3.185 0.828 3.959 1.989
PSO 5.079 0.557 6.767 1.170

PSO-BP 2.630 0.271 2.905 0.319

TR and TS represent the training and testing datasets, respectively.

6. Conclusions

The ANN models were constructed to predict the CS of GGBFS concrete based on the concrete
mix proportions and curing temperature while using three different learning algorithms: BP, PSO, and
PSO-BP. The parameters that were associated with each algorithm or neural network were determined
via a trial-and-error method, and the proposed models were trained while using 269 data divided into
two sets: testing and training. The developed PSO-BP neural network model was compared with
ANN models that were trained by either BP or PSO to verify its accuracy, efficiency, and stability in
prediction and to prove the synergetic benefits of using the hybrid algorithms.

The PSO-BP neural network model had the lowest values of the RMSE, MAE, and MAPE, as well
as the highest values of R2 for both the training and testing data, and the deviation between the results
that were obtained from the training and testing data was the smallest for the PSO-BP network. These
results indicate that the proposed hybrid model has the best fit for not only training data, but also
unseen data.

As shown in Table 5 and Figure 7, the hybrid model also had the highest SR for the specified error
limit; i.e., its maximum relative error was smaller than those of the other two models. Additionally,
when the models were trained with 15 randomly selected training samples, the PSO-BP network model
exhibited the lowest standard deviation and mean values of the RMSE, which demonstrates that its
prediction performance was the least affected by data division.

Several performance analyses indicated that the PSO-BP ANN model offers more accurate, reliable,
and stable prediction of the CS of GGBFS concrete than the other models. That is, it has the best
predictability and generalization performance among the developed models in this study. According
to the results, it is obvious that using the hybrid algorithm has synergistic benefits for the performance
of ANN models and the proposed hybrid PSO-BP ANN model is reliable for estimating the CS of
GGBFS concrete.
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Appendix A

Table A1. The dataset used in this research.

No T (◦C) w/b (%) GGBFS/B (%) W (kg/m3) FA (kg/m3) CA (kg/m3) SP (%) CS (MPa) No T (◦C) w/b (%) GGBFS/B (%) W (kg/m3) FA (kg/m3) CA (kg/m3) SP (%) CS (MPa)

1 60 25 0 163 682 882 0.8 66.2 20 20 41.7 30 156 848 933 0.95 39.01
2 60 25 40 163 647 897 0.65 65.91 21 20 44.1 50 165 835 918 0.6 38.11
3 60 25 50 163 641 899 0.7 64.13 22 20 43 50 161 840 924 0.7 41.51
4 60 25 60 163 634 901 0.75 70.32 23 20 42 50 157 845 929 0.8 40.36
5 60 25 70 163 628 903 0.7 62.27 24 20 40.9 50 153 850 934 0.95 43.69
6 60 27.5 0 163 703 909 0.77 60.34 25 20 44.1 70 165 832 915 0.5 45.79
7 60 27.5 40 163 685 911 0.6 62.48 26 20 42.8 70 160 838 922 0.6 47.27
8 60 27.5 50 163 678 913 0.63 67.78 27 20 41.4 70 155 845 929 0.75 45.76
9 60 27.5 60 163 671 916 0.7 65.39 28 20 40.1 70 150 851 936 0.9 41.76

10 60 27.5 70 163 665 918 0.68 54.5 29 20 44.1 0 165 850 916 0.65 43.14
11 60 30 0 163 721 932 0.8 60.68 30 20 43.3 70 162 850 916 0.65 45.74
12 60 30 40 163 719 919 0.63 56.85 31 20 42.5 50 159 851 918 0.7 46.63
13 60 30 50 163 712 921 0.6 64.07 32 20 41.7 30 156 852 919 0.7 48.72
14 60 30 60 163 706 924 0.68 60.24 33 20 43.1 0 168 857 888 0.608 37.83
15 60 30 70 163 699 927 0.7 50.6 34 20 42.8 20 167 847 895 0.607 38.55
16 20 44.1 0 165 841 925 0.65 41.67 35 20 42.6 30 166 841 900 0.607 38.74
17 20 44.1 30 165 837 921 0.65 33.03 36 20 42.3 50 165 828 911 0.607 40.18
18 20 43.3 30 162 841 925 0.8 36.01 37 20 41.8 70 163 811 928 0.508 38.04
19 20 42.5 30 159 845 929 0.85 37.68 38 20 28.6 0 166 757 879 1.309 67.38

39 20 28.4 20 165 742 884 1.208 68.05 59 20 49.2 30 160 863 949 0.1 29.9
40 20 28.3 30 164 725 899 1.158 67.53 60 20 49.2 30 146 863 949 0.1 30.3
41 20 27.9 50 162 707 914 0.857 67.62 61 20 49.2 30 128 863 949 0.1 30.1
42 20 27.6 70 160 690 929 0.656 66.18 62 20 49.2 40 160 863 949 0.1 32
43 10 43.1 0 168 857 888 0.608 33.05 63 20 49.2 40 146 863 949 0.1 30.4
44 10 42.8 20 167 847 895 0.607 36.03 64 20 44.5 30 160 775 923 0.1 55.3
45 10 42.3 50 165 828 911 0.607 36.13 65 20 44.5 30 137 775 923 0.1 49.1
46 10 28.6 0 166 757 879 1.309 59.42 67 20 44.5 40 160 775 923 0.1 55.9
47 10 28.4 20 165 742 884 1.208 59.55 68 20 44.5 40 137 775 923 0.1 54.4
48 10 27.9 50 162 707 914 0.857 54.23 69 20 44.5 50 160 775 923 0.15 52.6
49 15 43.1 0 168 857 888 0.608 34.32 70 20 44.5 50 137 775 923 0.15 50.5
50 15 42.8 20 167 847 895 0.607 33.78 71 20 50 30 163 836 965 1.63 39.8
51 15 42.3 50 165 828 911 0.607 33.44 72 20 50 40 163 834 964 1.63 37.4
52 15 28.6 0 166 757 879 1.309 65.03 73 20 50 50 163 834 963 1.63 35
53 15 28.4 20 165 742 884 1.208 61.07 74 20 40 30 163 764 968 2.04 48.2
54 15 27.9 50 162 707 914 0.857 61 75 20 40 40 163 763 966 2.04 45.9
55 20 47.4 0 173 873 949 0.5 52.4 76 20 40 50 163 761 964 2.04 44.1
56 20 47.4 50 173 873 949 0.5 29.7 77 45 55 0 175 853 1000 0.75 55
57 20 49.2 20 160 863 949 0.15 30.4 78 45 55 30 175 822 1014 0.6 60
58 20 49.2 20 146 863 949 0.15 31.3 79 45 55 50 175 801 1029 0.6 59

80 45 55 70 175 799 1026 0.6 50 100 60 35 70 175 694 969 0.65 29
81 45 45 0 175 817 968 0.7 49 101 75 55 0 175 853 1000 0.75 61
82 45 45 30 175 795 980 0.6 49 102 75 55 30 175 822 1014 0.6 59
83 45 45 50 175 774 995 0.55 48 103 75 55 50 175 801 1029 0.6 56
84 45 45 70 175 771 991 0.55 41 104 75 55 70 175 799 1026 0.6 48
85 45 35 0 175 741 952 0.8 39 105 75 45 0 175 817 968 0.7 48
86 45 35 30 175 718 962 0.7 36 106 75 45 30 175 795 980 0.6 45
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Table A1. Cont.

No T (◦C) w/b (%) GGBFS/B (%) W (kg/m3) FA (kg/m3) CA (kg/m3) SP (%) CS (MPa) No T (◦C) w/b (%) GGBFS/B (%) W (kg/m3) FA (kg/m3) CA (kg/m3) SP (%) CS (MPa)

87 45 35 50 175 698 974 0.65 35 107 75 45 50 175 774 995 0.55 49
88 45 35 70 175 694 969 0.65 32 108 75 45 70 175 771 991 0.55 37
89 60 55 0 175 853 1000 0.75 61 109 75 35 0 175 741 952 0.8 36
90 60 55 30 175 822 1014 0.6 62 110 75 35 30 175 718 962 0.7 37
91 60 55 50 175 801 1029 0.6 55 111 75 35 50 175 698 974 0.65 36
92 60 55 70 175 799 1026 0.6 43 112 75 35 70 175 694 969 0.65 31
93 60 45 0 175 817 968 0.7 49 113 20 42 0 168 783 972 0.715 46.1
94 60 45 30 175 795 980 0.6 48 114 20 42 30 168 780 968 0.463 44.9
95 60 45 50 175 774 995 0.55 48 115 20 42 50 168 778 966 0.413 44.6
96 60 45 70 175 771 991 0.55 36 116 20 37 0 168 729 981 0.817 50.5
97 60 35 0 175 741 952 0.8 40 117 20 37 30 168 726 977 0.515 56.3
98 60 35 30 175 718 962 0.7 39 118 20 37 50 168 724 974 0.455 57.1
99 60 35 50 175 698 974 0.65 32 119 20 38 0 168 672 981 1.018 60

120 20 38 30 168 668 976 0.868 64.3 140 20 85.8 17.6 219 729 1106 0 23.6
121 20 38 50 168 665 972 0.768 66.7 141 20 74.6 30 224 707 1072 0 30
122 20 27 0 168 608 965 1.52 71.4 142 20 64.1 41.6 231 677 1027 0 34
123 20 27 30 168 604 959 1.37 72.6 143 20 57.1 50 240 645 979 0 34.9
124 20 27 50 168 601 954 1.27 76.2 144 20 52.2 56.2 251 611 927 0 34.5
125 20 41 0 170 697 1035 2.9 48.3 145 20 48.3 61 261 578 877 0 31.8
126 20 41 10 170 697 1035 2.9 48.1 146 20 66.2 0 232 684 1037 0 35
127 20 41 30 170 697 1035 2.9 47.1 147 20 88.9 0 218 735 1114 0 22.6
128 20 41 50 170 697 1035 2.9 46.4 148 20 75.6 17.6 225 708 1073 0 29
129 20 56 0 168 750 1080 0 53.1 149 20 65.7 30 230 683 1036 0 36.1
130 20 56 55 168 750 1080 0 42.5 150 20 56.9 41.6 239 647 982 0 41.4
131 20 56 85 168 750 1080 0 33.5 151 20 51 50 250 609 924 0 42.3
132 20 87.6 0 219 732 1111 0 22.7 152 20 46.9 56.2 263 569 864 0 41.5
133 20 87.6 17.6 215 748 1135 0 18.1 153 20 44.2 61 279 526 799 0 37.5
134 20 87.6 30 218 731 1109 0 23.5 154 20 59.7 0 239 659 999 0 40.4
135 20 74.3 41.6 223 707 1073 0 27 155 20 80 0 224 716 1087 0 27.5
136 20 65.7 50 230 681 1033 0 27.8 156 20 67.9 17.6 231 686 1041 0 33.7
137 20 59.5 56.2 238 654 991 0 27.2 157 20 59 30 236 659 999 0 41.8
138 20 55.1 61 248 624 948 0 25.1 158 20 51.4 41.6 247 617 936 0 47.5
139 20 75 0 225 708 1075 0 28.9 159 20 46.9 50 263 570 866 0 48.4

160 20 43.4 56.2 278 525 796 0 47 180 20 41.4 70 155 845 929 0.75 45.76
161 20 40.9 61.1 295 477 723 0 42.7 181 20 40.1 70 150 851 936 0.9 41.76
162 20 50 0 185 850 952 0.5 41.5 182 20 44.1 0 165 850 916 0.65 43.14
163 20 50 10 185 850 952 0.5 40.1 183 20 43.3 30 162 850 916 0.65 45.74
164 20 50 20 185 850 952 0.5 40.6 184 20 42.5 50 159 851 918 0.7 46.63
165 20 50 30 185 850 952 0.5 39.8 185 20 41.7 70 156 852 919 0.7 48.72
166 20 50 40 185 850 952 0.5 39.4 186 20 47.9 0 163 947 870 0.7 25.5
167 20 50 50 185 850 952 0.5 37.5 187 20 47.9 60 163 939 863 0.5 23.3
168 20 50 60 185 850 952 0.42 35.2 188 20 45.3 0 163 920 880 0.7 28.2
169 20 44.1 0 165 841 925 0.65 41.67 189 20 45.3 60 163 913 873 0.55 26.6
170 20 44.1 30 165 837 921 0.65 33.03 190 20 42.9 0 163 894 890 0.7 32.9
171 20 43.3 30 162 841 925 0.8 36.01 191 20 42.9 60 163 886 882 0.5 29.2
172 20 42.5 30 159 845 929 0.85 37.68 192 20 45.3 0 163 920 880 0.7 28.5
173 20 41.7 30 156 848 933 0.95 39.01 193 20 45.3 30 163 916 876 0.6 26.2
174 20 44.1 50 165 835 918 0.6 38.11 194 20 45.3 60 163 913 873 0.55 27.1
175 20 43.0 50 161 840 984 0.7 41.51 195 20 42 0 168 783 972 0.715 46.1
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Table A1. Cont.

No T (◦C) w/b (%) GGBFS/B (%) W (kg/m3) FA (kg/m3) CA (kg/m3) SP (%) CS (MPa) No T (◦C) w/b (%) GGBFS/B (%) W (kg/m3) FA (kg/m3) CA (kg/m3) SP (%) CS (MPa)

176 20 42.0 50 157 845 929 0.8 40.36 196 20 42 30 168 780 968 0.463 44.9
177 20 40.9 50 153 850 934 0.95 43.69 197 20 42 50 168 778 966 0.413 44.6
178 20 44.1 70 165 832 915 0.5 45.79 198 20 37 0 168 729 981 0.817 50.5
179 20 42.8 70 160 838 922 0.6 47.27 199 20 37 30 168 726 977 0.515 56.3

200 20 37.0 50 168 724 974 0.465 57.1 220 23 50 30 168 790 995 1.05 31.1
201 20 32.0 0 168 672 981 1.018 60 221 23 50 40 168 789 994 1.05 32
202 20 32.0 30 168 668 976 0.868 64.3 222 23 50 50 168 788 993 1.16 33.5
203 20 32.0 50 168 665 972 0.767 66 223 23 45.0 30 158 760 1039 1.46 33.9
204 20 27.0 0 168 608 965 1.52 71.4 224 23 45.0 40 158 759 1038 1.47 34.5
205 20 27.0 30 168 604 959 1.37 72.6 225 23 45.0 50 158 758 1037 1.48 36.2
206 20 27 50 168 601 954 1.27 76.2 226 20 42 0 168 783 972 0.715 46
207 20 50 0 175 800 965 0.645 32 227 20 42 30 168 780 968 0.463 45
208 20 50 10 175 799 963 0.605 31.8 228 20 42 50 168 778 966 0.413 44.7
209 20 50 30 175 797 960 0.585 29.8 229 20 37 0 168 729 981 0.817 50.5
210 20 50 50 175 794 957 0.545 28.5 230 20 37.0 30 168 726 977 0.515 52
211 20 30 0 165 717 924 0.65 56.3 231 20 37.0 50 168 724 974 0.465 54
212 20 30 65 165 705 909 0.3 54.5 232 20 32.0 0 168 672 981 1.018 60.3
213 20 27 65 163 689 887 0.3 61.1 233 20 32.0 30 168 668 976 0.868 64.7
214 23 55 0 179 819 952 0.73 27.8 234 20 32.0 50 168 665 972 0.767 67
215 23 50 0 168 793 999 1.04 28.7 235 20 27.0 0 168 608 965 1.52 72.4
216 23 45 0 158 764 1043 1.46 30.7 236 20 27.0 30 168 604 959 1.37 73.5
217 23 55 30 179 817 949 0.84 28.9 237 20 27.0 50 168 601 954 1.27 77
218 23 55 40 179 815 947 1.05 29.3 238 5 60.0 0 217.2 399 912 0.65 24.8
219 23 55 50 179 814 946 1.05 31.2 239 5 60.0 10 217.2 397 910 0.65 22.4

240 5 60.0 30 217.2 396 908 0.65 18.8 260 20 60.0 20 172 877 996 0.5 52.2
241 5 60.0 50 217.2 395 906 0.65 17.2 261 20 57.0 20 175 843 997 0.55 46.3
242 20 60.0 0 217.2 399 912 0.65 26.4 262 20 50.0 20 176 811 998 0.5 39
243 20 60.0 10 217.2 397 910 0.65 24.1 263 20 45.0 20 181 769 985 0.5 37.2
244 20 60.0 30 217.2 396 908 0.65 22.9 264 20 40.0 20 187 721 962 0.5 31.6
245 20 60.0 50 217.2 395 906 0.65 21.7 265 20 60.0 30 172 877 996 0.5 49
246 35 60.0 0 217.2 399 912 0.65 27.4 266 20 55.0 30 175 843 997 0.5 43.4
247 35 60.0 10 217.2 397 910 0.65 25.7 267 20 50.0 30 176 811 998 0.5 40.8
248 35 60.0 30 217.2 396 908 0.65 26.8 268 20 45.0 30 181 769 985 0.5 39.3
249 35 60.0 50 217.2 395 906 0.65 25.1 269 20 40.0 30 187 721 962 0.5 32.1
250 20 60.0 0 172 877 996 0.5 49.7
251 20 55.0 0 175 843 997 0.5 43.3
252 20 50.0 0 176 811 998 0.5 39.7
253 20 45.0 0 181 769 985 0.5 37.9
254 20 40.0 0 187 721 962 0.48 25.5
255 20 60.0 10 172 877 996 0.5 54
256 20 55.0 10 175 843 997 0.5 46.5
257 20 60.0 10 176 811 998 0.5 43.3
258 20 45.0 10 181 769 985 0.5 33.5
259 20 40.0 10 187 721 962 0.5 25.2
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