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Abstract

Rationale: Disruption of alveologenesis is associated with severe
pediatric lung disorders, including bronchopulmonary dysplasia (BPD).
Although c-KIT1 endothelial cell (EC) progenitors are abundant in
embryonic and neonatal lungs, their role in alveolar septation and the
therapeutic potential of these cells remain unknown.

Objectives: To determine whether c-KIT1 EC progenitors
stimulate alveologenesis in the neonatal lung.

Methods:We used single-cell RNA sequencing of neonatal
human and mouse lung tissues, immunostaining, and FACS
analysis to identify transcriptional and signaling networks shared
by human and mouse pulmonary c-KIT1 EC progenitors. A mouse
model of perinatal hyperoxia-induced lung injury was used to
identify molecular mechanisms that are critical for the survival,
proliferation, and engraftment of c-KIT1 EC progenitors in the
neonatal lung.

Measurements and Main Results: Pulmonary c-KIT1 EC
progenitors expressing PECAM-1, CD34, VE-Cadherin, FLK1, and
TIE2 lacked mature arterial, venal, and lymphatic cell-surface
markers. The transcriptomic signature of c-KIT1 ECswas conserved in
mouse and human lungs and enriched in FOXF1-regulated
transcriptional targets. Expression of FOXF1 and c-KIT was decreased
in the lungs of infants with BPD. In the mouse, neonatal hyperoxia
decreased the number of c-KIT1 EC progenitors. Haploinsufficiency or
endothelial-specific deletion of Foxf1 in mice increased apoptosis and
decreased proliferation of c-KIT1 ECs. Inactivation of either Foxf1 or
c-Kit caused alveolar simplification. Adoptive transfer of c-KIT1 ECs
into the neonatal circulation increased lung angiogenesis and prevented
alveolar simplification in neonatal mice exposed to hyperoxia.

Conclusions: Cell therapy involving c-KIT1 EC progenitors can be
beneficial for the treatment of BPD.
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endothelial progenitor cells

Lung morphogenesis is dependent on the
formation of an extensive capillary network
mediated by reciprocal signaling among
endothelial, epithelial, and mesenchymal
cells that regulates alveolar formation (1–3).
Before and during the saccular stage of lung
development, alveolar capillaries are
embedded in a thick mesenchyme, limiting

interactions with alveolar epithelial cells.
During sacculation and septation, the
mesenchyme thins, the alveolar surface area
increases, and capillary networks are
formed in close apposition to the alveolar
walls. During angiogenesis, basement
membranes form between endothelial and
type I alveolar epithelial cells to support

efficient gas exchange (4, 5). Prematurity,
oxygen exposure, and mechanical
ventilation contribute to the pathogenesis
of bronchopulmonary dysplasia (BPD),
disrupting neonatal lung angiogenesis and
alveologenesis, and causing alveolar
simplification. Multiple cellular and
molecular mechanissms, including
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apoptosis of resident lung cells, diminished
cellular proliferation, infection, and
inflammation, contribute to reduced
angiogenesis, abnormal epithelial
differentiation, and altered surfactant
homeostasis in patients with BPD (6–11).

Inhibition of neonatal lung angiogenesis
is an important pathophysiological

mechanism through which hyperoxia causes
alveolar simplification (12–14). Endothelial
cells (ECs) produce a diversity of signaling
molecules, including PDGFs (platelet-
derived growth factors), fibroblast growth
factors, hepatocyte growth factor, WNTs
(proteins from the int/Wingless family,
members of Wnt [Wingless-related
integration site]-signaling pathways), and
matrix metalloproteinases, that regulate
tissue remodeling and deposition of elastin
and collagens into the alveolar wall by
myofibroblasts (3–5). VEGF-A (vascular
endothelial growth factor A) which is
secreted primarily by epithelial cells, signals
through VEGFR2 (VEGF receptor 2)
tyrosine kinase (KDR or FLK1) to stimulate
endothelial proliferation, survival, and
migration, accelerating neonatal lung
angiogenesis (9, 11). Recombinant VEGF or
intratracheal adenovirus-mediated VEGF
gene transfer was shown to restore
angiogenesis, increase alveolar septation, and
improve survival in a rat BPD model (12, 13).
VEGF signaling during angiogenesis is
dependent on multiple angiogenic
transcription factors from the FOX (forkhead
box transcription factor), HOX (homeobox
transcription factor), KLF (Krüppel-like
transcription factor), SOX (Sry-related HMG
box transcription factor), GATA (GATA-
binding transcription factor), and ETS (E26
transformation-specific transcription factor)
families (2, 3, 15), and FOXF1 (Forkhead
Box F1) is a key regulator of pulmonary
angiogenesis (1, 3, 16). Heterozygous
mutations in the FOXF1 gene are associated
with alveolar capillary dysplasia with
misalignment of pulmonary veins
(ACDMPV) (17, 18), a severe congenital
disorder associated with the loss of alveolar
capillaries, malposition of pulmonary veins,
and lung hypoplasia, causing respiratory
insufficiency after birth (19). Patients with
ACDMPV and delayed clinical presentations
have alveolar simplification and pulmonary
vasculature abnormalities (19). Foxf12/2

mice die in utero due to vascular defects in
the yolk sac and allantois (20). Foxf1
heterozygous mice (Foxf11/2) have
diminished numbers of alveolar capillaries
and are susceptible to lung injury by toxic
and inflammatory insults (21–23). FOXF1
stimulates endothelial proliferation during
embryogenesis and repair after partial
pneumonectomy, regulating the expression of
genes that are critical for the VEGF, PDGF,
NOTCH, and Angiopoietin/TIE2 signaling
pathways (24–26).

Stem cell factor (SCF) is produced by
multiple cell types and signals through
c-KIT tyrosine kinase to increase endothelial
proliferation and cell survival (27, 28).
Administration of SCF increases neonatal
angiogenesis and improves alveolar septation
after hyperoxia in newborn rats (29).
c-KIT is expressed in EC progenitors
(c-KIT1/PECAM-11/CD452 or c-KIT1

ECs), which are capable of self-renewal and
differentiation into mature ECs in many
organs (27, 28). Although c-KIT1 ECs are
present in embryonic and neonatal lungs
(30), and SCF/c-KIT signaling stimulates
alveologenesis in rodent BPD models (29),
the molecular mechanisms that regulate
SCF/c-KIT signaling in EC progenitors
remain unknown. The potential of c-KIT1

ECs for treating neonatal pulmonary
disorders is unclear.

In the present study, we used single-cell
RNA sequencing (RNA-seq) of human and
mouse neonatal lung tissue to identify an
evolutionarily conserved gene expression
signature in pulmonary c-KIT1 EC
progenitors, and demonstrate that c-KIT1

ECs require FOXF1 and c-KIT to stimulate
postnatal angiogenesis and alveologenesis.

Methods

Transgenic Mice and Neonatal
Hyperoxia
The Foxf11/2 mouse line was described
previously (31). Kitw-sh mice were
purchased from The Jackson Laboratory
(C57Bl/6 background). Foxf1fl/fl mice (24)
were bred with Pdgfb-CreER mice (32) to
generate Pdgfb-CreER Foxf1fl/fl offspring. In
Pdgfb-CreER Foxf1fl/fl mice, tamoxifen
causes Foxf1 deletion in ECs but not in other
cell types (24, 26). Tamoxifen (3 mg; Sigma)
was given intraperitoneally at Postnatal Day
0.5 (P0.5) and P2.5. Neonatal hyperoxia
protocols and measurements of lung functions
were performed as described previously (33,
34) and in the online supplement. Animal
studies were approved by the Animal Care
and Use Committee of the Cincinnati
Children’s Research Foundation.

Flow Cytometry and Adoptive
Transfer of EC Progenitors
FACS was performed after enzyme digestion
of lung tissue as described previously
(35, 36). Apoptotic ECs were detected with
the use of an APC Annexin V apoptosis
detection kit (eBioscience). 7-AAD

At a Glance Commentary

Scientific Knowledge on the
Subject: Inhibition of neonatal lung
angiogenesis is an important
pathophysiological mechanism
through which hyperoxia causes
alveolar simplification in
bronchopulmonary dysplasia (BPD).
c-KIT is expressed in endothelial
progenitor cells, which are abundant in
embryonic and neonatal lungs.
Administration of stem cell factor, a
ligand of c-KIT, improves angiogenesis
and alveolar septation after hyperoxia
in newborn rats. Although stem cell
factor/c-KIT signaling stimulates
alveologenesis, the transcriptional
networks that are critical for the
survival and proliferation of
pulmonary endothelial progenitor cells
remain unknown.

What This Study Adds to the Field:
Using single-cell RNA sequencing of
human and mouse neonatal lung
tissue, we found that FOXF1 and its
transcriptional target genes, including
c-KIT, were increased in pulmonary
endothelial progenitor cells. FOXF1
and c-KIT were decreased in lungs of
infants with BPD. In mice, pulmonary
endothelial progenitor cells were highly
sensitive to injury by high oxygen
concentrations and dependent on
FOXF1 and c-KIT to maintain cell
survival and proliferation. Genetic
deletion of either Foxf1 or c-Kit
inhibited neonatal angiogenesis and
disrupted alveolar septation.
Transplantation of pulmonary
endothelial progenitor cells into the
neonatal circulation improved lung
angiogenesis and protected newborn
mice from hyperoxia-induced alveolar
simplification, supporting efforts to
prevent BPD by restoring endothelial
progenitor cells.
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(eBioscience) was used for labeling of
necrotic cells. Bromodeoxyuridine
incorporation was measured as described
previously (24). The antibodies used for
FACS are listed in the online supplement.
The protocol used for intracellular labeling
with cell fixation and permeabilization was
described previously (34). Stained cells were
separated using a five-laser FACSAria II (BD
Biosciences). For adoptive transfer of EC
progenitors, c-KIT1 ECs (c-KIT1 CD311

CD452) and c-KIT2 ECs (c-KIT– CD311

CD452) were FACS-sorted from lung tissue
of donor P3 mice expressing the tdTomato
transgene (The Jackson Laboratory) and
injected into the facial vein of P3 recipient
mice.

Single-Cell RNA-seq Analysis
RNA-seq analyses (using the Drop-seq
platform) of human P1 and mouse P7
lungs were performed at Cincinnati
Children’s Hospital Medical Center. The
raw data are available at LungMAP
(https://www.lungmap.net/breath-entity-
page/?entityType=noneandentityId=
andentityLabel=andexperimentTypes[]=
LMXT0000000016) and interpreted data
can be searched at LungGENS (https://
research.cchmc.org/pbge/lunggens/
celltype_dp.html?tps=pnd1andspe=MO).
Analyses, data filtering, and normalization
criteria are described in the online
supplement. Seurat (37) was used to detect
highly variable genes and perform principle
component analysis–based dimension
reduction. Reduced dimensions were used for
cell cluster identification using the Jaccard-
Louvain clustering algorithm (38). A
binomial test–based method (38) was used to
identify differentially expressed genes.
Human donor lung tissue and slides from
BPD lungs were provided by the LungMAP
Human Tissue Core at the University of
Rochester. Tissue for LungMAP was obtained
via the nonprofit United Network for Organ
Sharing, International Institute for
Advancement of Medicine and National
Disease Research Interchange. Consent for
use of tissue was overseen by the University
of Rochester Research Subjects Review Board
(RSR B00056775) and the Cincinnati
Children’s Hospital Medical Center
Institutional Review Board (#20180852).

Real-Time qRT-PCR
qRT-PCR was performed using a
StepOnePlus Real-Time PCR system
(Applied Biosystems) with TaqMan primers

Flow cytometry
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Figure 1. The unique gene expression signature of c-KIT1 endothelial cell (EC) progenitors. (A and B)
Immunostaining shows that c-KIT1 ECs are present in lung tissue from wild-type E16.5 and Postnatal
Day 7 (P7) mice (A), and in normal human neonatal lung (B). Arrowheads indicate c-KIT1 ECs.
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(see Table E1 in the online supplement)
as described previously (39–41).
Expression levels were normalized to
b-actin mRNA.

Immunostaining
Lung sections were stained with hematoxylin
and eosin (H&E) or used for immunostaining
as described previously (42–44). The primary
antibodies and detection methods used
are listed in the online supplement.
Morphometric measurements were obtained
as described previously (33). Colocalization
experiments were performed as described
previously (45–47).

Chromatin Immunoprecipitation
Sequencing
Cross-linked chromatin was sonicated to
200–300 bp fragments and used for
chromatin immunoprecipitation
sequencing (ChIP-seq) (48, 49). Data
analysis was performed using the
BioWardrobe platform as described
previously (25).

Statistical Analysis
One-way ANOVA and Student’s t test were
used to determine statistical significance.
Right-skewed measurements were log
transformed to meet normality assumptions
before analysis. P, 0.05 was considered
significant. Values for all measurements were
expressed as mean6 SD.

Results

Distinct and Evolutionarily Conserved
Gene Expression Signature of
Pulmonary c-KIT1 EC Progenitors
c-KIT1 ECs (c-KIT1 PECAM-1(CD31)1

CD452) are abundant in fetal lung tissue
(30), where they serve as progenitors for EC
lineages (27, 28). We examined cell-surface
markers and gene expression signatures of
c-KIT1 ECs in developing mouse and
human lungs. Consistent with published

studies (28, 30), c-KIT1 ECs were
frequently detected in the endothelium of
pulmonary blood vessels and lung
parenchyma of embryos and neonates, as
shown by colocalization of c-KIT with
PECAM-1 (Figures 1A and E1A). c-KIT1

ECs were also found in human neonatal
lung (Figures 1B and E1B). Based on
FACS analysis of neonatal mouse lung
tissue, c-KIT1 ECs stained for endothelial
markers PECAM-1, ICAM-2, and
Endomucin (Figure 1C), but lacked cell-
surface molecules expressed in pericytes
(CD140b), fibroblasts (CD140a),
hematopoietic cells (CD45), and epithelial
cells (CD326) (Figure E2). c-KIT1 ECs did
not express arterial NRP1, venous EphB4, or
the lymphatic marker LYVE-1, but stained
for CD34 (Figure E2), a cell-surface molecule
that is expressed in pulmonary capillary ECs
(1, 3). c-KIT1 ECs were abundant during
embryonic and postnatal periods of lung
development, but their numbers decreased
in the adult lung as shown by FACS
(Figure 1D), consistent with the observed
numbers of c-KIT1 ECs identified by single-
cell RNA-seq analyses (Figure 1E). The
fraction of c-KIT1 ECs was smaller in human
lung than in mouse lung and decreased with
age (Figure 1F).

To identify gene signatures in c-KIT1

ECs during alveologenesis, we undertook a
bioinformatic analysis of the single-cell
RNA-seq (Drop-seq platform) data from
human newborn lungs. A comparison of 92
c-KIT1 and 558 c-KIT2 human lung ECs
revealed significant differences in the
expression of 335 genes (P, 0.05)
(Figure 1G). Differentially expressed genes
were functionally classified according to
gene ontology. Functional categories of
“angiogenesis,” “VEGF signaling,” “stem
cell development,” and “cell cycle” were
significantly enriched in the subset of
upregulated c-KIT1 EC genes (Figure
E3A). Single-cell RNA-seq of mouse
neonatal lung tissue (383 c-KIT1 ECs and
667 c-KIT2 ECs) identified gene expression

changes characteristic of mouse c-KIT1 EC
progenitors (Figures E4A and E4B).
Functional categories identified by RNA
expression were similar in human and
mouse c-KIT1 ECs (Figures E3A and
E3B). After a cross-comparison between
human and mouse datasets, we identified
152 genes whose expression differed
significantly between c-KIT1 and c-KIT2

ECs (Figure 1H and Table E2). Multiple
transcription factors, including ERG,
SOX18, KLF6, SOX7, and FOXF1 (the
latter being required for development
of the alveolar microvasculature [16,
17, 21]), were differentially expressed
in c-KIT1 versus c-KIT2 ECs (Table
E2). Expression of known FOXF1
transcriptional target genes, such as TEK,
CDH5, and KDR (24, 26), was increased in
both human and mouse c-KIT1 ECs
(Figure 1H and Table E2). Additional FOXF1
targets in the c-KIT1 EC gene signature were
identified in a ChIP-seq analysis of fetal lung
endothelial MFLM-91 U cells (50). FOXF1
DNA-binding regions were found within 2 kb
of the transcription initiation site of 29 genes
identified in the c-KIT1 EC signature gene
list (Figure 1H and Table E3), including those
that are critical for VEGF signaling (Mapk3
[Erk1], Dusp6, and Psmb6) and EC function
(Ahnak, Cav1, Jup, and Sdcbp) (Figure E5).
FOXF1 binding was frequently associated
with H3K4me3 methylation marks (Figure
E5), predicting transcriptionally active
promoters and enhancers (25). FOXF1
binding was detected in the bidirectional
promoter of Foxf1 and the Foxf1-adjacent
noncoding RNA Fendrr (Figure E6 and Table
E3), consistent with autoregulation of the
Foxf1 gene.

We isolated murine c-KIT1 and
c-KIT2 ECs from P7 lungs using FACS and
performed qRT-PCR. Consistent with the
single-cell RNA-seq analysis, Foxf1, Kit,
and Cdh5 mRNAs were increased in
c-KIT1 ECs, whereas Pecam1 mRNA was
unchanged (Figure 2A). Cell-surface
expression of VE-Cadherin (CDH5) and

Figure 1. (Continued). Scale bars, 10 mm. (C) FACS analysis of collagenase-digested P7 lungs shows that c-KIT1 ECs express PECAM-1, ICAM-2,
and endomucin (EMCN), and do not express CD45. (D) The percentage of pulmonary c-KIT1 ECs (c-KIT1 PECAM-11 CD452) was determined by
FACS at different time points during murine lung development (n = 3–5 mice in each group). (E and F) c-KIT1 ECs were decreased in mouse and
human adult lungs. The percentages of ECs expressing KIT mRNA were calculated using single-cell RNA-sequencing datasets obtained from the
Lung Gene Expression Analysis Web Portal (https://research.cchmc.org/pbge/lunggens/mainportal.html). Ratios between c-KIT1 ECs and total
ECs are shown for each time point. (G and H) Bioinformatic analysis identified 92 c-KIT1 and 558 c-KIT2 ECs obtained from human P1 lung,
showing significant differences in expression of 335 genes (P, 0.05). Heatmap and violin plots were used to identify gene expression differences
between human lung c-KIT1 and c-KIT2 ECs. FOXF1 target genes from gene expression overlap between human and mouse c-KIT1 ECs are shown
in H. 7-AAD = 7-amino-actinomycin D; FSC = forward scatter; UMI = unique molecular identifier.
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Figure 2. Neonatal hyperoxia decreases c-KIT1 endothelial cells (ECs) in lung tissue. (A) RNA was prepared from FACS-sorted c-KIT1 and c-KIT2 ECs
from Postnatal Day 7 (P7) mouse lungs and analyzed by qRT-PCR. Increased mRNAs of Foxf1, Kit, and Cdh5 were found in c-KIT1 ECs (n=3 mice
in each group). Pecam1 mRNA was not changed. Expression levels were normalized to b-actin mRNA. (B) FACS analysis of P7 mouse lungs shows that
c-KIT1 ECs have increased cell-surface expression of TIE2 and VE-Cadherin. Cell-surface staining of EphB4 and VEGFR3 was unaltered in c-KIT1 ECs.
The mean fluorescence intensity (MFI) was calculated using n=3 mice in each group. (C) FACS analysis shows increased amounts of intracellular FOXF1
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reduced FOXF1 and c-KIT in lungs of patients with BPD (n=7) compared with donor neonatal lungs (n=6). Scale bar, 50 mm. BPD=bronchopulmonary
dysplasia.
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TIE-2 (TEK) was increased in c-KIT1 ECs,
whereas EPHB4 and VEGFR3 were similar
in c-KIT1 and c-KIT2 ECs (Figure 2B).
Intracellular staining for FOXF1 protein
was examined by FACS, which showed
increased FOXF1 in c-KIT1 ECs (Figures

2C and E7). Thus, c-KIT1 EC progenitors
have a unique gene expression signature,
which is enriched in FOXF1 and its
transcriptional target genes. The c-KIT1

EC progenitor signature is conserved in
murine and human lungs.

Neonatal Hyperoxia Decreases
Pulmonary c-KIT1 EC Progenitors
To examine whether hyperoxic lung injury
affects c-KIT1 EC progenitors, newborn
mice were exposed to 85% O2 for 3 weeks
followed by recovery in room air (Figure
E8A). Consistent with published studies
(33), neonatal hyperoxia caused alveolar
simplification and altered lung function,
increasing respiratory system resistance and
elastance, and decreasing lung compliance
(Figures E8B and E8C). Alveolar
simplification was associated with reduced
numbers of endothelial and epithelial cells
as shown by FACS (Figures E9A and E9B).
The percentage of c-KIT1 ECs was
selectively decreased in a time-dependent
manner after hyperoxia (Figure 2D).
Immunostaining for c-KIT and FOXF1 was
decreased in the lungs of patients with BPD
compared with normal lungs (Figure 2E).
Thus, neonatal hyperoxia decreases
pulmonary c-KIT1 ECs.

FOXF1 Is Required for Maintenance of
c-KIT1 ECs
Because expression of FOXF1 was increased
in mouse and human c-KIT1 ECs, we
examined the requirements for FOXF1 in
c-KIT1 ECs using mice haploinsufficient
for the Foxf1 gene (Foxf11/2). Foxf1mRNA
was decreased in Foxf11/2 lungs and
associated with decreased c-Kit mRNA
(Figure 3A). The percentages of c-KIT1

ECs were decreased in Foxf11/2 lung tissue
(Figure 3B). Foxf11/2 mice were susceptible
to hyperoxia, as shown by increased
mortality (Figure 3C) and increased
alveolar simplification (Figures 3D and 3E).

To examine whether FOXF1 acts in a
cell-autonomous manner to regulate the
maintenance of c-KIT1 ECs during
alveologenesis, we deleted Foxf1 using the
PDGFb-CreER transgene (Figures 4A and
4B), which specifically targets the EC
lineages after tamoxifen administration (24,
26). FOXF1 was decreased in ECs, but not
in non-ECs, after neonatal administration
of tamoxifen (Figures 4C and 4D). Foxf1
mRNA was associated with decreased c-Kit
in whole lung tissue (Figure 4E) and FACS-
sorted ECs from PDGFb-CreER Foxf12/2

lungs (Figure 4F). Cell-surface and
intracellular c-KIT staining was decreased
in ECs after deletion of Foxf1 (Figures
E10A and E10B). In contrast, cell-surface
expression of SCF, a ligand of c-KIT,
was increased in FOXF1-deficient ECs
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alveolar simplification. (A) RNA was prepared from lungs of Foxf11/2 and wild-type (WT) Postnatal
Day 7 (P7) mice and analyzed by qRT-PCR. Foxf1 and Kit mRNAs were decreased in Foxf11/2 lungs
(n=5 mice). Expression levels were normalized to b-actin mRNA. (B) FACS analysis shows decreased
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Foxf11/2 and WT mice after hyperoxic lung injury is shown by Kaplan-Meier curves. (D and E)
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(Figures E11A–E11C). FOXF1-binding sites
were found in the mouse c-Kit gene by
ChIP-seq (Figure E10C), implicating
FOXF1 in the regulation of c-Kit
transcription. Thus, deletion of Foxf1 in
neonatal pulmonary ECs decreased c-KIT
and increased the c-KIT ligand SCF.

Deletion of Foxf1 or c-Kit Decreases
EC Progenitors and Causes Alveolar
Simplification
The percentages of c-KIT1 EC progenitors
were decreased after Foxf1 was deleted in
neonatal pulmonary ECs (Figure 5A). The
decrease in c-KIT1 ECs correlated with the
degree of Foxf1 gene deletion and was more
severe after deletion of both Foxf1 alleles
(Figures E10D and E10E). SCF/c-KIT
signaling in ECs is critical for cell survival
and proliferation (28, 29). Consistent with
published studies (21), FACS analysis for
annexin V and 7-AAD showed increased
EC death in Pdgfb-CreER Foxf12/2

(Figure 5B) and Foxf11/2 (Figure E12)
lungs. Increased EC death in FOXF1-
deficient mice was associated with
decreased PECAM-1 immunostaining
in alveolar septa (Figure E13). Deletion
of Foxf1 selectively diminished
bromodeoxyuridine incorporation in
c-KIT1 ECs (Figure 5C). Interestingly,
Pdgfb-CreER Foxf12/2 mice developed
alveolar simplification even in the absence
of hyperoxia (Figures 6A and 6B). Hyperoxia
exacerbated the alveolar simplification in
FOXF1-deficient mice (Figures 6A and 6B).
c-KIT–deficient Kitw-sh mice also exhibited
alveolar simplification in the presence or
absence of hyperoxia (Figures 6C and 6D).
PECAM-1 immunostaining and the
percentages of ECs and epithelial cells
identified by FACS were reduced in
lung tissue from Kitw-sh mice (Figures
E14A and E14B). ECs in Kitw-sh lungs
lacked c-KIT (Figures 6E and 6F and
E14A). Thus, deletion of either Foxf1 or
c-Kit reduced the number of EC
progenitors and caused alveolar
simplification in the neonatal lung.

Adoptive Transfer of c-KIT1 EC
Progenitors Protects against Alveolar
Simplification after Neonatal
Hyperoxia
To establish a causal relationship between
the loss of c-KIT1 EC progenitors and
alveolar simplification, we used adoptive
transfer of c-KIT1 ECs to prevent alveolar
simplification after hyperoxia. c-KIT1

ECs were FACS-sorted from donor mice
expressing tdTomato and transferred to
hyperoxia-treated Foxf11/2 recipient
mice (Figure 7A). Adoptive transfer of donor
c-KIT1 ECs decreased alveolar simplification
(Figures 7B and 7C) and increased capillary
density in Foxf11/2 recipient mice, whereas
c-KIT2 ECs had no effect (Figures E15A and
E15B). The protective effects of c-KIT1 ECs
were associated with engraftment of these
cells into the alveolar microvasculature
of Foxf11/2 mice as demonstrated by
colocalization of tdTomato and endomucin
(Figure 7D) and FACS analysis (Figure 7E).
The majority of donor c-KIT1 ECs
maintained c-KIT on the cell surface
(Figure 7E). In contrast, c-KIT2 ECs
were inefficient in engraftment into the
peripheral microvasculature (Figures 7D and
7E). Neither c-KIT1 nor c-KIT2 ECs
integrated into the endothelium of large
pulmonary arteries, veins, or lymphatic
vessels (Figure E16B). There were no
tdTomato1 cells among the epithelial and
stromal cells of Foxf11/2 recipient lungs
(Figure E16A).

We also performed adoptive transfer of
c-KIT1 ECs using a BPD-like mouse model
in which wild-type newborn mice were
exposed to hyperoxia for 3 days (from P1 to
P3). The 3-day hyperoxia exposure was
sufficient to cause alveolar simplification,
but did not cause arterial wall remodeling
or right ventricular hypertrophy (Figures
7F, 7G, and E17A–E17C). Adoptive
transfer of donor c-KIT1 ECs to hyperoxia-
treated wild-type recipient mice decreased
alveolar simplification (Figures 7F and 7G)
and increased the total numbers of lung
epithelial and c-KIT1 ECs identified by
FACS analysis (Figure 7H). Capillary
density in hyperoxia-treated lungs was
increased after adoptive transfer of c-KIT1

ECs as demonstrated by immunostaining
for endomucin (Figures E18A, E18B,
and E19) and lung angiography using
intravenous injection of isolectin B4, which
labels the luminal surface of perfused blood
vessels (Figures E18C and E19). Donor ECs
expressing tdTomato were detected in the
alveolar microvasculature by scanning
confocal microscopy (Figure E20) and
FACS analysis (Figures E21A and E21B).
The percentages of tdTomato-labeled ECs
gradually increased until P18, followed by a
decline from P30 to P60 (Figures E21A and
E21B). Consistent with increased numbers
of donor cells at P18, tdTomato1 ECs
showed greater proliferation than tdTomato2

recipient ECs, as shown by FACS analysis
for DNA content (Figures E21C and
E21D). Taken together, these results show that
c-KIT1 ECs efficiently integrated into
the alveolar microvasculature, increased
neonatal lung angiogenesis, and protected
recipient mice from alveolar simplification
induced by hyperoxia or caused by the
loss of Foxf1.

Discussion

Disruption of pulmonary angiogenesis is a
key mechanism that contributes to the
alveolar simplification associated with BPD
(12–14). In the present study, we
demonstrated that c-KIT1 EC progenitors
engrafted into the neonatal alveolar
microvasculature and inhibited alveolar
simplification caused by hyperoxia or
deletion of Foxf1. Pulmonary EC
progenitors express VEGFR2 (FLK1) and
TIE2. Considering that administration of
either VEGF-A or Angiopoietin-1, a ligand
of TIE2, restored capillary density,
improved alveologenesis, and increased
survival after hyperoxia (12), activation of
the VEGF/FLK1 and Angiopoietin-1/TIE2
signaling pathways may contribute to the
increased angiogenesis and alveologenesis
seen after engraftment of c-KIT1 ECs.
Consistent with these observations, the
gene expression signature in c-KIT1 EC
progenitors wass enriched in genes
associated with cellular proliferation,
angiogenesis, and VEGF signaling. A
c-KIT1 EC gene expression signature was
conserved in mouse and human lungs,
suggesting that cell-surface markers
identified in our studies, such as CD34,
CD36, CD93, CD105, and CD119, can be
used to purify c-KIT1 EC progenitors from
human lung tissue. Because c-KIT1 EC
progenitors were decreased in the lungs
of patients with BPD, increasing c-KIT1

ECs by transplantation of donor or
embryonic stem cell/induced pluripotent
stem cell–derived c-KIT1 ECs may be
considered in the future development of
therapies for BPD. Based on our findings,
c-KIT1 ECs may represent specialized
microvascular EC progenitors, as these cells
engraft into alveolar capillaries but not into
large pulmonary blood or lymphatic vessels.
After adoptive transfer of c-KIT1 ECs, the
number of donor-derived cells increased
within the first weeks of life but did not
persist into adulthood, suggesting that the
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progenitor potential of c-KIT1 ECs may be
limited to postnatal angiogenesis and
alveolarization.

Herein, we demonstrate that c-KIT1

ECs are dependent on FOXF1, a
transcription factor that regulates a network
of genes that are critical for neonatal
pulmonary angiogenesis and alveolarization
(16, 17, 21). Genetic deletion of one Foxf1
allele in mice reduced pulmonary
angiogenesis and increased the mortality of
Foxf11/2 pups in the early postnatal period
(21). Inactivating mutations in FOXF1 cause
ACDMPV, a fatal congenital disorder in
newborns and infants that is characterized
by respiratory insufficiency due to loss of
capillaries in the alveolar septa (17, 18). We
found that c-KIT1 EC progenitors were
decreased in the lungs of Foxf11/2 mice, and
that hyperoxia caused a nearly complete loss
of c-KIT1 ECs but did not alter c-KIT2 ECs
in Foxf11/2 lungs, indicating that c-KIT1

ECs may be more sensitive to hyperoxia.
Loss of c-KIT1 ECs during hyperoxia is
likely to depend on FOXF1 and occur in a
cell-autonomous manner, as endothelial-
specific inactivation of Foxf1 was sufficient

to decrease the number of c-KIT1 ECs,
causing increased apoptosis and impaired
proliferation. Although oxygen therapy is
required to support infants with ACDMPV,
findings in Foxf11/2 mice indicate that
oxygen therapy may selectively reduce
c-KIT1 EC progenitors in patients with
ACDMPV, further inhibiting pulmonary
angiogenesis and exacerbating respiratory
insufficiency after birth. Because c-KIT1

ECs efficiently engraft into the neonatal
alveolar microvasculature and stimulate
angiogenesis, it is possible that cell
transplantation of c-KIT1 ECs could be
beneficial for patients with ACDMPV.
Because c-KIT1 EC progenitors are
hypersensitive to high oxygen
concentrations, prenatal genetic screening
for FOXF1 mutations and the early use of
extracorporeal membrane oxygenation in
patients with ACDMPV might be
considered to avoid the loss of c-KIT1

endothelial progenitors and excessive lung
remodeling before c-KIT1 EC
transplantation for future therapies.

In summary, pulmonary EC
progenitors are dependent on FOXF1 and

c-KIT to promote alveolar septation.
c-KIT1 ECs are highly sensitive to injury
by high oxygen concentrations and
undergo apoptosis during neonatal
hyperoxia. c-KIT1 ECs engraft into
the alveolar microvasculature,
stimulate neonatal lung angiogenesis,
and protect the lung from alveolar
simplification caused by hyperoxia.
These findings support further study
of the use of donor c-KIT1 ECs and
embryonic stem cell/induced
pluripotent stem cell–derived EC
progenitors for therapy of pediatric
disorders associated with decreased
pulmonary angiogenesis and
alveolarization. n
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11. Thébaud B, Abman SH. Bronchopulmonary dysplasia: where have all
the vessels gone? Roles of angiogenic growth factors in chronic lung
disease. Am J Respir Crit Care Med 2007;175:978–985.
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