
predicting CHP progression and survival will be of major interest.
Such findings could also be in the context of extrapulmonary
(e.g., hematological) abnormalities of short-telomere syndrome.
Whether telomeropathy and short telomeres represent the inciting
events of immune deregulation of CHP or simply exacerbate the
disease process remains to be determined.

There is ongoing disagreement about what constitutes HP. In a
previous study, agreement across multidisciplinary teams about an
HP diagnosis was fair (k= 0.24), whereas agreement about IPF
(k= 0.60) or connective tissue disease–associated interstitial lung
disease (k= 0.64) was moderate to good (14).

Large, prospective, collaborative studies in well-defined
patients with CHP are sorely needed to overcome these limitations
and allow firm conclusions to be drawn. n
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Mechanistic Insights into Lethal Lung Developmental Disorders
The Rare Informs the Common

At birth, the lung circulation undergoes a remarkable transition
from a high-resistance vascular bed with low blood flow in utero
to a low-resistance and high-flow state immediately after birth.
This dramatic physiologic response allows the fetus to successfully
navigate from its prenatal dependence on the placenta for gas
exchange to successful postnatal adaptation for air breathing as the
lung assumes its essential role as the organ of gas exchange.
This singular event represents the culmination of a successful
sequence of tightly orchestrated maturational changes that occur

throughout normal lung growth, which ultimately lead to the
development of a mature epithelium–vascular interface that is
essential for normal gas exchange. Precise coordination of lung
growth involving the airways and parenchyma, especially as related
to vascular development, depends on diverse and highly interactive
signaling pathways whose regulation remains incompletely
understood (1, 2).

In some infants, the lung circulation fails to achieve or sustain
the normal decrease in pulmonary vascular resistance, leading to
hypoxemic respiratory failure with pulmonary hypertension, which
is known as persistent pulmonary hypertension of the newborn.
Despite advances in care, however, a subgroup of term or near-term
infants present with persistent pulmonary hypertension of the
newborn physiology that is poorly responsive to these interventions,
and die in the first days of life with evidence of lethal congenital lung
disease (3–6). In this highly fatal subgroup, lung biopsy or autopsy
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findings often reveal a striking disruption of distal lung
development, including signs of decreased alveolar architecture,
reduced vascular density, signature hypertensive remodeling of
arteries and microvasculature, and other features (3–9).

Over the past 5 decades, there has been a growing appreciation
of clinical and pathologic features of lethal lung developmental
disorders (3). These disorders generally include histopathologic
features characteristic of alveolar capillary dysplasia (ACD), acinar
dysplasia, congenital alveolar dysplasia, and other forms of lung
hypoplasia (3–9). Recent advances have led to discoveries of the
genetic basis underlying these disorders, including mutations or
variants of FOXF-1, TBX4, and other genes, which have enabled
clinicians to better discriminate these disorders by identifying factors
beyond clinical and histopathologic features alone (8–10). The most
prominent of these was the discovery of FOXF1 mutations as the
genetic basis for ACD, which rapidly led to an explosion of novel
information regarding enhanced diagnostic approaches for neonates
with severe congenital lung disease (8).

In their most recent paper in this issue of the Journal, Ren and
colleagues (pp. 1164–1176) continue to enhance our understanding
of the role of FOXF-1 function during development and how
disruption of this critical transcription-to-signaling pathway
contributes to aberrant vascular and airspace structure, especially in
neonates with ACD (11–13). FOX proteins constitute a family of
winged-helix transcription factors that act in concert with or
downstream from critical signaling pathways, including through
induction and stimulation of VEGF (vascular endothelial growth
factor) signaling. Genetic deletion of FOXF1 reduces pulmonary
endothelial cell (EC) growth and capillary numbers during
development and increases susceptibility to lung injury in mice (12,
13). Previous studies in other experimental settings have
demonstrated that disruption of angiogenesis, including mechanisms
related to impaired VEGF signaling, impairs airspace development
(14, 15).

Ren and colleagues extend their previous work by studying how
disruption of FOXF-1 function decreases the number of c-KIT1 EC
progenitors and aberrant alveologenesis. c-KIT is expressed in EC
progenitors that differentiate into mature ECs in many tissues.
Using a combination of antibody staining, fluorescence-activated cell
sorting, and single-cell RNA sequencing, the authors demonstrate
the presence of c-KIT1 ECs in the mouse and human neonatal lung,
and that cell abundance declines in the adult. These cells do not
express markers for arteries, veins, or lymphatics, and thus are likely
a subset of the capillary ECs. In comparison with c-KIT2 cells,
c-KIT1 cells show higher Foxf1 expression and their transcriptomic
profile is enhanced with FOXF-1–regulated transcriptional targets.
To demonstrate the functional significance of the FOXF1-cKIT1

population linkage, the authors show that haploinsufficiency and
endothelial-specific deletion of Foxf1 or cKit led to similar
phenotypes of increased EC death, reduced endothelial growth, and
disrupted alveologenesis. Extending their investigation from ACD to
bronchopulmonary dysplasia (BPD), the authors show that c-KIT1

EC progenitors were reduced in a neonatal mouse model of
hyperoxia-induced reduction of alveolar and vascular growth, and
that lung FOXF-1 and c-KIT expression was reduced in the lungs of
infants who died of BPD. Remarkably, the investigators found that
adoptive transfer of c-KIT1 ECs, but not c-KIT2 cells, through
facial vein injection after hyperoxia exposure led to the integration
of donor cells into host vessels and preserved distal lung

architecture. This result offers a landmark demonstration of the
exciting therapeutic potential of c-KIT1 ECs for preventing
BPD, which, like ACD, is characterized by impaired vessel growth
and alveolar simplification.

Overall, these innovative findings remind us that the
pathogenesis of ACD and other rare but lethal congenital lung
disorders in term neonates is highly relevant to more common
multifactorial disorders of impaired lung growth in preterm
infants, such as BPD. BPD has long been recognized as a disease
involving various components of parenchymal, vascular, and
conducting airways, and there is a growing recognition that the
vascular component of BPD exerts a major impact on disease
pathobiology and severity. In addition to exposure to antenatal
stress with ongoing postnatal lung injury, premature birth
disrupts both vascular growth and distal airspace, which are
required for effective gas exchange. In fact, inhibition of
angiogenesis was shown to impair alveolar development in rodent
models (14), and lung VEGF-A and PECAM-1 expression was
decreased in the lungs of infants who died of severe BPD (16).
Findings from this study provide further evidence that
pulmonary vascular growth is a critical driver of lung maturation,
and they suggest that therapeutic interventions to preserve the
survival and function of ECs—in particular, c-KIT1 ECs with
progenitor properties—may effectively stimulate lung vascular
growth, improve alveolarization, and reduce the risk of
pulmonary hypertension in preterm infants. Therefore,
alternative strategies to improve postnatal lung angiogenesis
warrant more extensive investigation.

This outstanding work convincingly demonstrates the theme
that “the rare informs the common.” This is exemplified in the
setting of other rare lung vascular diseases, such as heritable
pulmonary arterial hypertension, in which the discovery of genetic
aberrations related to BMPR2 signaling led to extensive insights into
the pathobiology and potential treatment of idiopathic and more
common forms of pulmonary arterial hypertension. Similarly, the
exciting inroads made by the Ren laboratory not only enhance our
understanding of the genetic underpinnings of lethal lung
developmental disorders but also contribute to a greater
understanding of more common forms of lung hypoplasia, such as
observed in preterm infants with BPD, and provide exciting new
leads for future therapeutic interventions. n
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The 2018 Diagnosis of Idiopathic Pulmonary Fibrosis Guidelines:
Surgical Lung Biopsy for Radiological Pattern of Probable Usual
Interstitial Pneumonia Is Not Mandatory

Clinical practice guidelines advise clinicians on the management
of patients based on evidence and evolving knowledge. Questions that are
important to patients and clinicians are posed by an expert panel, and a full
systematic review of the evidence is performed by methodologists who
have neither financial nor intellectual conflicts of interest. The synthesized
evidence is discussed by content experts whose potential conflicts of
interest are managed, and then recommendations are formulated after
considering the balance of benefits versus harms and burdens, quality of
evidence, patient values and preferences, cost, and feasibility.

In 2018, the American Thoracic Society (ATS), European
Respiratory Society (ERS), Japanese Respiratory Society (JRS), and
Latin American Thoracic Society (ALAT) published a clinical practice
guideline on the diagnosis of idiopathic pulmonary fibrosis (IPF),
updating guidelines from 2011 (1, 2). The new guidelines 1) used
systematic reviews to inform each recommendation in strict
accordance with the Institute of Medicine Standards for Trustworthy
Guidelines (3), 2) eliminated the radiological categories of “possible

UIP pattern” and “inconsistent for UIP pattern” and the pathological
categories of “possible UIP” and “nonclassifiable fibrosis,” and 3)
refined the radiological and pathological patterns of “UIP” and
defined “probable UIP” and “indeterminate for UIP.” The overriding
goal of the guidelines was to help clinicians diagnose IPF more
accurately, thereby facilitating appropriate treatment, as described in
the 2015 guidelines for the treatment of IPF (4).

The radiological patterns of usual interstitial pneumonia (UIP)
described in the ATS/ERS/JRS/ALAT guidelines are like those
described in a statement from the Fleischner Society (5); however, the
two documents make seemingly different recommendations about
whether to perform surgical lung biopsy (SLB) in patients with the
radiological probable UIP pattern by high-resolution computed
tomography (HRCT) (6). Specifically, the ATS/ERS/JRS/ALAT
guidelines make a conditional recommendation for SLB after
multidisciplinary discussions (MDDs), whereas the Fleischner Society
statement indicates that a confident diagnosis of IPF can be made
without SLB in the right clinical context. This reflects differences in
methodology and terminology rather than any substantive difference
in principles and recommended practices.

It is apparent that the recommendations in the ATS/ERS/JRS/ALAT
guidelines are subject to misinterpretation as a mandate for SLB in
patients with probable UIP. Avoiding this misinterpretation is precisely
why theATS/ERS/JRS/ALAT recommendationwas assigned a strength
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