Table 4.
Dataset | Method a | Ac (%) | Sn (%) | Sp (%) | MCC |
---|---|---|---|---|---|
T544p+407n | k-NN | 78.79 | 88.24 | 66.13 | 0.56 |
rpart | 74.09 | 81.03 | 64.82 | 0.47 | |
glm | 70.15 | 82.87 | 53.27 | 0.38 | |
RF | 84.22 | 85.70 | 82.34 | 0.68 | |
XGBoost | 84.33 | 86.69 | 80.97 | 0.68 | |
SVM | 79.53 | 83.81 | 73.86 | 0.58 | |
Meta-predictor | 88.17 | 89.23 | 86.94 | 0.76 | |
T544p+544n | k-NN | 84.15 | 82.53 | 86.07 | 0.68 |
rpart | 80.63 | 82.37 | 79.73 | 0.62 | |
glm | 77.11 | 77.78 | 76.78 | 0.54 | |
RF | 89.44 | 84.18 | 94.68 | 0.79 | |
XGBoost | 89.16 | 87.48 | 90.90 | 0.78 | |
SVM | 88.79 | 87.13 | 90.71 | 0.78 | |
Meta-predictor | 92.31 | 88.44 | 96.16 | 0.85 | |
V60p+45n | k-NN | 80.77 | 95.00 | 61.36 | 0.61 |
rpart | 75.96 | 86.67 | 61.36 | 0.50 | |
glm | 68.27 | 86.67 | 43.18 | 0.34 | |
RF | 86.54 | 86.67 | 86.36 | 0.73 | |
XGBoost | 83.65 | 85.00 | 81.82 | 0.67 | |
SVM | 86.54 | 93.33 | 77.27 | 0.72 | |
Meta-predictor | 95.19 | 96.67 | 93.18 | 0.90 | |
V60p+60n | k-NN | 89.83 | 85.00 | 94.83 | 0.80 |
rpart | 83.05 | 88.33 | 77.59 | 0.66 | |
glm | 73.73 | 78.33 | 68.97 | 0.48 | |
RF | 91.53 | 90.00 | 93.10 | 0.83 | |
XGBoost | 90.68 | 90.00 | 91.38 | 0.81 | |
SVM | 89.83 | 88.33 | 91.38 | 0.80 | |
Meta-predictor | 94.92 | 93.33 | 96.55 | 0.90 |
ak-NN: k-nearest neighbor, rpart: ecursive partitioning and regression trees, glm: Generalized linear model, RF: Random forest, XGBoost: Extreme gradient boosting, and SVM: Support vector machine.