Skip to main content
. 2019 Nov 15;20(22):5743. doi: 10.3390/ijms20225743

Table 4.

Performance comparisons between Meta-iAVP and the six machine learning algorithms as assessed by the five-repeated five-fold cross-validation and independent validation tests.

Dataset Method a Ac (%) Sn (%) Sp (%) MCC
T544p+407n k-NN 78.79 88.24 66.13 0.56
rpart 74.09 81.03 64.82 0.47
glm 70.15 82.87 53.27 0.38
RF 84.22 85.70 82.34 0.68
XGBoost 84.33 86.69 80.97 0.68
SVM 79.53 83.81 73.86 0.58
Meta-predictor 88.17 89.23 86.94 0.76
T544p+544n k-NN 84.15 82.53 86.07 0.68
rpart 80.63 82.37 79.73 0.62
glm 77.11 77.78 76.78 0.54
RF 89.44 84.18 94.68 0.79
XGBoost 89.16 87.48 90.90 0.78
SVM 88.79 87.13 90.71 0.78
Meta-predictor 92.31 88.44 96.16 0.85
V60p+45n k-NN 80.77 95.00 61.36 0.61
rpart 75.96 86.67 61.36 0.50
glm 68.27 86.67 43.18 0.34
RF 86.54 86.67 86.36 0.73
XGBoost 83.65 85.00 81.82 0.67
SVM 86.54 93.33 77.27 0.72
Meta-predictor 95.19 96.67 93.18 0.90
V60p+60n k-NN 89.83 85.00 94.83 0.80
rpart 83.05 88.33 77.59 0.66
glm 73.73 78.33 68.97 0.48
RF 91.53 90.00 93.10 0.83
XGBoost 90.68 90.00 91.38 0.81
SVM 89.83 88.33 91.38 0.80
Meta-predictor 94.92 93.33 96.55 0.90

ak-NN: k-nearest neighbor, rpart: ecursive partitioning and regression trees, glm: Generalized linear model, RF: Random forest, XGBoost: Extreme gradient boosting, and SVM: Support vector machine.