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Abstract Risks of pathogenic bacteria to the health of both

human beings and water ecosystems have been widely

acknowledged. However, traditional risk assessment

methods based on fecal indicator bacteria and/or pure

culture are not comprehensive at the community level,

mainly owing to the limited taxonomic coverage. Here, we

combined the technique of high-throughput sequencing and

the concept of metacommunity to assess the potential

pathogenic bacterial communities in an economically and

ecologically crucial but highly polluted river—the North

Canal River (NCR) in Haihe River Basin located in North

China. NCR presented a significant environmental gradient,

with the highest, moderate, and lowest levels of pollution in

the up-, middle, and downstream. After multiple analyses,

we successfully identified 48 genera, covering nine

categories of potential pathogens (mainly human

pathogens). The most abundant genus was Acinetobacter,

which was rarely identified as a pathogen bacterium in

previous studies of NCR. At the community level, we

observed significant geographical variation of community

composition and structure. Such a high level of geographical

variation was mainly derived from differed abundance of

species among sections along the river, especially the top

seven Operational Taxonomic Units (OTUs). For example,

relative abundance of OTU1 (Gammaproteobacteria/

Acinetobacter) increased significantly from upstream

towards downstream. Regarding the underlying

mechanisms driving community geographical variation,

environmental filtering was identified as the dominant

ecological process and total nitrogen as the most influential

environmental variable. Altogether, this study provided a

comprehensive profile of potential pathogenic bacteria in

NCR and revealed the underlying mechanisms of

community succession. Owing to their high abundance and

wide geographical distribution, we suggest that potential

pathogens identified in this study should be incorporated into

future monitoring and management programs in NCR. By

revealing the correlation between environmental factors and

community composition, the results obtained in this study

have significant implications for early warning and risk

assessment of potential pathogen bacteria, as well as

management practices in highly polluted river ecosystems.
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INTRODUCTION

Pathogen pollution has caught significant public attentions

due to its widespread distributions, frequent occurrences,

and severe risks in the health of both ecosystems and

human beings (Wilkes et al. 2013; Pandey et al. 2014). For

example, previous studies have reported frequent outbreaks

of water-borne diseases (i.e., cholera, typhoid fever, and

bacillary dysentery) caused by bacteria, viruses, and pro-

tozoa (Cabral 2010; Wilkes et al. 2013; Pandey et al.

2014). Thus, microbial pathogens in aquatic ecosystems

could directly jeopardize the health of human beings and

other wildlife, especially those with direct contact and

frequent exposure (Yang et al. 2012). In addition, risks of

microbial pathogens could also be functional through

indirect pathways. For example, the explosion of harmful

bacteria or viruses could lead to deterioration or toxicity of

water quality (Cabral 2010; James and Joyce 2004). With
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the aggravation of water pollution and associated emer-

gence of abundant aquatic microbes, the potential risk of

pathogenic bacteria or viruses can be high. Therefore, great

efforts should be made to monitor and manage potential

pathogenic microbes in river ecosystems, particularly those

with a high level of pollution in developing countries

(Dudgeon et al. 2006; Abraham 2010).

Currently, there are two principal ways to monitor

potential pathogenic bacteria in aquatic ecosystems. The

first and also the most commonly used method is to use

fecal indicator bacteria (FIB) on behalf of pathogenic

bacteria, coupled by quantitative microbial risk assessment

(QMRA) (Edberg et al. 2000; Cabral 2010; Wilkes et al.

2013). The underlying hypothesis is that the abundance of

pathogenic bacteria scales to the concentration or abun-

dance of FIB. Hitherto, Escherichia coli is considered as

the best and the most widely used biological indicator of

drinking water for public health protection (Edberg et al.

2000; Chen et al. 2019). For example, in China, fecal

coliform bacteria are listed as an indicator to assess surface

water quality (Chinese national standard GB3838-2002),

and six bacteria (e.g., Escherichia coli, fecal coliform

bacteria) are listed as indicators to assess drinking water

quality (Chinese national standard GB5749-2006). Unfor-

tunately, many studies revealed the lack of correlation

between host-specific markers and pathogens, as reviewed

by Field and Samadpour (2007) and Santo Domingo et al.

(2007). Therefore, relying exclusively on this method

might cloud the understanding of true risks, leading to

unreasonable judgments and untimely regulations. The

second commonly used method is to directly assess the

risks of pathogens using pure cultures or PCR-based

methods (Vital et al. 2010; Ibekwe et al. 2013). This

approach has proved to be useful in guiding early warning

systems via detecting various pathogens, such as Listeria,

Vibrio, Salmonella, and many others (Maugeri et al. 2004;

Vital et al. 2010). However, previous studies mainly focus

on traditional pathogens and could only identify a limited

number of known taxonomic groups (Abraham 2010;

Wilkes et al. 2011). The aggravation of water pollution

might broaden the spectrum of potential pathogens, espe-

cially newly emerging or uncultivable ones. Traditional

methods concentrating on one or several known categories

might fail to picture the full profile of potential pathogenic

bacteria communities. Thus, it is urgently needed to com-

prehensively understand geographical distribution and risks

of pathogenic bacteria communities in river ecosystems

using the state-of-the-art techniques and conceptual

frameworks.

The proposal and application of metacommunity has

recently spurred the exploration of community ecology,

which also can provide insightful perspectives for research

of pathogen bacteria. By integrating a set of local

communities that are connected by potential dispersal of

interacting species, metacommunity links up local com-

munities to regional communities (Leibold et al. 2004).

The application of metacommunity framework has revo-

lutionized current research of temporal–spatial dynamics of

aquatic communities and associated mechanisms (Heino

et al. 2015; Soininen et al. 2018; Yang et al. 2019a, b). In

addition, pioneering studies have confirmed that environ-

mental filtering is the dominant ecological process in

driving geographical distribution patterns of aquatic com-

munities (i.e., ‘fine-scale species sorting hypothesis’ pro-

posed by Xiong et al. (2017)). For this hypothesis, local

communities are selected by environmental gradients, and

species only occur at environmentally suitable habitats

given that dispersal is sufficient (Leibold et al. 2004;

Heino et al. 2015; Xiong et al. 2017; Tolonen et al. 2018;

Yang et al. 2018). Environmental gradients along rivers

mainly resulted from differences of local environmental

factors, which were due to varied anthropogenic impacts

along rivers (Dudgeon et al. 2006; Xiong et al.

2016, 2017; Peng et al. 2018; Yang et al. 2018). Conse-

quently, the identification of local environmental factors

responsible for geographical distribution of biodiversity

could benefit early warning systems by predicting poten-

tial spread routes and explosion ranges of pathogens.

Identification of influential factors is also crucial in

guiding control strategies and management practices.

Regarding potential pathogenic bacteria, they are by

themselves an effective unit of a community. Therefore,

the application of metacommunity concept would benefit

the understanding of geographical distribution of patho-

genic bacteria communities, reveal crucial influential

environmental factors for observed distribution patterns,

and improve the effectiveness of early warning and

management programs. These knowledge and programs

are particularly important for rivers that support cities

with large populations and various industries.

North Canal River (NCR), located in Haihe River Basin

in North China, runs through two megacities—Beijing

(population in 2017: 21.7 million) and Tianjin (population

in 2017: 15.56 million). In the past half century, the Bei-

jing–Tianjin region shows the highest growth rates in both

economy and population in China (Pernet-Coudrier et al.

2012). Due to high population density and severe anthro-

pogenic disturbance, NCR suffers from serious pollution

and deserves particular attentions, just similar to many

other urban rivers globally (Abraham 2010). Dozens of

wastewater treatment plants (WWTPs) are scattered along

the river, and effluent from WWTPs is the major water

resource of NCR, especially in the arid season (Heeb et al.

2012; Pernet-Coudrier et al. 2012). As a typical wastewa-

ter-receiving river, NCR inevitably faces the spread of

microbiological pollution and risk of pathogenic bacteria.
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For example, previous studies have reported the occurrence

of fecal bacteria and pathogenic bacteria in NCR (Yang

et al. 2012; Chen et al. 2017; Wang et al. 2017). However,

these research mainly focused on one section of NCR

(especially the upstream and downstream), while ignored

the connectivity of the whole river (Chen et al. 2017; Wang

et al. 2017). Due to the continuous flow, a comprehensive

survey from the perspective of a whole river is crucial for

future monitoring and management (Vannote et al. 1980).

In addition, those studies only focused on traditionally

known microbial groups (Yang et al. 2012; Chen et al.

2017; Wang et al. 2017). Therefore, to develop future

monitoring and management strategies, it is urgently nec-

essary to perform a comprehensive survey at the commu-

nity level of the whole river, as well as to investigate the

underlying mechanisms driving the geographical distribu-

tion patterns of pathogenic bacteria.

Despite the acknowledgement of risks of aquatic

pathogens and socio-economic values of rivers, there is a

lack of comprehensive research related to pathogen risks in

NCR. Thus, this study aims to (i) characterize the com-

position and structure of potential pathogen communities;

(ii) investigate the dominant processes and factors leading

to the geographical distribution patterns of potential

pathogens; and (iii) extract promising perspectives for

future monitoring and management practices based on

patterns obtained from this study.

MATERIALS AND METHODS

Sample collection and measurement

of physicochemical parameters

Based on our previous surveys (Yang et al. 2019a), NCR

showed a significant pollution gradient, with the highest

level of pollution in the upstream and the lowest level of

pollution in the downstream. Accordingly, the whole river

was divided into Sections I to III, corresponding to up-,

middle, and downstream, respectively (Fig. 1). In total, 39

sites were sampled, with 18, 12, and 9 sites from Sections I

to III, respectively. Water samples (0.5 L) were filtered

through 0.22 lm mixed cellulose ester membranes (Milli-

pore, Bedford, MA) to collect microbial cells. After sam-

pling, membranes were stored at - 80 �C until further

analyses. We recorded the geographical locations of each

sampling site using Garmin Handheld GPS (Garmin Ltd.,

Kansas, USA) navigator.

In the field, we measured the water temperature (T),

electric conductivity (EC), pH, oxidation–reduction

potential (ORP), total dissolved solid (TDS), dissolved

oxygen (DO), and concentration of chlorophyll a (Chl_a).

In the laboratory, we measured the concentration of total

nitrogen (TN), nitrate (NO3-N), ammonia (NH4-N), total

phosphorous (TP), soluble reactive phosphorous (SRP),

chemical oxygen demand (COD), and total organic carbon

(TOC). We also measured the concentration of common

metals and heavy metals, including potassium (K), calcium

(Ca), sodium (Na), magnesium (Mg), chromium (Cr), iron

(Fe), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn),

arsenic (As), and lead (Pb). The measurement of these

parameters followed the methods described by Xiong et al.

(2016) and Yang et al. (2019b).

DNA extraction, PCR amplification, and high-

throughput sequencing

Total genomic DNA of each sample was extracted from the

membranes using a modified CTAB protocol (Yang et al.

2016). The primer pair of 515F/806R was used to amplify

the hypervariable V4 region of 16S rRNA (Caporaso et al.

2011). To distinguish each sample, a twelve-nucleotide tag

was added to the 50-end of each primer pair. Three repli-

cates were performed for each sample to recover species in

the whole community (Zhan et al. 2014; Yang et al. 2016).

Three replicates of each sample were then pooled together

and purified using the Sangon column PCR product

purification kit (Sangon Biotech, Shanghai, China). Finally,

sequencing was performed using the Illumina Miseq PE250

platform.

Bioinformatics analysis and functional annotations

Raw data was de-multiplexed according to unique tags.

Paired-end reads were then merged before trimming pri-

mers. We discarded low-quality sequences (i) containing

‘N’ (undetermined nucleotide); (ii) with quality score less

than 20; (iii) with length shorter than 200 bp (Yang et al.

2016). The remained sequences were clustered into oper-

ational taxonomic units (OTUs) with the threshold of 97%

similarity using UPARSE pipeline (Edgar 2013). Taxo-

nomic information of representative sequences was deter-

mined by searching against the SILVA_128 database using

the Ribosomal Database Project (RDP) classifier (Wang

et al. 2007). OTU table was normalized by rarefying down

to the smallest number of total sequences for each sample.

The number of sequences assigned to each OTU was taken

as a proxy for the abundance of OTUs for subsequent

analyses (Zhan et al. 2014).

FAPROTAX (Functional Annotation of Prokaryotic

Taxa) was used to investigate the potential functions of

bacterial communities (Louca et al. 2016). This software

functions with inputs of OTU table and classifier infor-

mation of each OTU. Based on previous records of the

lowest taxon, each OTU was categorized into a specific

functional group. A total of 69 functional groups were
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identified (Yang et al. 2019a), and we further extracted

OTUs belonging to at least one pathogenic group to create

community of potential pathogenic bacteria. This new

OTU table (a sub-table of the original one) was used for

downstream analyses. As FAPROTAX relies on records of

cultivable species (Louca et al. 2016), this research pro-

vided relatively conservative results. FAPROTAX used in

this study was embedded in the in-house pipeline Galaxy

(http://mem.rcees.ac.cn:8080/root).

Ecological and statistical analyses

Environmental variables (except pH) were first log10

(x ? 1) transformed to improve normality. The clustering

result of environmental variables was illustrated using

principal component analysis (PCA). The significance of

dissimilarity of environmental variables among three sec-

tions was tested using multi-response permutation proce-

dure (MRPP), analysis of similarity (ANOSIM), and

analysis of distance matrices (ADONIS). All these analyses

were performed using R ‘vegan’ package (Oksanen et al.

2013).

In order to investigate the influence of dispersal limi-

tation on community distribution patterns, a spatial eigen-

vector matrix was built to represent dispersal limitation.

This matrix was created using the Principal Coordinates of

Neighbor Matrices (PCNM) analysis (Borcard and

Legendre 2002; Legendre 2008). Through eigenvector

Fig. 1 Study area and sampling sites in North Canal River (NCR) revised from Yang et al. (2019a). The small map in the left bottom showed the

Haihe River Basin of China, where NCR is located
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decomposition, PCNM created a truncated matrix of geo-

graphic distance with longitude and latitude data. Spatial

explanatory variables were then selected when they cor-

responded to positive eigenvectors and showed positive

spatial correlation. PCNM analysis was performed using

the ‘pcnm’ function in R (R core Team 2015).

The clustering of potential pathogen communities was

illustrated using non-metric multidimensional scaling

(NMDS). The significance of dissimilarity of community

composition among three sections was tested using MRPP,

ANOSIM, and ADONIS. To investigate the influences of

environmental and spatial variables, Mantel test was per-

formed to select variables which were significantly correlated

with community composition. Forward selection was further

performed to select relatively more important ones from these

selected variables (Blanchet et al. 2008). Two parsimonious

redundancy models (RDA) were then constructed for envi-

ronmental and spatial variables. All these analyses were per-

formed in R ‘vegan’ package (Oksanen et al. 2013).

Finally, in order to dissect the relative importance of

environmental filtering and dispersal limitation in affecting

the geographical distribution patterns of pathogenic bac-

terial communities, we performed the variation partitioning

analysis (VPA) (Borcard et al. 1992). VPA decomposed the

total variation of community dynamics into four compo-

nents, the fraction explained purely by environmental

variables (Env.), the fraction explained purely by spatial

variables (Spa.), the fraction shared by two types of vari-

ables (Env. & Spa.), and the unexplained variation (the

residual). The total explained variation was calculated by

the combination of forward selected environmental and

spatial variables, and the fractions purely explained by

each type was calculated with partial redundancy analysis

(pRDA). In the analysis, Monte Carlo permutation test was

conducted to produce the significance value. VPA was

conducted using the R ‘varpart’ function (R core Team

2015).

RESULTS

An environmental gradient along North Canal River

Based on our previous research, a significant environ-

mental gradient was identified along the NCR, especially

the nitrogen gradient (Yang et al. 2018, 2019a). The pol-

lution level was highest in the upstream (Section I), mod-

erate in the middle stream (Section II), and lowest in the

downstream (Section III). The concentration of nutrients

(e.g., TN, TP, and NH4-N) decreased from Section I

towards Section III. For example, the concentration of TN

was significantly higher in Section I (average: 80.642 mg/

L) than those in Section II (average: 29.389 mg/L) and

Section III (average: 3.621 mg/L). Detailed information of

environmental variables was displayed with a heatmap

(Supplementary Fig. S1).

Basic composition of the potential pathogen

communities

According to our previous research of the whole bacteri-

oplankton of North Canal River, a total of 69 functional

groups were identified after consulting FAPROTAX

annotations (Yang et al. 2019a). In order to assess the risks

of potential pathogen to both human beings and aquatic

wildlife (e.g., aquatic animals and plants), we focused on

groups that were relevant to pathogens or parasites in this

study. In total, nine (potential) pathogenic groups were

identified, including intracellular parasites (IntCelP), ani-

mal parasites or symbionts (AniP), human pathogens (all,

HPall), human pathogens (pneumonia, HPpneu), human

pathogens (nosocomial, HPnos), human pathogens (gas-

troenteritis, HPgast), plant pathogens (PlaP), invertebrate

parasites (InvertP), and fish parasites (FishP). In total, 407

records were obtained, and most of these records were

assigned as IntCelP (159), AniP (123), and HPall (98). As

one single OTU could be assigned to more than one

functional group using FAPROTAX, we manually matched

the functional OTU table with original OTU table and

assigned those records into 200 OTUs.

Here, we separated those 200 OTUs from the original

OTU table for downstream analyses. Comparing to the

original dataset of whole bacterioplankton, the selected

OTUs harbored 23.28% sequences (original data:

1 349 123 sequences, 4 567 OTUs; Yang et al. 2019a).

Based on our previous results, the DNA extracts were of

high quality and sequencing depth was sufficient to capture

most biodiversity (Yang et al. 2019a). The high coverage

of the 200 OTUs was mainly contributed by dominant

OTUs in the original communities, where such dominant

OTUs, including OTU1, OTU2, and OTU5, were potential

pathogenic bacteria. Furthermore, seven OTUs occurred at

all sampling sites, forming the core microbiome of poten-

tial pathogenic community. The seven OTUs were OTU1

(Gammaproteobacteria/Acinetobacter), OTU2 (Betapro-

teobacteria/Polynucleobacter), OTU5 (Gammaproteobac-

teria/Acinetobacter), OTU6185 (Gammaproteobacteria/

Acinetobacter), OTU11 (Betaproteobacteria/GKS98 fresh-

water group), OTU20 (Gammaproteobacteria/Acinetobac-

ter), and OTU6817 (Gammaproteobacteria/Acinetobacter).

These seven OTUs contributed to 93.68% abundance of the

potential pathogen communities, but they showed dis-

crepant variation in abundance along the river (Fig. 2). For

example, the relative abundance of OTU1 increased sig-

nificantly from Section I to Section III (p\ 0.05), while

the others fluctuated in three sections.
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By summarizing the taxonomic information of OTUs at

the genus level, we found that the potential pathogen

communities were composed of 48 genera. The dominant

genera were Acinetobacter, Polynucleobacter, and GKS98

freshwater group. When linking the genus-level OTU

composition with functional groups, we found that HPp-

neu, HPnos, HPall, and AniP were largely contributed by

Acinetobacter, Polynucleobacter, and GKS98 freshwater

group (Fig. 3). IntCelP, PlaP, InvertP, and HPgast were

largely contributed by Legionella, Pseudomonas, Rick-

ettsiella, and Arcobacter, respectively (Fig. 3).

Beta diversity and correlation with explanatory

variables

The plot of NMDS showed that intra-section variation

among samples was smaller than inter-section variation

(Fig. 4). Further statistical tests indicated that the com-

munity composition of Section I was significantly different

from that of Section II (p = 0.001) and Section III

(p\ 0.01). No significance was detected between Sec-

tions II and III (p[ 0.05). Through diverse statistical

analyses, four environmental variables (TN, Cond, pH, and

TP) and three spatial variables (V2, V5, and V9) were

selected as the crucial variables to affect diversification of

community composition (Fig. 5; Supplementary Table S1).

All the four environmental variables explained 48.5%

variation of community composition, with TN alone con-

tributing to 34.7%. All the three spatial variables explained

25.1% variation of community composition, with V2 alone

contributing to 16.8%.

Dissecting the influences of environmental filtering

and dispersal limitation

As both environmental filtering and dispersal limitation

were crucial, we employed variation partitioning analysis

(VPA) to dissect the relative importance of each process.

Our results revealed that a large fraction (62%) of total

variation was explained by these two processes. The frac-

tion explained purely by environmental variables (36.9%;

p\ 0.001) was larger than that by spatial variables

(13.5%; p\ 0.01).

DISCUSSION

Combing the technique of high-throughput sequencing and

the framework of metacommunity, we analyzed the com-

position and structure of potential pathogenic bacterial

communities in a typical wastewater-receiving river—the

North Canal River (NCR) in China. Our study identified a

broader spectrum of pathogen bacteria than previous

studies based on traditional methods, especially the

prevalent distribution of Acinetobacter. Similar to other

aquatic organisms, pathogenic bacteria communities pre-

sented apparent spatial distribution patterns (Fig. 4). More

importantly, environmental filtering was identified to be the

dominant process to drive community variation, although

dispersal also affected the community structure to some

extent. Overall, the results obtained in this study highlight

the necessity and strength to comprehensively investigate

potential pathogenic bacteria from the metacommunity

perspective, and to further determine the environmental

drivers for their geographical distributions.

There used to be a long-term debate over whether

microbes were distributed randomly or not (as reviewed by

Martiny et al. 2006). Recent comprehensive investigations

have reached an agreement that microbes, similar to plants

and animals, exhibit specific temporal–spatial distribution

patters (Martiny et al. 2006; Zeglin 2015). For instance, our

previous study revealed significant dissimilarity of bacteri-

oplankton communities in different sections of NCR, cor-

responding to the significant environmental gradient (Yang

Fig. 2 The relative abundance of top seven OTUs in the communities of potential pathogenic bacteria. Sections I–III corresponded to the up-,

middle, and downstream of NCR

123
� Royal Swedish Academy of Sciences 2019

www.kva.se/en

202 Ambio 2020, 49:197–207

https://doi.org/10.1007/s13280-019-01184-z


et al. 2019a). Similarly, we observed significant geographi-

cal variation of potential pathogenic bacterial communities

along NCR (Fig. 4). Such significant variation in community

was largely attributed to the occurrence frequency of dom-

inant OTUs, such as OTU1 (Gammaproteobacteria/Acine-

tobacter), OTU2 (Betaproteobacteria/Polynucleobacter),

Fig. 3 Association of bacterial genera with potential pathogenic groups predicted by FAPROTAX. Blue indicates higher abundance, while black

indicates lower abundance

Fig. 4 Non-metric multidimensional scaling (NMDS) of OTU-level

community composition based on Bray-Curtis distance

Fig. 5 The ordination plot of redundancy analysis (RDA) of com-

munity composition at all sites. OTUs that were weakly associated

with the first two axes (with fitness\50%) were omitted for clarity.

The larger and smaller sites corresponded to higher and lower

concentration of total nitrogen, respectively. Red arrows represent

environmental and spatial variables, while black lines represent OTUs
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and OTU5 (Gammaproteobacteria/Acinetobacter), rather

than the presence–absence of species (Fig. 2).

Using high-throughput sequencing, we provided broad

context of potential pathogen risk in NCR, and a total of 48

genera were successfully recovered from the communities.

Indeed, this spectrum of pathogen bacteria was broader than

most of previous studies based on traditional methods

(Pianetti et al. 1998; Wilkes et al. 2013) or Sanger

sequencing technique (Jiang and Chu 2004; Ibekwe et al.

2013). Therefore, risks of pathogenic bacteria in river

ecosystems can be largely underestimated, even in this study

where we used FAPROTAX which relies only on records of

cultivable species (Louca et al. 2016). Regarding the com-

munity composition of NCR, the most dominant genus was

Acinetobacter, belonging to Gammaproteobacteria/Mo-

raxellaceae. Being typical opportunistic pathogens, Acine-

tobacter spp. are normally harmless to healthy individuals,

but could be implicated in nosocomial infections in delib-

erated individuals and patients with impaired immune sys-

tem (Rathinavelu et al. 2003). Consequently, pathogenic

Acinetobacter has been identified as a cause of diverse

diseases such as chronic gastritis, septicemia, pneumonia,

meningitis, urinary tract infections, and skin and wound

infections (Regalado et al. 2009). With the explosion of

various epidemics and their resistance to multi-antibiotics,

Acinetobacter has become a widespread concern in a variety

of hospitals worldwide (Almasaudi 2018). Outside of hos-

pitals, recent studies have identified environmental reser-

voirs of Acinetobacter, such as surface waters, polluted

waters, and wastewater treatment plants (Al Atrouni et al.

2016; Yang et al. 2017; Jin et al. 2018), suggesting the

increasing risk to public health. Besides, the multi-antibiotic

resistance of Acinetobacter could be triggered and enhanced

by the large abundance of antibiotics found in polluted

rivers, especially in China, the biggest producer and con-

sumer of antibiotics (Zhu et al. 2013). Despite this signifi-

cance, previous studies based on traditional methods paid

little attention to Acinetobacter (Yang et al. 2012; Chen

et al. 2017; Wang et al. 2017). Our research suggests that the

community level survey based on high-throughput

sequencing could provide more comprehensive information

on risk assessment of potential pathogens.

We also detected common dominant genera with

many other studies (Maugeri et al. 2004; Vital et al.

2010; Ibekwe et al. 2013; Pandey et al. 2014), including

Polynucleobacter, Pseudomonas, Arcobacter, Legionella,

and Rickettsiella. These genera could infect not only

human beings, but also plants, fishes, invertebrates, and

other animals (Fig. 3). Therefore, integrating these taxa

into monitoring and warning programs is necessary to

improve our understanding of pathogen risks to human

beings and water ecosystems, as well as associated fauna

and flora. In our previous analysis of the whole

microbial community, we also tracked fecal indicator

bacteria such as E. coli with low abundance (detailed

information could be found in Yang et al. 2019a). This

finding was different from results of quantitative micro-

bial risk assessment of NCR (Chen et al. 2017; Wang

et al. 2017). Interestingly, the abundance of E. coli

decreased from upstream towards downstream, contrast-

ing to the increase of Acinetobacter. These results were

consistent with previous studies and supported the

decoupling of indicator bacteria and pathogenic bacteria

(Field and Samadpour 2007; Santo Domingo et al. 2007).

Considering the economic and ecological significance of

NCR, we suggest to improve traditional monitoring

strategies to enhance more comprehensive monitoring

and warning programs.

In metacommunity ecology, it remains a great challenge

to disentangle the dominant ecological processes and cor-

responding dominant variables within each process, which

drives the specific spatial–temporal patterns of communi-

ties (Downes 2010; Göthe et al. 2013). For pathogen bac-

terial communities in this study, we found environmental

filtering overwhelmed dispersal limitation to be the domi-

nant ecological process, with total nitrogen (TN) as the

most important environmental factor (Fig. 5). These find-

ings reflected the underlying interactions between pathogen

bacteria and environmental conditions, especially local

environmental factors which shaped specific microenvi-

ronment. For example, poor sanitation, insufficient treat-

ment of wastewater, and catastrophic floods could

introduce pathogenic bacteria into rivers, especially in

highly populated megacities (Abraham 2010). Further-

more, riverine pathogen bacteria were facing the pressure

of environmental selection. For instance, our study identi-

fied the significant influence of TN on pathogen bacterial

communities, which was similar to previous analyses of

whole bacterioplankton communities in NCR (Yang et al.

2019a). This was mainly due to the 100-fold ? variation of

TN along NCR. Combined with other factors, the suffi-

ciently long gradient of TN impacted the survival, repro-

duction, and distribution of pathogen bacteria. As reported,

the relatively high concentration of TN might function as

an efficient antiseptic reagent, killing those pathogens

(Yang et al. 2019a). On the other hand, the distribution

variation of different pathogens was also related to their

inherent tolerance and adaptive capability (Li et al. 2017;

Yang et al. 2019a). For instance, the increasing abundance

of OTU1 (Gammaproteobacteria/Acinetobacter) from the

highly polluted upstream towards the lightly polluted

downstream might result from its adaptive potentials.

According to previous studies, Acinetobacter could endure,

even favor less-nutrient habitats, with the ability to survive

desiccation for a long period and a wide range of temper-

ature (Rathinavelu et al. 2003).
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Finally, the results obtained here have significant

implications for early warning and risk assessment of

pathogen bacteria, as well as restoration practices in river

ecosystems. On one hand, the identification of influential

factors is crucial for pollution control and management. For

example, the enrichment of nutrient (e.g., N and P) has

been widely identified in polluted rivers (Ibekwe et al.

2013; Xiong et al. 2017; Yang et al. 2019a). The enrich-

ment was mainly derived from wastewater discharge or

surface flow which could introduce exogenous pathogen

into rivers (Abraham 2010; Chen et al. 2017). Therefore,

cutting down the exogenous inputs represents a direct and

efficient approach to reduce the risks of pathogen. On the

other hand, the significant correlation between environ-

mental factors and pathogen bacteria indicates that it is

possible to predict the potential spread routes and explo-

sion ranges of pathogens by monitoring environmental

variation (Martiny et al. 2006; Li et al. 2017). Accordingly,

efficient warning signatures could be obtained to guide

timely disturbance, preventing potential impacts of patho-

gen explosion. As it is difficult to accurately classify short

reads to the species level, our research could possibly lead

to somewhat overestimation of the spectrum of potential

pathogens. Future studies are needed to incorporate high-

resolution primers, especially for pathogenic bacteria.

Considering the worldwide increase of water pollution and

microbe pollution (Dudgeon et al. 2006; Abraham 2010),

especially the severe environmental situation of China, we

suggest that more attention should be paid to the potential

health risks from severely polluted rivers.

CONCLUSIONS

By incorporating the metacommunity concept, this study

provided a relatively full profile of potential pathogen

bacteria in North Canal River (NCR), a highly disturbed

and polluted rive running through two megacities (Beijing

and Tianjin). The total number of 48 potential pathogen

genera in nine categories was larger than that found by

most of previous studies, suggesting the severe health risks

of NCR to human beings, as well as aquatic flora and

fauna. Reducing direct exposure to polluted water was

crucial to self-protection, especially for persons with

impaired immune systems. The identification of significant

correlation between environmental variables and potential

pathogen communities was crucial to future warning,

monitoring, and management of highly polluted rivers. For

example, the identification of specific environmental fac-

tors provided useful information to cut off exogenous

inputs of potential pathogen. By monitoring the variation of

those factors, it is possible to predict potential spread

routes and explosion ranges of pathogens to prevent health

risk. Altogether, the integration of high-throughput

sequencing technique and metacommunity concept could

enhance understanding of dynamics and risks of potential

pathogen bacteria. This approach could be expanded to

other polluted water systems to improve future monitoring

and management strategies.
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