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Abstract

Background: Disparities research in dementia is limited by lack of large, diverse, and 

representative samples with systematic dementia ascertainment. Algorithmic diagnosis of 

dementia offers a cost-effective alternate approach. Prior work in the nationally-representative 

Health and Retirement Study (HRS) has demonstrated that existing algorithms are ill-suited for 

racial/ethnic disparities work given differences in sensitivity and specificity by race/ethnicity.

Methods: We implemented traditional and machine learning methods to identify an improved 

algorithm that (a) had ≤5 percentage point difference in sensitivity and specificity across racial/

ethnic groups, (b) achieved ≥80% overall accuracy across racial/ethnic groups, and (c) achieved 

≥75% sensitivity and ≥90% specificity overall. Final recommendations were based on robustness, 

accuracy of estimated race/ethnicity-specific prevalence and prevalence ratios compared to those 

using in-person diagnoses, and ease of use.

Results: We identified six algorithms that met our pre-specified criteria. Our three recommended 

algorithms achieved ≤3 percentage point difference in sensitivity and ≤5 percentage point 

difference in specificity across racial/ethnic groups, as well as 77%−83% sensitivity, 92–94% 

specificity, and 90–92% accuracy overall in analyses designed to emulate out-of-sample 

performance. Pairwise prevalence ratios between non-Hispanic whites, non-Hispanic blacks, and 

Hispanics estimated by application of these algorithms are within 1% to 10% of prevalence ratios 

estimated based on in-person diagnoses.
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Conclusions: We believe these algorithms will be of immense value to dementia researchers 

interested in racial/ethnic disparities. Our process can be replicated to allow minimally biasing 

algorithmic classification of dementia for other purposes.
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INTRODUCTION

As the global population ages, the burden of dementia is expected to grow to epidemic 

proportions.1 Unfortunately, the time and cost associated with formal dementia 

ascertainment has limited research in crucial areas, particularly that related to racial/ethnic 

disparities in dementia. Classifying dementia algorithmically in existing, representative 

samples offers a cost-effective alternate approach allowing an expanded the scope of 

research.

Algorithms developed previously for classifying dementia status in the nationally 

representative Health and Retirement Study (HRS) all used data collected in the HRS to 

predict dementia status formally ascertained through in-person assessment in participants of 

an HRS sub-study, the Aging Demographics and Memory Study (ADAMS).2–6 In previous 

work,7 we evaluated the predictive performance of these algorithms, which we will refer to 

as the Herzog-Wallace2, Langa-Kabeto-Weir3,5, Wu4, Crimmins5, and Hurd6 algorithms. 

This work7 demonstrated that naïve application of these algorithms using a single threshold 

to classify dementia status resulted in substantially different performance across 

demographic subgroups. Notably, across racial/ethnic groups, sensitivity is typically higher, 

but specificity is typically lower among non-Hispanic blacks and Hispanics compared to 

non-Hispanic whites. Therefore, naïve application of these algorithms to the HRS or other 

similar studies for dementia racial/ethnic disparities research will lead to substantial bias and 

misleading conclusions due to differential misclassification.

Given the limitations of existing algorithms, and in response to the national priority to 

address racial/ethnic disparities in dementia as codified in the 2011 US National 

Alzheimer’s Project Act (NAPA), our goal was to develop and distribute an algorithm that 

performs comparably across racial/ethnic groups for use in dementia racial/ethnic disparities 

research leveraging the HRS.

METHODS

Overview

We defined three racial/ethnic groups of interest based on self-reported race and ethnicity: 

non-Hispanic white, non-Hispanic black, Hispanic. Considering performance metrics 

achieved by existing algorithms,7 our goal was to identify an algorithm that met the 

following criteria:

a. had comparable sensitivity and specificity across racial/ethnic groups, defined as 

differences of ≤5 percentage points across pairwise comparisons
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b. achieved ≥80% accuracy in all racial/ethnic groups

c. achieved ≥75% sensitivity and ≥90% specificity overall

In the event that multiple algorithms met these criteria, we applied two additional criteria:

d. which algorithm best reproduced estimates quantifying the disparities in 

dementia across race/ethnicity groups found in the ADAMS data

e. which algorithm was easiest to implement

To accomplish this, we re-evaluated the performance of existing algorithms using alternate 

classification cut-offs, developed a new logistic algorithm incorporating additional 

predictors, and developed new algorithms using machine learning approaches. 

Unfortunately, we were unable to account for potential differences in predictors across 

groups by training a separate algorithm for each race/ethnicity group due to the small 

number of minority participants in ADAMS. We instead relied on two alternate approaches: 

we included interaction terms between race/ethnicity and various predictors in the new 

logistic and machine learning models, and we evaluated the performance of both existing 

and new algorithms using race/ethnicity-specific classification cut-offs. Here, we provide 

details of this process and present all resulting algorithms that meet criteria (a) through (c). 

Ultimately, we recommend and distribute algorithms chosen based on criteria (d) and (e) for 

dementia disparities research using the HRS.

Data Sources

The HRS is a nationally representative, longitudinal study of adults aged ≥50.8 Enrollment 

began in 1992, and additional waves have been enrolled to maintain a steady-state sample of 

approximately 19,000 persons at any given wave. Interviews have been conducted biennially 

since 1998, with use of proxy respondents when participants are not willing or able to 

complete an interview. HRS interviews include questions on sociodemographic and 

socioeconomic characteristics, health behaviors and social engagement, medical history, 

health and cognitive status, as well as cognitive testing.

ADAMS selected a subsample of HRS participants aged ≥70 at the time of completing the 

2000 or 2002 HRS interview using a stratified random sampling approach. 856 participants 

completed systematic dementia ascertainment for prevalent dementia in 2001–2003 (Wave 

A), and those without dementia at baseline were re-assessed for incident dementia at up to 

three additional time points through 2009 (Waves B, C, and D). Details of the dementia 

ascertainment approach are described elsewhere.9–11

We used repeated data from all ADAMS participants at all time points where we could 

accurately assign dementia status to maximize information available. We linked data from 

each ADAMS participant at each ADAMS assessment wave to HRS data from the nearest 

prior HRS interview wave. For participants who were not re-examined at Waves B, C, or D 

due to a prior dementia diagnosis but who were known to be alive at the median ADAMS 

assessment date for each wave, we assigned a diagnosis of dementia and linked this to data 

from the closest HRS interview wave prior to the median ADAMS assessment date (Figure). 

We excluded participants who did not identify as non-Hispanic white, non-Hispanic black, 
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or Hispanic given the small number of participants who met these criteria. Unless otherwise 

specified, we weighted all analyses (i.e. development of all new algorithms and evaluation of 

all algorithms) to recover performance in a representative sample of U.S. adults over age 70. 

We describe our process for computing weights in eAppendix 1. HRS and ADAMS 

participants provided informed consent at data collection. The George Washington 

University Institutional Review Board approved this research.

Predictors

We considered all predictors used in existing algorithms (i.e., the Herzog-Wallace2, Langa-

Kabeto-Weir3,5, Wu4, Crimmins5, and Hurd6 algorithms), as well as additional factors that 

were (a) hypothesized to be associated with cognitive decline or dementia onset12 and (b) 

consistently available in the HRS with minimal missingness (<5%). Additionally, given that 

change in cognition or function is an integral part of the diagnostic criteria for dementia,13 

we considered variables quantifying changes in cognition, physical functioning, and social 

engagement. Finally, we considered interactions that we believed to be meaningful, 

including interactions between cognitive predictors and both race/ethnicity and respondent 

status (self-respondent vs. proxy-respondent). eTable 1 lists the predictor set. We used HRS 

data pre-processed by the RAND corporation (Longitudinal File 2014 (V2))14 for relevant 

data when available, and the core HRS files for data not included in the RAND dataset, as in 

our prior work.7

Statistical Analyses

Evaluation of existing algorithms using alternate global and race/ethnicity-
specific cut-offs—To begin, we considered the two existing summary score cutoff-based 

algorithms (Herzog-Wallace2, Langa-Kabeto-Weir3,5, details are provided in eAppendix 2). 

We computed these algorithm scores and classified dementia status using every possible 

score threshold for each observation. Next, we compared algorithmic dementia 

classifications resulting from application of each global threshold and each race/ethnicity-

specific threshold combination to the ADAMS diagnoses to compute overall and race/

ethnicity-specific sensitivities and specificities for comparison against our criteria.

We similarly evaluated whether use of alternate global or race/ethnicity-specific predicted 

probability thresholds would result in classifications that met our requirements for the three 

existing regression-based algorithms (Crimmins5, Hurd6, and Wu4). We estimated predicted 

probabilities of dementia in our new dataset using the coefficients from the Wu and 

Crimmins algorithms as published,4,5 and from the Hurd algorithm as re-estimated in our 

previous work (coefficients provided in eTable 2).7 We assigned dementia status using 

probability thresholds ranging from 0.01 to 0.99 in increments of 0.01 and compared 

algorithmic classifications to the ADAMS diagnoses to compute race/ethnicity-specific 

sensitivities, specificities, and accuracies, and evaluated whether any global or race/

ethnicity-specific combinations of thresholds resulted in classifications that met our pre-

specified criteria.

Development of a new algorithm using a traditional approach—Next, we 

developed a new logistic algorithm (Expert Model, eTable 1), with covariates chosen based 
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on the subject matter expertise of one author, (MCP), an epidemiologist with over a decade’s 

experience studying risk factors for ADRD and related outcomes, with reference to current 

epidemiologic evidence12 and with the aim of improving predictive ability in minority 

groups. We followed the Wu model and used the missing-indicator method to fit a single 

logistic regression to predict dementia status for both self- and proxy-respondents in our new 

dataset.4 Because no comparable external validation dataset was available, we estimated 

expected out-of-sample performance (i.e., sensitivity, specificity, and accuracy) across a 

range of probability thresholds (0.01 to 0.99 in increments of 0.01) applied to predictions 

obtained using 10-fold cross-validation. We evaluated these to determine whether we could 

achieve our pre-specified criteria through application of any global or race/ethnicity-specific 

thresholds to the Expert Model.

Development of new algorithms using machine learning—Finally, we derived 

multiple new algorithms using a variety (library) of common machine learning models 

(Table 1). We implemented the Super Learner two-stage ensemble algorithm using the full 

set of predictors in eTable 1, including hard-coded interactions. Briefly, in the first stage, 

Super Learner employs K-fold cross validation to determine the risk associated with each 

constituent algorithm (i.e., divides the data into K randomly selected and non-overlapping 

equally-sized sets, fits each constituent algorithm to all combinations of K – 1 of the sets and 

computes the corresponding prediction error in the held-out set). Super Learner then 

averages the cross-validated risk for each constituent function across all folds to identify the 

function that achieved highest predictive accuracy. In the second stage, Super Learner 

applies the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm attributing 

weights to the constituent functions that maximize non-negative binomial likelihood when 

combined in the Super Learner ensemble. 15–17 We first fit Super Learner with 10-fold 

cross-validation including only constituent prediction functions of the same classifier family 

to identify the function from each family with the lowest average cross-validated risk and/or 

that achieved highest accuracy most frequently across the ten folds (Table 1). We then fit 

Super Learner using the identified constituent prediction functions from different families 

and calculated out-of-sample performance metrics for each constituent function and the 

ensemble predictor across a range of predicted probability thresholds, similar to the 

approach used when evaluating the Expert Model. We then compared the resulting 

performance metrics against our criteria to determine whether we could achieve our pre-

specified criteria through application of any global or race/ethnicity-specific thresholds to 

the machine learning models.

Identification and comparison of algorithms that met our criteria—Both existing 

and new algorithms were trained and initially evaluated on slightly different versions of the 

data. The existing regression-based algorithms were all originally trained on unique subsets 

of linked HRS-ADAMS data.4,5,7 We trained our new algorithms on maximum-information 

samples, containing the subset of the HRS-ADAMS observations with non-missing data for 

all potential predictors for the machine learning algorithms (Nobs=1688, N=777), and non-

missing data for chosen predictors for the Expert Model (Nobs=1917, N=834). Thus, to 

ensure fairness in our evaluation process, we not only evaluated model performance in the 

maximum information samples for each of the existing regression-based algorithms (range 
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Nobs=1809 to Nobs=1939, N=818 to N=835) and new algorithms, but we also (a) evaluated 

the performance of the Expert Model out-of-sample predictions in the smaller sample used 

for training the machine learning algorithm, and (b) conducted complete case, head-to-head 

comparison of all existing and new regression-based algorithms in a sub-sample of 

observations with complete data for every predictor used in every model (Nobs=1571, 

N=756). Only model/threshold combinations that met our pre-specified criteria regardless of 

sample (i.e. maximum information samples and complete case sample) were eligible to be 

recommended, which has the added benefit of eliminating overfit models that are unduly 

sensitive to small changes in the data.

For a subset of the algorithms, we identified multiple threshold combinations that met our 

criteria and were robust to variations in sample. Thus, for a given model, we selected a 

single threshold combination that produced estimates of race/ethnicity-specific dementia 

prevalence and prevalence ratios across racial/ethnic groups that were closest to those 

observed in ADAMS diagnoses.

We then applied criteria (d) and (e) to select algorithms for recommendation and 

distribution. When applying criteria (d), we considered performance not only in our primary 

weighted samples, but also in the full unweighted samples, as well weighted and unweighted 

subsets of the data, to consider the robustness of our conclusions. Specifically, we evaluated 

the models separately in observations from waves A and B (i.e. representative of the age >70 

population in 2002), and in observations from waves C and D (i.e. representative of the age 

>70 population in 2006) using our newly derived weights, as well as in observations from 

wave A only using wave A cross-sectional sampling weights provided by ADAMS.18

Finally, we used the bootstrap percentile method to obtain 95% confidence intervals for the 

performance metrics of our recommended algorithms to provide an illustration of our 

uncertainty and to allow full comparison to our prior work. As we were concerned about the 

potential for overfitting in the newly developed recommended models, we compared their 

cross-validated performance metrics to their apparent performance metrics evaluated based 

on in-sample predictions, as large differences across cross-validated and apparent 

performance metrics would indicate overfitting. 95% confidence intervals around apparent 

performance were estimated using the bootstrap percentile method. Due to our weighting 

procedure (eAppendix 1), we selected, with replacement, on unique individuals in waves A 

and B, and on unique individuals in waves C and D, to draw 10,000 bootstrap samples.

All analyses were completed using SAS version 9.4 or R version 3.4.4. Code for assigning 

dementia classifications using our recommended algorithms and derived classifications for 

all HRS participants ages 65 and older at HRS waves between 2000 and 2014 are available 

on our GitHub page (https://github.com/powerepilab/AD_Algorithm_Development).

RESULTS

Selected characteristics of the HRS/ADAMS samples used for training our Expert Model 

(Nobs=1917, N=834) and machine learning algorithms (Nobs=1688, N=777), as well as the 

sub-sample of observations with complete data on predictors for all models (Expert Model, 
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machine-learning models, Wu, Hurd, and Crimmins models, Nobs=1571, N=756) are 

provided in eTable 3. There are no notable differences in the distribution of dementia or 

characteristics across samples before or after application of weights.

No set of global or race/ethnicity-specific cut-offs for either the Herzog-Wallace or Langa-

Kabeto-Weir summary score-based algorithms led to results that met our pre-specified 

criteria. For the Wu, Crimmins, and Hurd algorithms, several combinations of race/ethnicity-

specific probability thresholds resulted in dementia classifications that met our pre-specified 

criteria when evaluated in the full samples for each algorithm. However, only the Hurd 

model findings were robust when applied to the sample of observations with complete data 

for all algorithms. Race/ethnicity-specific performance metrics of the Hurd algorithm using 

the chosen threshold combination are provided in Table 2.

Regression coefficients of the Expert Model are shown in eTable 4. Several combinations of 

race/ethnicity-specific thresholds resulted in dementia classifications that met our three pre-

specified criteria and were robust to variation in sample when applied to the out-of-sample 

predicted probabilities. We show the race/ethnicity-specific performance metrics using the 

chosen threshold Table 2, which best recovered prevalence ratios across race/ethnicity 

groups in the ADAMS data.

Finally, among machine-learning functions, the gradient boosting, conditional random 

forests, and LASSO models, as well as the Super Learner ensemble produced out-of-sample 

estimates that resulted in performance metrics which met the three pre-specified criteria and 

that were robust to variation in sample. Chosen race/ethnicity-specific thresholds and 

associated performance metrics for each model are shown in Table 2. Coefficients for the 

LASSO-reduced logistic model are in eTable 5.

Areas under the curve (AUCs) were high across all algorithms that met criteria (a)–(c), 

overall (range: 0.948 to 0.959) and by racial/ethnic group (non-Hispanic whites range: 0.953 

to 0.963, non-Hispanic blacks range: 0.910 to 0.944, Hispanics range: 0.926 to 0.944, 

eFigure 1). Comparing receiver–operator characteristic (ROC) curves across algorithms, 

predictive performance is consistently better among non-Hispanic whites, and most models 

performed least well for Hispanics.

Comparison of dementia prevalence and prevalence ratio estimates based on ADAMS 

diagnoses versus those based on algorithmic classifications in the full weighted data are 

provided in Table 3. All algorithms over-estimated dementia rates despite high specificities 

due to the high proportion of non-dementia cases. All models performed similarly in 

estimating prevalence ratios between non-Hispanic blacks and whites (2%−6% lower than 

prevalence ratios based on ADAMS diagnoses), but the Expert Model performed best in 

estimating prevalence ratios between non-Hispanics and Hispanics (0%−4% lower than 

prevalence ratios based on ADAMS diagnoses).

Similar trends are observed in weighted analyses of data from waves A and B (eTable 6), 

and data from waves C and D (eTable 7). In weighted analyses of only wave A observations 

(Table 4) the new algorithms uniformly performed poorly in estimating prevalence ratios 

comparing Hispanics to non-Hispanic whites and blacks due to substantial over-estimation 
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of Hispanic dementia prevalence. Prevalence across all racial/ethnic groups were over-

estimated to a greater degree by algorithms in unweighted analyses across sub-sets of the 

data (eTable 6, eTable 7, and eTable 8). However, while model-based estimates of prevalence 

ratios comparing non-Hispanic blacks and whites in unweighted analyses reasonably 

recovered prevalence ratios based on ADAMS diagnoses, estimates comparing Hispanics to 

non-Hispanic whites and blacks were more variable.

Based on our analyses, there is no single “best” algorithm that performs consistently well in 

recovering prevalence ratios between race/ethnicity groups across the full training sample 

and its subsamples. When considering only comparisons between non-Hispanic whites and 

blacks, the Hurd and LASSO models perform consistently well relative to other algorithms. 

However, when considering all three pairwise comparisons, the Expert Model performs 

better. With regard to ease of use, traditional regression models (Expert Model, Hurd, 

LASSO) can be reproduced with knowledge of the final coefficients, while application of the 

other machine learning models is more complex. Compared to the Expert Model, all other 

models are complicated by inclusion of change and lag variables requiring at least two 

waves of data, increasing the likelihood of data missingness and limiting their use in 

potential new settings. Given model performance and these considerations, we recommend 

the Expert, LASSO, and Hurd models, recognizing that one may be better than another 

depending on the goal, as discussed below.

For purposes of comparability with results comparing performance of existing algorithms,7 

95% confidence intervals for performance metrics of the three recommended algorithms are 

provided in eTable 9. While performance metrics in the overall sample and among non-

Hispanic whites are very precise, confidence intervals for performance metrics among non-

Hispanic blacks and Hispanics (particularly for sensitivity) are wide due to small sample 

sizes. Finally, to address the concern that the algorithms may be overfit, we compared 

performance metrics evaluated on in-sample predictions to those evaluated on out-of-sample 

predictions. We confirm that the neither the Expert or LASSO models are severely overfit, 

given that in-sample predictions were 0–1 percentage points higher in the LASSO model 

(developed using machine learning) and 1–4 percentage points higher in the Expert Model 

(eTable 10). Considering the differences between model-estimated prevalence ratios and 

ADAMS diagnoses-estimated prevalence ratios (Table 3), and the magnitude of confidence 

intervals around estimated performance metrics (eTable 9), application of these models for 

examining disparities will be most reliable in contexts where disparities are relatively large.

DISCUSSION

Given the lack of large, nationally representative samples with formal dementia 

ascertainment, development of a dementia prediction algorithm that minimizes difference in 

predictive performance across race/ethnicity groups is crucial for advancing disparities 

research. We identified three such algorithms that can be used in HRS: the Hurd model, our 

Expert Model, and our LASSO model. These algorithms achieved ≤3 percentage point 

difference in sensitivity and ≤5 percentage point difference in specificity across racial/ethnic 

groups, as well as 77%−83% sensitivity, 92–94% specificity, and 90–92% accuracy overall. 

In terms of ease of use, the Expert model requires the fewest variables and does not include 
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variables quantifying change from the prior wave. The Expert model also produces the best 

overall performance when considering all three racial/ethnic groups. Nonetheless, we also 

recommend use of our re-estimated Hurd model (with newly identified race/ethnicity-

specific cutoffs) or LASSO model when only comparing non-Hispanic whites and blacks. 

However, both of these models require availability of additional variables, including change 

from prior status, which precludes use prior to the second HRS interview. Thus, even when 

contrasts of non-Hispanic whites and non-Hispanic blacks are of primary interest, it may be 

preferable to implement the Expert model, which still performs well but only requires 

predictors from a single time point.

Our goal was to minimize cross-group differences in sensitivity and specificity (i.e., 

characteristics of the test). While this goal is related to the idea of fairness, as popularized by 

the machine learning community, we note that it is not synonymous with several common 

notions of fairness, e.g. statistical parity and calibration.19 Future efforts may focus on 

applying novel methods recently introduced in the classification fairness literature.20–26 

However, we anticipate that they are unlikely to reliably improve on our efforts here given 

the relatively small sample and number of predictors available. This work demonstrates that 

popular machine-learning models are not superior to traditional regression-based models 

when the sample size and predictor set is relatively small.

To our knowledge, our work is the first to identify an algorithm for classifying dementia in 

HRS with the explicit goal of achieving equal sensitivity and specificity across race/ethnicity 

groups. We have conducted several sensitivity analyses to ensure that our results are robust 

to variations in the data. Notably, the race/ethnicity-specific cut-offs identified for each 

recommended algorithm result in classifications that meet our pre-specified criteria in both 

the sample with maximum available observations specific to each algorithm, and in the 

common sample with complete cases across all existing and new algorithms. This ensured 

that our evaluation and comparison of algorithms was fair, which protected against 

recommendation of overfit models. We have also posted our code on GitHub to reproduce 

our algorithmic diagnoses to increase reproducibility and use of these algorithms.

However, our work has limitations. Notably, we cannot recommend application of the 

algorithms to data beyond the HRS without first validating their performance, given that 

model predictors and performance may be sensitive to cohort and study procedural 

differences (especially in machine learning algorithms), as well as cross-cultural differences. 

Unfortunately, we were unable to identify an external validation sample with both sufficient 

coverage of predictors and systematic dementia ascertainment. We hope to have the 

opportunity to evaluate these algorithms against such a sample in the future, and the Health 

Cognitive Aging Project (HCAP) may provide such an opportunity. However, given that 

investigators will continue to use the HRS to conduct research related to dementia disparities 

in the meantime, we believe that our work remains important and timely by providing tools 

to make those studies more sound. Furthermore, we believe that our approach can be applied 

to other data to train study- or country-specific algorithms if the performance of our 

recommended algorithms prove to differ substantially in future validation studies.
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We also caution that, while we advocate for their use, the recommended algorithms have 

limitations. First, comparisons including Hispanics must be made with caution. Because of 

the small number of Hispanic participants in ADAMS, we have less confidence in the 

models’ ability to adequately ascertain dementia status in Hispanics. Furthermore, the 

ADAMS sample does not include Hispanics with more than a high school degree; 

considering that education level may impact cognitive test scores, the algorithms’ 

performance metrics presented here may not reflect their performance in a truly nationally 

representative sample for Hispanics. Second, the algorithms assume a time-invariant 

relationship between predictors and dementia status, which may limit their application to 

data collected at times far outside the ADAMS observations period (2000–2009). 

Additionally, we do not recommend use of these algorithms to HRS waves before 2000 or to 

participants aged <70: proxy respondents in 1998 (outside of our training sample) appear to 

be substantially different (better cognition, fewer ADLs/IADLs) from proxy respondents 

from 2000 and later, and ADAMS only considered those aged ≥70,. Finally, our goal was to 

predict prevalent dementia at a given time point. Our past work indicates that algorithmic 

diagnoses are better at identifying prevalent rather than incident dementia, because they are 

better at identifying moderate to severe dementia than mild dementia. This makes sense, 

given that cognitive decline leading to dementia is typically gradual, but limits use of 

algorithmic diagnoses for some applications.

In conclusion, we recommend and have distributed code to reproduce three algorithms that 

we deem appropriate for use in racial/ethnic dementia disparities research in the nationally-

representative HRS. We believe the availability of these algorithms will facilitate efforts in 

dementia racial/ethnic disparities research. Our process can be replicated to allow minimally 

biasing algorithmic classification of dementia for other similar purposes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE. 
Derivation of training dataset from ADAMS data

Gianattasio et al. Page 13

Epidemiology. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gianattasio et al. Page 14

TABLE 1.

Constituent learner functions considered and selected for use in the final Super Learner ensemble

Family Available functions Description Functions selected for 
further consideration 
and inclusion in final 
SuperLearner ensemble

Boosting gbm Gradient boosting model gbm

LASSO biglasso LASSO biglasso

Elastic net glmnet at alpha levels 
0.1 – 0.9 (in 0.1 
increments)

Elastic net regularized logistic regression model 
with varying levels of the mixing parameters 
between LASSO (alpha = 1) and ridge (alpha = 0)

glmnet, alpha = 0.5
glmnet, alpha = 0.8
glmnet, alpha = 0.9

K-nearest neighbor knn K-nearest neighbors knn

kernelKnn Kernel-based K-nearest neighbors

Decision trees / regression 
trees

cforest Conditional random forests Cforest randomForest

dbarts Discrete Bayesian additive regression trees 
samples

extraTrees Extremely randomized trees

ipredbagg Bagging for classification, regression and survival 
trees

randomForest Random forest

ranger Fast implementation of random Forests / recursive 
partitioning

rpart Recursive partitioning and regression trees

rpartPrune Recursive partitioning and regression trees with 
pruning

Support vector machine svm Support vector machines ksvm

ksvm Kernel-based support vector machines
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TABLE 2.

Weighted out-of-sample predictive performance of Hurd mode, Expert Model, and machine-learning models at 

chosen race/ethnicity-specific probability thresholds 
a

Score cutoff Sensitivity Specificity Overall Accuracy

     

(1) Hurd model 
b

Non-Hispanic white 0.19 79% 95% 92%

Non-Hispanic black 0.25 78% 90% 87%

Hispanic 0.27 81% 91% 89%

Overall - 79% 94% 92%

     

(2) Expert Model 
c

Non-Hispanic white 0.27 77% 93% 91%

Non-Hispanic black 0.32 78% 89% 86%

Hispanic 0.46 75% 91% 87%

Overall - 77% 93% 90%

     

(3) Gradient boosting model 
d

Non-Hispanic white 0.20 81% 93% 91%

Non-Hispanic black 0.28 80% 88% 87%

Hispanic 0.48 77% 90% 88%

Overall - 81% 93% 91%

     

(4) Conditional random forests model 
d

Non-Hispanic white 0.27 81% 94% 92%

Non-Hispanic black 0.35 80% 89% 87%

Hispanic 0.45 79% 90% 88%

Overall - 81% 93% 92%

     

(5) LASSO model 
d

Non-Hispanic white 0.25 83% 93% 91%

Non-Hispanic black 0.19 85% 89% 88%

Hispanic 0.34 82% 90% 88%

Overall - 83% 92% 91%

     

(6) Super Learner ensemble 
d

Non-Hispanic white 0.24 83% 93% 92%

Non-Hispanic black 0.27 81% 89% 87%

Hispanic 0.36 80% 89% 87%

Overall - 83% 93% 91%
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a
Cutoffs chosen to recover, as close to possible, true dementia prevalence ratios across race/ethnicity groups in the weighted ADAMS sample

b
Performance metrics achieved in full sample of observations with non-missing Hurd predictors (N=1855)

c
Performance metrics achieved in full sample of observations with non-missing expert logit model predictors (N=1917)

d
Performance metrics achieved in full sample of observations with non-missing predictors used for training machine learning models (N=1688)
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