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Abstract

Background: The test-negative design is an increasingly popular approach for estimating 

vaccine effectiveness (VE) due to its efficiency. This review aims to examine published test-

negative design studies of VE and to explore similarities and differences in methodological 

choices for different diseases and vaccines.
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Methods: We conducted a systematic search on PubMed, Web of Science, and Medline, for 

studies reporting the effectiveness of any vaccines using a test-negative design. We screened titles 

and abstracts, and reviewed full texts to identify relevant articles. We created a standardized form 

for each included article to extract information on the pathogen of interest, vaccine(s) being 

evaluated, study setting, clinical case definition, choices of cases and controls, and statistical 

approaches used to estimate VE.

Results: We identified a total of 348 articles, including studies on VE against influenza virus 

(n=253), rotavirus (n=48), pneumococcus (n=24), and nine other pathogens. Clinical case 

definitions used to enroll patients were similar by pathogens of interest but the sets of symptoms 

that defined them varied substantially. Controls could be those testing negative for the pathogen of 

interest, those testing positive for non-vaccine type of the pathogen of interest, or a subset of those 

testing positive for alternative pathogens. Most studies controlled for age, calendar time, and 

comorbidities.

Conclusions: Our review highlights similarities and differences in the application of the test-

negative design that deserve further examination. If vaccination reduces disease severity in 

breakthrough infections, particular care must be taken in interpreting vaccine effectiveness 

estimates from test-negative design studies.

INTRODUCTION

Vaccines have made major contributions to global health (1). While some vaccines confer 

strong life-long protection against infections, other vaccines provide more moderate or 

short-lived protection. Evolution in circulating pathogens can also modify vaccine 

effectiveness (VE), and some vaccines such as the influenza vaccine need to be updated 

regularly. Monitoring of VE to confirm continued effectiveness is an essential component of 

vaccination programmes (2). For reasons of ethics and logistics, observational studies rather 

than randomized trials are typically used to monitor VE post-licensure (3).

Case–control studies present a particularly efficient approach for monitoring VE because 

they tend to be faster and cheaper than cohort studies (4). A key design issue in case–control 

studies is the choice of controls, who should represent the exposure distribution in the source 

population from which the cases arose (5). Inappropriate control selection can lead to 

selection bias and, consequently, invalid conclusions (6). When cases have one particular 

infection or illness that is identified in a medical setting, controls can be selected from the 

general community, or from among patients with illnesses that are unlikely to be associated 

with both the disease and exposure of interest. For example, in a case–control study of 

cholera VE, cases might be selected from patients admitted to hospital with laboratory-

confirmed cholera, while controls could be persons from the general community, or persons 

admitted to hospital with other diagnoses unrelated to cholera and no recent diarrhea or 

vomiting, to avoid potential misclassification of a case as a control (7).

In some situations, it is possible to draw a causal inference on the effect of particular 

exposures from observational studies. Because common factors may affect both the receipt 

of vaccination and the risk of infection, it is typically inappropriate to use the crude exposure 

odds ratio as a measure of the causal effect of the vaccine on the risk of disease. However, if 
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these confounding factors are taken into account, for example by statistical adjustment, 

given certain assumptions one minus the adjusted odds ratio can be used as an estimate of 

VE (8). Note that the VE is not a measure of the association between vaccination and 

infection status, but rather is a causal estimate of the effectiveness of the vaccine in 

preventing the disease. In case–control and test-negative design studies, we adjust the odds 

ratio for potential confounders, in order to estimate the causal effect of vaccination, i.e. the 

vaccine effectiveness (9, 10).

The “test-negative design” , in which the same clinical case definition is used for enrollment 

of both cases and controls, and laboratory testing is subsequently used to distinguish which 

patients were cases and which were controls, is increasingly used in VE studies (11). For 

example, patients with influenza-like illness could be enrolled in outpatient clinics, 

demographic information and influenza vaccination history obtained, and specimens 

collected for testing. Influenza VE can then be estimated by comparing influenza 

vaccination status in patients testing positive for influenza with those testing negative for 

influenza. In contrast to the traditional case–control design, controls in the test-negative 

design would meet the same clinical case definition as cases and are distinguished by 

laboratory testing results. An important advantage of this approach is the efficiency of 

enrolling cases and controls in the same location with the same case definition, thereby 

assuring that they have arisen from the same source population and reducing potential 

selection biases due to differential healthcare-seeking behavior (8). As with any case–control 

study, it is crucial to minimize false-positive cases (12) and so the laboratory test used must 

be highly specific (11, 13). While the test-negative design is typically presented as a variant 

of the case–control design (14), this study design can also be thought of as a variant of a 

cohort design where the entire population is the cohort, while the test-negative design 

includes only members for whom outcomes are ascertained (8, 15).

The test-negative design has been used under a number of different names for different 

vaccines. One of the earliest examples is the “indirect cohort” or Broome method. Broome et 
al. (16) showed that assuming pneumococcal vaccination did not affect the risk of non-

vaccine-type pneumococcal infections among vaccinees (an assumption verified in early 

randomized controlled trials of polysaccharide vaccines (17, 18)), the odds of vaccination in 

those infected with non-vaccine-type and vaccine-type disease can be compared to estimate 

the effectiveness of pneumococcal vaccines. The widest application of the test-negative 

design has been for assessment of influenza VE, first done by Skowronski et al. in Canada, 

2004/05 (19), and increasingly used since (11). The study design has been extended beyond 

vaccine studies, for example to identify risk factors for disease (20), and to improve the 

efficiency of cluster randomized intervention trials (21, 22). However, in this paper we focus 

only on vaccine studies.

Whether the application of the test-negative design for the study of VE against different 

pathogens is appropriate needs further evaluation, and the potential biases affecting VE 

estimates need to be ascertained within the context of the specific pathogen under study. The 

objectives of this study were therefore: to review published VE studies employing the test-

negative design; to explore choices that have been made in the application of this design to 
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different vaccines; to explain the rationale for these choices; and to provide 

recommendations for the continued use of this approach to monitor VE.

METHODS

Search strategy and selection criteria

We followed the PRISMA guidelines in conducting this review. A systematic search was 

carried out on PubMed, Web of Science (WOS) and Medline, using the following terms on 

the 24 October 2018:

1. “vaccine” OR “vaccination”

2. “effectiveness” OR “efficacy”

3. #1 AND #2

4. #3 OR “VE”

5. “test-negative” OR “test negative” OR “TND” OR “indirect cohort” OR “quasi-

cohort” OR “quasi cohort” OR “case–control” OR “case control” OR “case-

referent” OR “case referent”

6. #4 AND #5

Articles published in any languages were considered. We also screened the reference lists of 

retrieved articles to identify any additional eligible studies.

Screening

We first screened the list of titles returned from the search strategy to eliminate duplicates. 

HC and BJC independently screened all remaining titles. We defined test-negative design 

studies as those where all participants met the same clinical case definition (or the same set 

of syndromes), and cases and controls were discriminated by laboratory test results. Studies 

were eligible for inclusion if they reported results of a test-negative design to estimate the 

effectiveness of any type of vaccine for any pathogens in a defined population or population 

segment.

We excluded studies that did not use a test-negative design including randomized controlled 

trials (both conventional trials or trials that use the design to assess endpoints), prospective 

cohort studies, conventional case–control studies (defined as those enrolling controls not 

tested for the disease under study), studies that estimated VE using the screening method, 

and animal studies. We also excluded simulation studies, review articles, commentaries, 

letters, protocols, abstracts and book chapters. We excluded mid-season (interim) VE reports 

if they had been superseded by an end-of-season report and studies that re-analyzed data 

published by included studies. In the case where a study has been extended or followed up, 

we included only the more recent published article.

Data extraction and analysis

Data were extracted from included articles using a standardized form in an electronic 

database created in REDCap (23). HC and SF independently extracted information on each 
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pathogen of interest, study setting, clinical case definition, choices of cases and controls, 

type(s) of vaccine being evaluated, and the statistical model used, including the variables 

included, to estimate VE.

A key characteristic of the test-negative design is the use of a control group with the same 

clinical presentation but testing negative for the pathogen of interest. This group of 

individuals may either be positive for alternative pathogens or negative for all pathogens 

(pan-negative or undiagnosed). As with any case–control study, the selection of controls 

should be made independently of exposure status to avoid selection bias. A situation where 

this assumption may be violated is the presence of viral interference, where vaccinated 

individuals may be more likely to be infected by alternative pathogens (24-26). Using such a 

group may inflate vaccination coverage among controls, misrepresenting the underlying 

population. While a meta-analysis showed no difference in VE estimates between choices of 

control groups among influenza VE studies, this is uncertain for non-influenza VE studies. It 

is also uncertain if the choice of non-vaccine type as controls is appropriate. We therefore 

categorized patients into six categories: tested-positive, vaccine type, non-vaccine type, 

tested-negative, alternative pathogens, and undiagnosed, according to the pathogen of 

interest and vaccine component (Table 1). To simplify comparisons between pathogens and 

vaccines, here the word “type” is used in a broad sense to refer also to subtype, genotype, 

serotype, species, subspecies, or strain of the pathogen of interest, depending on the specific 

pathogen (Table 1). If individuals were test-positive for the pathogen of interest, they may be 

further categorized as being matched to the vaccine type (i.e. tested-positive for a type that 

was a component of the vaccine) or non-vaccine type. For example, for pneumococcus, 

those serotypes covered by vaccine (PCV7, PCV10, PCV13, PCV14, PPV23) were defined 

as vaccine type and those not covered were defined as non-vaccine type. Similarly, when 

estimating influenza VE against influenza A(H1N1)pdm09 for the monovalent influenza 

A(H1N1)pdm09 vaccine in 2009/10, influenza subtype A(H1N1)pdm09 was defined as 

vaccine-type while pre-pandemic influenza A(H1N1), influenza A(H3N2) and influenza B 

were defined as non-vaccine type. If individuals were test-negative for the pathogen of 

interest, they may be categorized as positive for alternative pathogen (i.e. patients whose 

specimens tested positive for pathogen species other than the one of interest), or 

undiagnosed (i.e. patients whose specimens tested negative for all suspected pathogens).

RESULTS

Included studies

Our search on PubMed, Web of Science and Medline identified a total of 1976 unique 

articles, and we identified an additional 26 publications from reference lists of published 

articles. After screening, we identified 348 full text articles that met the criteria for inclusion 

in our review (Figure 1). We identified test-negative studies estimating VE for a total of 12 

different pathogens, including influenza virus (n=253; inactivated=196; live-attenuated=2; 

both=28; unknown=27) (19, 27-275)(276-278), rotavirus (n=48; live-attenuated=48) 

(279-326), Streptococcus pneumoniae (n=24; conjugate=12; polysaccharide=12) (16, 

327-349), Bordetella pertussis (n=6; toxoid=6) (350-355), Vibrio cholerae (n=4; 

inactivated=4) (356-359), poliovirus (n=4; live-attenuated=4) (360-363), Neisseria 
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meningitidis (n=3; conjugate=1; polysaccharide=2) (364-366), measles virus (n=2; live-

attenuated=2) (367, 368), Salmonella Typhi (n=1; polysaccharide=1) (369), Neisseria 
gonorrhoeae (n=1; outer membrane vesicle=1) (370), human papillomavirus (HPV) (n=1; 

recombinant=1) (371), and Haemophilus influenzae (n=1; conjugate=1) (372). Figure 2 

shows the number of test-negative design articles by type and year. The majority of the 

studies were published since 2010, and the earliest study that we identified was a study that 

estimated the effectiveness of pneumococcal vaccine published in 1980 (16).

Settings and clinical criteria

Study populations were recruited from outpatient settings including emergency department 

(n=117), inpatients including those with short-stay (n=108), or both outpatient and inpatient 

settings (n=114) (Figure 3). Nine studies that did not specify patient recruitment settings 

were based on either statutory databases or laboratory-based surveillance systems. While 

influenza studies were often conducted in outpatient settings (45%), studies for other 

pathogens recruited mostly inpatients alone (e.g. 88% for pneumococcus) or both inpatients 

and outpatients (e.g. 58% for rotavirus).

The choices of case definition depended on the pathogen of interest (Table 2). For influenza 

studies, the commonly used clinical case definitions were influenza-like illness (n=143), 

acute respiratory infection for outpatients (n=47), severe acute respiratory infection for 

inpatients (n=9), febrile respiratory illness (n=4) and pneumonia (n=4). In eight studies, the 

above choices were not explicitly provided; study eligibility was nonetheless based on 

manifestation of systemic and/or respiratory symptoms (n=12). In 26 studies, any of the 

above-mentioned syndromes or influenza-associated complications were considered such as 

sepsis, exacerbation of underlying asthma, chronic obstructive pulmonary disease, stroke, 

etc.

We observed similarities across studies in the set of symptoms that defined these standard 

clinical case definitions (Figure 4). Most influenza studies included fever and various 

respiratory symptoms. Among 19 pneumococcus studies recruiting invasive pneumococcal 

disease patients, case definitions were based on laboratory test results detecting the pathogen 

in normally sterile sites (e.g. blood, cerebrospinal fluid) by culture (n=8) and various other 

tests (n=11) (Figure 4, panel B). Studies recruiting patients with pneumococcal pneumonia 

based the case definitions on radiologic findings as well as the presence of respiratory 

symptoms. Of 48 rotavirus studies that recruited patients with gastroenteritis, 21 considered 

occurrences of loose stools alone, 19 considered vomiting, and one dehydration besides 

loose stools, and seven studies did not clearly define gastroenteritis (Figure 4, panel C). 

None of the four V. cholerae studies adopting gastroenteritis as clinical case definition 

considered vomiting, but loose stools with (n=2) or without dehydration (n=2). Other studies 

(n=10) defined case definitions based on diagnostic test results or disease-specific 

symptoms, such as rash (measles virus, n=2) or acute paralytic illness (poliovirus, n=2). 

Occasionally, positive contact history were also considered (three influenza virus, one 

measles virus and one poliovirus studies).
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Classification of cases and controls

Specimens collected from patients who met case definitions were tested by various 

laboratory methods. Based on laboratory test results, the choices of cases and controls were 

divided into four categories: pathogen of vaccine type, non-vaccine type, alternative 

pathogens and undiagnosed (Figure 5, Table 1). The distinction of cases and controls varied 

substantially by pathogen of interest (Figure 5). Cases were defined as vaccine-type 

infections in 305 (88%) test-negative design studies focusing on influenza virus (n=253), 

pneumococcus, (n=23), rotavirus (n=10), B. pertussis (n=6), V. cholerae (n=4), poliovirus 

(n=4), N. meningitidis (n=3), HPV (n=1) and H. influenzae type b (n=1). Of 50 (15%) test-

negative design studies that selected patients who tested-positive for the pathogen of interest 

(including both vaccine-type and non-vaccine-type strains) as cases, most were for rotavirus 

(n=47, 89%); in addition, three included patients with any pneumococcal strain, two 

addressed measles virus, and one addressed influenza virus.

We also identified 11 rotavirus studies assessing the effectiveness of vaccines against non-

vaccine-type cases (Figure 5). These cases may include G9P or G12P if the vaccine assessed 

was pentavalent rotavirus vaccine (RV5), and may include G2P[4], G3P[8], G4P[8], G1P[8], 

G9P or G12P if the vaccine assessed was monovalent rotavirus vaccine (RV1) (Table 1). An 

unusual scenario was observed in a N. gonorrhoeae study where the effectiveness of outer 

membrane vesicle meningococcal B vaccine (MenZB) was evaluated. In this study, non-

vaccine-type cases diagnosed positive for gonorrhea were compared to controls diagnosed 

with Chlamydia trachomatis, an alternative pathogen.

Almost all influenza test-negative design studies (251/253, 99%) defined patients testing 

positive for influenza virus (i.e. vaccine-type) as cases and used patients who tested-negative 

for influenza as controls. Occasionally, patients who tested-positive for an alternative 

pathogen (n=15) or pan-negative (negative for all tested pathogen) (n=8) were also used as 

controls. Most of the non-influenza test-negative design studies (n=64, 67%) used all 

patients who tested negative for the vaccine pathogen as controls. These include studies of 

rotavirus (n=47), V. cholerae (n=4), poliovirus (n=4), pneumococcus (n=4), B. pertussis 
(n=2), measles virus (n=2) and HPV (n=1). We also identified five test-negative design 

studies (of S. typhi, rotavirus, N. meningitidis, N. gonorrhoeae, and H. influenzae) which 

defined controls as those diagnosed with alternative pathogens. An exception was observed 

for 21 (88%) pneumococcus, two N. meningitidis and one influenza virus studies, where 

patients infected by non-vaccine-type pathogens were used as controls for estimating VE. 

Undiagnosed patients were also chosen as the comparison group in four B. pertussis studies. 

In two pneumococcus studies, vaccine-type cases were compared to a control group 

consisting of both patients who tested-negative for pneumococcus and patients who tested-

positive for non-vaccine-type pneumococcus.

Approaches to estimation of VE

Age was the most commonly controlled variable (n=336, 97%) (Figure 6), as the probability 

of vaccination and the risk of infection can change with age. Studies controlled for the effect 

of age by adjustment in the statistical model (n=274, 79%), matching (n=29, 8%), restriction 

to particular age groups at the enrollment stage (n=19, 5%), or stratification (n=14, 4%). Up 
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to 83% (n=210) of influenza studies, 77% (n=37) of rotavirus studies, 50% (n=12) of 

pneumococcal studies, and 65% (n=15) of other studies adjusted for age in statistical model. 

A total of 10 (4%) influenza studies, two (8%) pneumococcal studies, one (17%) pertussis 

study, and one (33%) meningococcal study controlled for age by stratification. At the study 

design stage, 18 (7%) influenza studies, 8 (17%) rotavirus studies, two (50%) poliovirus 

studies, and one (4%) pneumococcal study matched cases and controls by age. Enrollment 

of study participants was restricted to particular age groups (<5, <18, ≥65) in seven (3%) 

influenza studies, five (21%) pneumococcal studies, three (6%) rotavirus studies, (50%) two 

poliovirus studies, one (17%) pertussis study, and one (100%) HPV study. Among studies 

that failed to control for age (n=12, 3%), three (25%) used other methods to examine the 

potential effect of age, such as by using stepwise regression (371).

How age was incorporated into VE models varied substantially, with most specifying a 

categorical variable (n=142, 52%; 132 were influenza studies). Age was also specified as a 

continuous variable in 46 (17%) studies. Of these, age was modeled using birth month alone 

(n=11) or along with birth year (n=9) as a continuous variable in rotavirus studies. A 

pneumococcal study and 24 influenza studies modeled age as a cubic spline variable. Other 

test-negative design studies failed to specify how age was modeled (n=57).

Calendar controlled for in 293 (84%) studies. The rationale for including this variable is that 

the probability of vaccination and risk of infection may change over time (8). Calendar time 

was most often controlled for by adjustment as a covariate in a statistical model (n=212/293, 

72%), particularly in influenza virus studies (n=180, 71%). Adjustments were also made in 

20 (42%) rotavirus studies, eight (33%) pneumococcal studies, one (25%) V. cholerae study, 

one (33%) meningococcal study, one (50%) measles virus study, and one (100%) S. Typhi 

study. We also identified three (1%) influenza virus studies, three (50%) pertussis studies 

and one (2%) rotavirus study which conducted time-stratified analyses, 34 (13%) influenza 

virus studies, four (8%) rotavirus, one (4%) pneumococcus study, one (25%) poliovirus 

study, and one (17%) pertussis study matched cases and controls by calendar time, while 27 

(11%) influenza studies, five (10%) rotavirus studies, and one (25%) V. cholerae study also 

controlled for time by restricting patient recruitment to epidemic periods.

Among studies that controlled for the effect of time, calendar time was commonly modeled 

using week (n=76), month (n=72) and 2-weeks interval (n=25). Studies modeling time using 

week (n=43), month (n=63) or 2-weeks interval (n=6) often did not specify how these time 

units were modeled. Wherever this information was available, week was most commonly 

modeled as a matching (n=13), spline (n=11), categorical (n=5), or continuous variable 

(n=4); month was modeled as a categorical (n=4), matching (n=3), or stratifying variable 

(n=2); while 2-weeks interval was modeled as a matching (n=10) or categorical variable 

(n=9). Three studies used 15-days (n=1), 2-months (n=1), or 3-months intervals (n=1) as a 

matching variable. Two studies controlled for time using 3 weeks without specifying how 

these were modeled. Occasionally, timing of symptom onset was modeled as a cubic spline 

(n=6) or matching variable (n=2), time of presentation was modeled as a matching (n=4), 

cubic spline (n=1) or continuous (n=1) variable, and time since study began was modeled as 

a cubic spline (n=1) variable. Studies that covered a time period over more than one season 

also controlled for the effect of calendar time by stratification or adjusting for season (n=19) 
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or year (n=12). In the remaining 36 studies, it was unclear what time intervals were used or 

how time was modeled.

Around half of all eligible studies controlled for comorbidities (n=187, 54%) and sex 

(n=150, 43%). A total of 40 (21%) also considered obesity and 26 (14%) considered 

pregnancy. We identified a total of 50 influenza studies that controlled for previous 

vaccination in their statistical models. Prior infection was not commonly examined; 

however, we identified five studies that considered prior infection by statistical adjustment 

(n=4) or restriction (n=1) (167, 218, 240, 254, 273). The majority of studies (n=236) 

controlled for time intervals from disease onset to laboratory testing. Among these, 53 

(22.5%) used statistical adjustment while the remainder used restriction to delays of one 

week or less (n=144, 61%), two weeks or less (n=36, 15.3%) or one month or less (n=3, 

1.3%).

DISCUSSION

We identified and reviewed the methodologic approaches of 348 published test-negative 

design studies for 12 different pathogens. We identified a rapid increase in the use of the 

test-negative design for studying VE in recent years, with 90% of studies published since 

2011 (Figure 2). Studies share a number of similarities. Case definitions and study sites were 

generally similar between studies examining the same pathogen. Approaches to the 

distinction between cases and controls were mostly consistent among studies of the same 

pathogen, but differed among pathogens (Figure 5). We identified common covariates 

included in statistical models to estimate VE, i.e. age, calendar time, sex, and comorbidities, 

but the way covariates were controlled for varied between studies of different and same 

pathogens.

Potential limitations of the test-negative design study have previously been discussed and 

examined by a number of authors (8, 13, 373-378). Simulation studies have shown that 

biases may arise under several circumstances, including if the study fails to adjust for 

calendar time (373), if vaccination affects the probability of non-influenza infections (374), 

if vaccination affects the probability of seeking care between cases and controls (375, 376), 

if healthcare-seeking behavior differs substantially between cases and controls (377), and if 

misclassification bias is present (13, 378). The ability of the test-negative design to recover 

accurate VE estimates under a scenario of “leaky” protection has also been questioned (381), 

although similar biases may be present under other designs as well (3).

The test-negative design is convenient and efficient, and therefore it has been readily applied 

to laboratory-based surveillance data and health management data as observed in the studies 

of B. pertussis (351-353), and sometimes with linkage data to obtain vaccination or infection 

status. However, the importance of clear and specific case definitions should not be 

overlooked, and prospective test-negative design studies may be the most robust. An 

important strength of the study design is that, in selecting a group of patients who seek care 

for specific syndromes, it increases similarity between cases and controls, thus minimizing 

selection bias. One of the potential limitations of using administrative data for the test-
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negative design is that it may not always be clear if patients who were tested actually met the 

case definition.

The choices of study settings for test-negative design studies depended on the diseases of 

interest, disease severity, and vaccines. Pneumococcal vaccines were licensed primarily for 

prevention of severe infection leading to hospitalization (379), in contrast to other vaccines 

such as rotavirus vaccine and oral cholera vaccine that were recommended as part of a 

comprehensive strategy of disease control (380). Therefore, patients in pneumococcal VE 

studies frequently consisted of those severely ill and hospitalized with invasive 

pneumococcal disease or community-acquired pneumonia. Conversely, for studies of 

influenza or rotavirus VE, for example, disease outcomes may consist of a broader spectrum 

of diseases from mild to severe, and patients may be recruited from both inpatient or 

outpatient settings. Biases could persist under the test-negative design if broad variation in 

disease manifestation gives rise to differential healthcare-seeking behavior in terms of 

vaccination and care seeking for symptoms, and affect the probability of being tested (381). 

A more stringent clinical case definition could be used to reduce this source of bias, for 

example by recruiting severely ill inpatients as in the case of pneumococcus (381). Because 

disease severity could vary by setting, it is important to consider carefully the most 

appropriate setting to monitor VE, and in general it may not be appropriate to pool data from 

inpatients and outpatients when estimating VE.

There was some variation in the clinical case definitions used to recruit study participants. 

For example, the definitions for influenza-like illness may or may not include myalgia, 

definitions for gastroenteritis may include loose stools with or without vomiting. It is not 

clear if the sensitivity of clinical case criteria biases VE estimates, but modeling studies 

could provide further insight. The theoretical model shows that although more stringent 

clinical case definitions are, by definition, less sensitive, less biased VE estimates can be 

obtained. This may be because health-care seeking is highly likely among individuals with 

severe presentations, reducing the potential for differential health-care seeking between 

vaccinated and unvaccinated persons (381). Because the choice of clinical case criteria may 

depend on healthcare seeking behaviors of the specific population being studied (382), 

standardizing case definitions across all settings may not be feasible. Nevertheless, the 

choice of clinical symptoms for enrolled patients should ensure similarity between cases and 

controls and not be dependent on the vaccination or important confounders of the 

vaccination-disease relationship. An important consideration, therefore, in the application of 

the test-negative design is whether the vaccine in question causes there to be a difference in 

the source populations from which the cases and controls are derived. For example, in the 

case of rotavirus vaccine, where vaccination can mitigate the severity of disease, the 

propensity to seek care differs between cases and controls leading to a form of selection 

(collider) bias that can harm the validity of VE estimates (8, 381). The test-negative design 

should not therefore be blindly applied to all vaccine-preventable diseases; valid application 

must consider the biological mechanisms underlying the vaccine’s effectiveness.

In terms of distinguishing cases from controls, most studies defined vaccine-type as cases, 

where vaccines being evaluated were believed to have protective effect against the strains 

included in the vaccine. In the scenario where vaccination is thought to provide cross-
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protection against non-vaccine-types of the same pathogen, for example in rotavirus studies, 

cases also included non-vaccine-types or all patients testing positive for the pathogen 

regardless of type. We also identified a lack of consensus on the choices of controls for each 

vaccine (Figure 5). We would be particularly cautious over the choice of non-vaccine-type 

patients as controls for vaccine-type cases, as observed in most of the pneumococcal studies. 

The reason for this is twofold. First, cross-protection may occur (383-385): Some studies 

have reported a decline in non-vaccine-type pneumococcal disease progression after vaccine 

rollout leading to the hypothesis that vaccination may have a secondary effect in preventing 

non-vaccine-type disease even from serotypes against which no cross-protection is expected 

(386-388). Second, a basic assumption of the test-negative design is that the risk of 

infections by non-vaccine-targeted causative pathogens resulting in similar clinical disease 

does not vary by vaccination status. This assumption may be violated in pneumococcal 

studies if there is a serotype replacement phenomenon, i.e. an increase in the incidence or 

proportions of infections caused by non-vaccine-types following vaccine introduction (389). 

It has been argued that the impact of serotype replacement is minimal compared to the 

substantial reduction observed in overall invasive pneumococcal disease following 

vaccination (389, 390). Studies also showed that the magnitude for serotype replacement-

associated bias in VE estimated by the indirect cohort method is likely to be small in 

practice (327). The choice to include vaccine-matched pathogens or not should therefore 

depend on the public health question to be answered: are we interested in knowing by how 

much this vaccine will reduce the burden of the clinical disease of interest? Or are we 

interested in estimating the effectiveness of the vaccine only with respect to the pathogens it 

specifically targets. From a programmatic, policy and public health perspective the former 

argument is perhaps more relevant.

Notwithstanding the public health intent of a VE study, measuring vaccine effectiveness 

implies the intention to assess the strength of a causal effect of vaccination on risk of disease 

(10). Given that test-negative design studies are observational in nature, causal estimates 

could be biased due to confounding, underscoring the importance of adequate confounder 

control. Almost all studies controlled for some potential confounders by adjustment, 

matching, stratification, or restriction. Age is a common confounder as it is likely to be 

associated with the odds of being vaccinated (exposure) and infected (outcome). Therefore, 

almost all VE studies should control for age. How this was done was inconsistent across 

studies and it is unclear by how much the variation in variable specification can harm 

estimates. However, categorization of a continuous variable will lead to residual 

confounding, the importance of which matters in VE studies more when small changes in 

age correspond to large differences in immunological competence. Calendar time was 

controlled for in studies spanning several years or diseases that manifest seasonal trends, for 

example influenza virus and rotavirus. Controlling for calendar time is important in 

situations when vaccination uptake and risk of disease vary over time. Studies have 

postulated that VE estimates can be biased when controls are recruited outside of the 

influenza season because vaccination coverage may not reflect coverage during the influenza 

season (373, 391). Controlling for calendar time or age is also important when investigating 

the effect of age or time on waning or persistence of vaccine-induced immunity, particularly 

for immunization programs targeting specific age groups, e.g. childhood vaccines (381). 
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Where stratified estimates by age or time periods are provided, meaningful interpretation of 

stratified estimates requires understanding of the mechanism of vaccine under study, 

whether vaccine confers protection to a proportion of those vaccinated or reduces the force 

of infection in those unvaccinated (392). In the latter scenario, a decrease in VE might be 

truly due to a decline over time in protection, or an artefact of depletion of unvaccinated 

susceptibles (381, 393). It has also been shown that estimation of VE in the test-negative 

design requires that vaccine confers “all-or-nothing” protection to those vaccinated, but 

whether vaccine is “all-or-nothing” or “leaky” is not often known (381).

This systematic review extended previous test-negative design reviews and provided a more 

comprehensive review of the application of the study design in studying VE (11). For some 

pathogens, studies were too limited to make a fair evaluation of the appropriateness of the 

test-negative design. We also treated all studies as equal including mid-season (interim) 

reports for influenza VE which could be reported less meticulously compared to end-of-

season reports. Our inclusion criteria were restricted to studies which distinguished case–

control status based on laboratory-confirmed presence or absence of the pathogen of interest. 

We therefore excluded studies by Crowe et al. and Muganga et al. which assessed the 

effectiveness of HPV vaccine on histology-based outcomes, and the effectiveness of Hib on 

purulent cerebrospinal fluid meningitis respectively (394, 395). While these studies can be 

considered as variants of the test-negative design, there was not a specific definition for the 

choice of cases. We also excluded studies that used the test-negative design approach to 

examine bias and confounders (396). One other notable excluded set of studies were 

randomized controlled trials of adenovirus vaccine conducted in the 1960s, which used a 

nested test-negative style analysis to estimate VE (397-399).

The test-negative design serves as an efficient option to estimate the effectiveness of 

vaccines against various diseases and its use is likely to increase in the near future with the 

introduction of new vaccines and the re-emergence of vaccine-preventable diseases. Based 

on our findings, we provided several practical recommendations on the applications of the 

test-negative design to non-influenza pathogens (Box 1). In the case where vaccination 

reduces disease severity, application of the test-negative design should not be recommended. 

Careful consideration should therefore be taken into account before applying the test-

negative design to estimate VE. Moving forward, given the prospect of increasing use of the 

study design for multiple diseases, we would like to introduce the idea of establishing a 

general test-negative design “platform” to facilitate timely VE estimates. For example, all 

new pediatric admissions (or a chosen subset) could be assessed against a number of clinical 

case definitions, tested for relevant pathogens consistent with signs/symptoms, and their 

vaccine history determined, so that those with influenza-like illness could contribute to 

monitoring VE for influenza (and, in due course, respiratory syncytial virus), those with 

fever and rash could contribute to monitoring varicella, measles, or enterovirus EV-A71 VE, 

etc. Besides facilitating annual surveillance of influenza VE, such a platform could help 

better planning of public health responses in the event of, for example, the reemergence of 

measles which requires re-evaluation of the effectiveness of measles-containing vaccines 

(400). Using a platform approach could be an efficient approach to monitor VE for a range 

of vaccines on an ongoing basis. Once established, such a platform would also be ideal for 

timely monitoring of vaccines against emerging or re-emerging infections.
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KEY MESSAGES

• The test-negative design has been increasingly used as an efficient study 

design to estimate vaccine effectiveness for a range of vaccines and 

pathogens.

• In our review, we found that clinical case definitions used to enroll patients 

were similar by pathogens of interest, but the sets of symptoms that defined 

them varied substantially.

• The test-negative design may be more appropriate for some vaccines and 

pathogens, but less appropriate in some scenarios for example if vaccination 

reduces disease severity in breakthrough infections.
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Box 1.

Recommendations on the application of the test-negative design for 
vaccine effectiveness.

Recommendations on the application of the test-negative design on non-influenza 

pathogens

• Select cases and controls that manifest similar degree of severity

Patients infected with more severe disease may have higher probability of 

vaccination and testing compared to those with milder disease. Restricting 

recruitment criteria to one end of disease spectrum can minimize confounding 

effect by disease severity. In the case where vaccination affects disease 

severity, test-negative design may not be appropriate, for example, rotavirus.

• Select controls that are unaffected by vaccination

Selecting controls that are positive for infection potentially cross-protected by 

vaccine of interest, or with increased risk associated with vaccination, is 

common and may bias results. This is a concern particularly in diseases where 

one type predominates over another, such as pneumococcal disease. While the 

depth of knowledge on disease epidemiology increases with research, 

examining component of vaccine of interest before applying test-negative 

design may minimize the possibility of selecting inappropriate controls.

• Provide clearly defined case criteria

Application of the test-negative design should not rely merely on the 

availability of laboratory test results. Recruitment of cases and controls based 

on clearly defined case criteria allows assessment of potential biases, ensures 

transparency and allows comparison between studies.

• Make appropriate adjustments for confounding and report VE estimates that 

reflect the causal effect of vaccination in reducing the risk of disease

In a VE test-negative design study, unbiased VE estimates can be obtained 

under the following assumptions:

1. Vaccination does not affect the probability of becoming a control.

2. Vaccination does not affect the probability of seeking medical care.

3. Absence of misclassification of exposure and outcome status.

In the scenarios where any of these assumptions is not met, 

appropriate adjustments or analytic strategies might still be able to 

correct for bias. Unless eligibility criteria for participants are highly 

restrictive in terms of their demographics and clinical characteristics, 

measures of association (for example, odds ratios) unadjusted for 

any potential confounders such as age, comorbidities etc are unlikely 

to reflect the causal role of vaccination in preventing outcome of 
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interest, nullifying the objective of estimating the causal 

effectiveness of vaccination.
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Figure 1. 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow 

diagram of the process and results of study screening.
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Figure 2. 
Number of included studies by year. Most of the studies identified were of influenza virus. 

The first eligible study was published in 1980 (16).
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Figure 3. 
Study setting by pathogen. Patients could be recruited from outpatient/emergency 

department, inpatient, or both outpatient and inpatient setting.
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Figure 4. 
Choices of clinical case definition by pathogen. Studies that reported recruitment of patients 

meeting certain clinical case criteria without clarifying specific symptoms were excluded 

from this figure, including 32 influenza studies (recruited influenza-like illness patients), 

seven rotavirus studies (recruited gastroenteritis patients), two poliovirus studies (recruited 

acute flaccid paralysis patients), and one B. pertussis study (recruited pertussis-like-illness 

patients). Human papillomavirus and N. gonorrhoeae studies which recruited patients from 

routine testing were also excluded. Panel A: Other respiratory symptoms include wheezing, 

whooping cough, apnea, dyspnea, shortness of breath, bronchitis, pharyngitis, pneumonia 

etc. Other symptoms include complications such as sepsis, stroke, acute exacerbations of 

chronic respiratory conditions, contact history, etc, or for the case of measles virus, rash, 

dermal eruption etc. Panel B: Clinical case definition by culture-positive include eight 

studies which recruited patients with invasive pneumococcal disease and one with acute 

otitis media. DNA detection may include polymerase chain reaction, or multilocus sequence 

typing wherever specified. Biochemical tests include bile solubility and optochin 

susceptibility test. Panel D: Other symptoms include neck stiffness, altered consciousness, 

other meningeal signs.
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Figure 5. 
Choices of cases and controls by pathogen. Purple indicates cases and light green indicates 

controls. If patient samples were tested-positive for pathogen of interest, patient samples 

may be further tested to identify whether they were infected by vaccine-type or non-vaccine-

type. If patients’ samples tested negative for the pathogen of interest, samples may be further 

tested. Alternative pathogens may be identified or patient samples may be undiagnosed or 

pan-negative (i.e. negative for all tested pathogen). Studies can be counted more than once 

when there was more than one choice of cases or controls.
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Figure 6. 
Proportion of studies that included age, sex, calendar time, or comorbidities in statistical 

model to estimate VE.
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Table 2.

Clinical case definitions and clinical samples evaluated for each pathogen.

Pathogen of
interest

Clinical case
definitions

Number of
studies

Clinical samples

Influenza virus Influenza-like illness (ILI) 143 NP swab, NP aspirate, N swab, T swab, P swab, OP swab

Acute respiratory illness 47 NP swab, NP aspirate, N swab, T swab, OP swab, N wash, N 
aspirate

Severe acute respiratory illness 9 NP swab, NP aspirate, N swab, T swab, N wash, N aspirate, 
OP swab, P washes

Pneumonia 4 Sputum, NP swab, OP

Febrile respiratory illness 4 NP swab, NP aspirate, N swab, N wash, T swab,

Others* 40 NP swab, NP aspirate, OP swab, N swab, T swab, N aspirate

Unspecified 6

Rotavirus Gastroenteritis 48 Stool, rectal swab

Pneumococcus Invasive pneumococcal disease 
(IPD)

19 Normally sterile sites including blood, CSF and pleural fluid

Pneumonia 4 Blood, urine, sputum, pleural fluid, bronchoalveolar lavage

Acute otitis 1 Otic fluids

Bordetella pertussis Pertussis-like-illness 2 NP swab, unspecified

Unspecified 4 NP swab, unspecified

Poliovirus Acute flaccid paralysis 4 Stool

Vibrio cholerae gastroenteritis 4 Stool, rectal swab

Measles virus Measles-like-illness 2 Blood

Neisseria meningitidis Meningitis 1 CSF, normally sterile sites

Unspecified 2

Human papillomavirus 
(HPV)

Unspecified 1 Cervical smear

Neisseria gonorrhoeae Unspecified 1 Unspecified

Haemophilus influenzae 
type b (Hib)

Meningitis 1 CSF

Salmonella Typhi Enteric fever 1 Stool

*
Included more than one clinical case definition.

Note: NP: Nasopharyngeal; N: Nasal; T: Throat; P: Pharyngeal; OP: Oropharyngeal; CSF: Cerebrospinal fluid.
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