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Abstract

Purpose: To develop and test deep learning classifiers that detect gonioscopic angle closure and 

primary angle closure disease (PACD) based on fully automated analysis of anterior segment OCT 

(AS-OCT) images.

Methods: Subjects were recruited as part of the Chinese-American Eye Study (CHES), a 

population-based study of Chinese Americans in Los Angeles, CA. Each subject underwent a 

complete ocular examination including gonioscopy and AS-OCT imaging in each quadrant of the 

anterior chamber angle (ACA). Deep learning methods were used to develop three competing 

multi-class convolutional neural network (CNN) classifiers for modified Shaffer grades 0, 1, 2, 3, 

and 4. Binary probabilities for closed (grades 0 and 1) and open (grades 2, 3, and 4) angles were 

calculated by summing over the corresponding grades. Classifier performance was evaluated by 

five-fold cross validation and on an independent test dataset. Outcome measures included area 

under the receiver operating characteristic curve (AUC) for detecting gonioscopic angle closure 

and PACD, defined as either two or three quadrants of gonioscopic angle closure per eye.

Results: 4036 AS-OCT images with corresponding gonioscopy grades (1943 open, 2093 closed) 

were obtained from 791 CHES subjects. Three competing CNN classifiers were developed with a 
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cross-validation dataset of 3396 images (1632 open, 1764 closed) from 664 subjects. The 

remaining 640 images (311 open, 329 closed) from 127 subjects were segregated into a test 

dataset. The best-performing classifier was developed by applying transfer learning to the 

ResNet-18 architecture. For detecting gonioscopic angle closure, this classifier achieved an AUC 

of 0.933 (95% confidence interval, 0.925-0.941) on the cross-validation dataset and 0.928 on the 

test dataset. For detecting PACD based on two- and three-quadrant definitions, the ResNet-18 

classifier achieved AUCs of 0.964 and 0.952, respectively, on the test dataset.

Conclusion: Deep learning classifiers effectively detect gonioscopic angle closure and PACD 

based on automated analysis of AS-OCT images. These methods could be used to automate 

clinical evaluations of the ACA and improve access to eyecare in high-risk populations.

Introduction

Primary angle closure glaucoma (PACG), the most severe form of primary angle closure 

disease (PACD), is a leading cause of permanent vision loss worldwide.1 The primary risk 

factor for developing PACG is closure of the anterior chamber angle (ACA), which leads to 

impaired aqueous humor outflow and elevations of intraocular pressure (IOP). PACG is 

preceded by primary angle closure suspect (PACS) and primary angle closure (PAC), which 

comprise the majority of patients with PACD.2,3 Interventions such as laser peripheral 

iridotomy (LPI) and lens extraction can alleviate angle closure and lower the risk of 

progression to PACG and glaucoma-related vision loss.4–6 However, PACD must first be 

detected before eyecare providers can assess its severity and administer the appropriate 

interventions.

Gonioscopy is the current clinical standard for evaluating the ACA and detecting angle 

closure and PACD. The epidemiology, natural history, and clinical management of 

gonioscopic angle closure has been extensively studied.2–8 However, gonioscopy has several 

shortcomings that limit its utility in clinical examinations. Gonioscopy is qualitative and 

dependent on the examiner’s expertise in identifying specific anatomical landmarks. It is 

also limited by inter-observer variability, even among experienced glaucoma specialists.9 

Gonioscopy requires contact with the patient’s eye, which can be uncomfortable or deform 

the ACA. Finally, a thorough gonioscopic examination can be time-intensive and must be 

performed prior to dilation, thereby decreasing clinical efficiency.

Anterior segment optical coherence tomography (AS-OCT) is an in vivo imaging method 

that acquires cross-sectional images of the anterior segment by measuring its optical 

reflections.10 AS-OCT has several advantages over gonioscopy. It can produce quantitative 

measurements of biometric parameters, such as lens vault (LV) and iris thickness (IT), that 

are risk factors for gonioscopic angle closure.11–14 AS-OCT devices also have excellent 

intra-device, intra-user, and inter-user reproducibility.9,15–21 Finally, AS-OCT is non-

contact, which makes it easier for patients to tolerate. However, one major limitation of AS-

OCT is that image analysis is only semi-automated; a trained grader must manually identify 

specific anatomical structures in each image before it can be related to gonioscopic angle 

closure.22–24
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In this study, we apply deep learning methods to population-based gonioscopy and AS-OCT 

data to develop and test fully automated classifiers capable of detecting eyes with 

gonioscopic angle closure and PACD.

Methods

Subjects were recruited as part of the Chinese American Eye Study (CHES), a population-

based, cross-sectional study that included 4,572 Chinese participants aged 50 years and 

older residing in the city of Monterey Park, California. Ethics committee approval was 

previously obtained from the University of Southern California Medical Center Institutional 

Review Board. All study procedures adhered to the recommendations of the Declaration of 

Helsinki. All study participants provided informed consent.

Inclusion criteria for the study included CHES subjects who received gonioscopy and AS-

OCT imaging. Exclusion criteria included history of prior eye surgery (e.g., cataract 

extraction, incisional glaucoma surgery), penetrating eye injury, or media opacities that 

precluded visualization of ACA structures. Subjects with history of prior LPI were not 

excluded. Both eyes from a single subject could be recruited so long as they fulfilled the 

inclusion and exclusion criteria.

Clinical Assessment

Gonioscopy in CHES was performed in the seated position under dark ambient lighting (0.1 

cd/m2) with a 1-mm light beam and a Posner-type 4-mirror lens (Model ODPSG; Ocular 

Instruments, Inc., Bellevue, WA, USA) by one of two trained ophthalmologists (D.W., 

C.L.G.) masked to other examination findings. One ophthalmologist (D.W.) performed the 

majority (over 90%) of gonioscopic examinations. Care was taken to avoid light falling on 

the pupil and inadvertent indentation of the globe. The gonioscopy lens could be tilted to 

gain a view of the angle over the convexity of the iris. The angle was graded in each 

quadrant (inferior, superior, nasal, and temporal) according to the modified Shaffer 

classification system based on identification of anatomical landmarks: grade 0, no structures 

visible; grade 1, non-pigmented trabecular meshwork (TM) visible; grade 2; pigmented TM 

visible; grade 3, scleral spur visible; grade 4, ciliary body visible. Gonioscopic angle closure 

was defined as an angle quadrant in which pigmented TM could not be visualized (grade 0 

or 1). PACD was defined as an eye with more than two or three quadrants (greater than 180 

or 270 degrees) of gonioscopic angle closure in the absence of potential causes of secondary 

angle closure, such as inflammation or neovascularization.25

AS-OCT Imaging and Data Preparation

AS-OCT imaging in CHES was performed in the seated position under dark ambient 

lighting (0.1 cd/m2) after gonioscopy and prior to pupillary dilation by a single trained 

ophthalmologist (D.W.) with the Tomey CASIA SS-1000 swept-source Fourier-domain 

device (Tomey Corporation, Nagoya, Japan). 128 two-dimensional cross-sectional AS-OCT 

images were acquired per eye. During the imaging, the eyelids were gently retracted taking 

care to avoid inadvertent pressure on the globe.
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Raw image data was imported into the SS-OCT Viewer software (version 3.0, Tomey 

Corporation, Nagoya, Japan). Two images were exported in JPEG format per eye: one 

oriented along the horizontal (temporal-nasal) meridian and the other along the vertical 

(superior-inferior) meridian. Images were divided in two along the vertical midline, and 

right-sided images were flipped about the vertical axis to standardize images with the ACA 

to the left and corneal apex to the right. No adjustments were made to image brightness or 

contrast. One observer (A.A.P.) masked to the identities and examination results of the 

subjects inspected each images; eyes with corrupt images or images with significant lid 

artifacts precluding visualization of the ACA were excluded from the analysis. Image 

manipulations were performed in MATLAB (Mathworks, Natick, MA).

The total dataset had relatively equal numbers of images with open and closed angles to 

minimize training biases during classifier development. The total number of open angle 

images was limited to match the number of angle closure images. Prior to classifier training, 

85% of images were segregated into a cross-validation dataset. 80% and 20% of the cross-

validation dataset were used for training and validation, respectively. The remaining 15% of 

images were segregated into an independent test dataset. In order to prevent data leakage 

(e.g. inter- and intra-eye correlations) between cross-validation and test datasets, multiple 

images acquired from a single subject appeared together either in the cross-validation or test 

dataset and were not split across both datasets. The test dataset was constructed so that it had 

the same distribution of gonioscopy grades as the cross-validation dataset. Data 

manipulations were performed in the Python programming language.

Deep Learning Classifier Development

Three competing convolutional neural network (CNN) classifiers were developed to classify 

the ACA in individual AS-OCT images as either open or closed (Figure 1). All three were 

multi-class classifiers for Shaffer grades 0, 1, 2, 3, and 4. Given an input image, the 

classifiers produced a normalized probability distribution over Shaffer grades p = [p0, p1, p2, 
p3, p4]. Binary probabilities for closed angle (grades 0 and 1) and open angle (grades 2 to 4) 

eyes were generated by summing probabilities over the corresponding grades, i.e., pclosed = 
p0 + p1 and popen = p2 + p3 + p4. The classifiers acted as detectors for gonioscopic angle 

closure, i.e., a positive detection event was defined as classification to either grade 0 or 1.

Each classifier was based on a unique CNN architecture and developed with the common 

goal of optimizing performance for detecting gonioscopic angle closure. Images were 

resized to 350 by 350 pixels to reduce hardware demands during classifier training. 

Grayscale input images were preprocessed by normalizing RGB channels to have a mean of 

[0.485, 0.456, 0.406] and a standard deviation of [0.229, 0.224, 0.225]. Images were 

augmented through random rotation between 0 to 10 degrees, random translation between 0 

to 20 pixels, and random perturbations to balance and contrast.

The first classifier was a modified ResNet-18 CNN pre-trained on the ImageNet Challenge 

dataset.26 The average pooling layer was replaced by an adaptive pooling layer where bin 

size is proportional to input image size; this enables the CNN to be applied to input images 

of arbitrary sizes.27 The final fully connected layer of the ResNet-18 architecture was 

changed to have five nodes. Softmax-regression was used to calculate the multinomial 
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probability of the five grades with a cross-entropy loss used during training. Transfer 

learning was applied to train the final layer of the CNN.28 All layers of the CNN were fine-

tuned using backpropagation; optimization was performed using stochastic gradient descent 

with warm restarts.29 Test-time augmentation was performed by applying the same 

augmentations at test time and averaging predictions over augmentation variants.

The second classifier was a CNN with a custom 14-layer architecture (Supplementary Figure 

1). Layers, kernel size, number of filters, stride, and number of dense layers were varied 

between training sessions until optimal performance was achieved. The learning rate was 

held constant at 0.0001.

The third classifier was developed using a combination of deep learning and logistic 

regression algorithms. The Inception-v3 model was pre-trained with the weights from the 

ImageNet dataset.30 The final layer of the Inception-v3 model was removed and replaced by 

a logistic regression classifier for the purpose of feature extraction. In order to perform 

multi-class classification, the one-vs-rest (OvR) scheme was used along with logistic 

regression to assign each image a Shaffer grade from 0 to 4.

The performance of each classifier was evaluated through five-fold cross-validation. Mean 

area under the receiver operator curve (AUC) metrics were used to determine the best-

performing classifier. ROC curves were generated by varying the threshold probabilities for 

open and closed angle classification (i.e., pclosed and popen). Predictive accuracy of the best-

performing classifier for gonioscopic angle closure was calculated for all images 

corresponding to each examiner-assigned Shaffer grade. Accuracy was defined as (true 
positive + true negative) / all cases. PACD classification was made by aggregating angle 

closure predictions across all four quadrants based on either the two- or three-quadrant 

definition. The ROC curve for PACD detection was generated by varying the threshold for 

angle closure detection across all quadrants.

In order to evaluate the effect of dataset size on classifier performance, the best-performing 

classifier was retrained on different-sized random subsets of the cross-validation dataset. 

AUC for each classifier was calculated on the test dataset.

Saliency maps were generated in order to visualize the pixels of an image that most 

contribute to a CNN prediction. The final global average pooling layer of the best-

performing classifier was modified to generate a class activation map.31 The network was 

then retrained on the entire cross-validation dataset before saliency maps were generated on 

the test dataset.

Results

4280 images with corresponding gonioscopy grades from 1070 eyes of 852 eligible subjects 

(335 consecutive with PACD, 517 consecutive with open angles) were obtained from CHES 

after excluding eyes with history of intraocular surgery (N = 25) (Supplementary Figure 2). 

The mean age of the subjects was 61.1 ± 8.1 years (range 50-91). 251 (31.7%) subjects were 

male and 540 (68.3%) were female. 244 images from 61 eyes with either corrupt images or 

images affected by eyelid artifact were excluded from the analysis.
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The final dataset consisted of 4036 angles images with corresponding gonioscopy grades 

from 1009 eyes of 791 subjects. There was a relatively balanced number of images with 

open (N = 1943) and closed (N = 2093) angles, although individual grades were not 

balanced: grade 0 (N = 957), grade 1 (N = 1136), grade 2 (N = 425), grade 3 (N = 1073), 

grade 4 (N = 445). The cross-validation dataset consisted of 3396 images (1632 open, 1764 

closed; 84.1% of total images) from 664 subjects. The test dataset consisted of the remaining 

640 images (311 open, 329 closed; 15.9%) from 127 subjects.

Classifier Performance for Detecting Gonioscopic Angle Closure and PACD

For detecting gonioscopic angle closure in the cross-validation dataset, the ResNet-18 

classifier achieved the best performance, with an AUC of 0.933 (95% confidence interval, 

0.925-0.941) (Figure 2). The Inception-v3 and custom CNN classifiers had AUCs of 0.901 

(95% confidence interval, 0.892-0.91) and 0.910 (95% confidence interval, 0.902-0.918), 

respectively (Figure 2). The predictive accuracy of the ResNet-18 classifier for gonioscopic 

angle closure among angle quadrants with examiner-assigned Shaffer grade 0 or 1 was 

98.4% (95% confidence interval, 97.9-98.9%) and 89.1% (95% confidence interval, 

85.4-92.8%), respectively. Its predictive accuracy for gonioscopic open angle among angle 

quadrants with examiner-assigned Shaffer 2, 3, and 4 was 40.0% (95% confidence interval, 

33.9-46.1%), 87.4% (95% confidence interval, 84.5-90.3%), and 98.9% (95% confidence 

interval, 97.9-99.9%), respectively.

For detecting gonioscopic angle closure in the test dataset, the ResNet-18 classifier had an 

AUC of 0.928 (Figure 3). For detecting PACD based on the two- and three-quadrant 

definitions, the ResNet-18 classifier achieved an AUC of 0.964 and 0.952, respectively, on 

the test dataset (Figure 3).

The ResNet-18 classifier had AUCs that rapidly increased and plateaued when re-trained 

with subsets of the cross-validation dataset (Figure 4). AUCs saturated at approximately 

25% of the total cross-validation dataset.

The ResNet-18 classifier focused primarily on the ACA to detect images with gonioscopic 

angle closure based on saliency maps indicating its strategy (Figure 5).

Discussion

In this study, we developed and tested deep learning classifiers that detect gonioscopic angle 

closure and PACD based on automated analysis of AS-OCT images. The best-performing 

ResNet-18 classifier achieved excellent performance, especially in eyes with the highest or 

lowest degrees of gonioscopic angle closure. Saliency maps demonstrate that the ResNet-18 

classifier focuses on portions of images that contain salient biometric features. To our 

knowledge, these are the first fully automated deep learning classifiers for detecting 

gonioscopic angle closure. We believe these findings have important implications for 

modernizing clinical evaluations of the ACA and reducing barriers to eyecare in populations 

at high risk for PACD.
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Gonioscopy, the current clinical standard for assessing the ACA, relies on an examiner’s 

ability to identify specific anatomical structures. Deep learning classifiers developed in this 

study performed “automated gonioscopy” based on AS-OCT images and achieved 

performance approximating that of a highly experienced ophthalmologist (D.W.) who 

performed nearly 4000 gonioscopic examinations during CHES alone. The development of 

these classifiers is significant for several reasons. First, gonioscopy is highly dependent on 

examiner expertise whereas AS-OCT imaging is less skill dependent and can be performed 

by a trained technician. An automated OCT-based ACA assessment method could facilitate 

community-based screening for PACD, which is an urgent need since the majority of PACD 

occurs in regions of the world with limited access to eyecare.1 Once PACD has been 

detected by automated methods, eyecare providers can evaluate patients for advanced 

clinical features, such as peripheral anterior synechiae (PAS), elevated IOP, or glaucomatous 

optic neuropathy, and administer necessary interventions. Second, gonioscopy is time-

consuming and underperformed by eyecare providers, leading to misdiagnosis and 

mismanagement of ocular hypertension and glaucoma.32‘33 An automated ACA assessment 

method could increase examination compliance and clinical efficiency by alleviating the 

burden of manual gonioscopy in the majority of patients. Third, a standardized 

computational approach could eliminate inter-examiner variability associated with 

gonioscopy. Finally, an automated interpretation method could validate wide-spread clinical 

adoption of AS-OCT, which is currently limited due to time and expertise needed for manual 

image analysis.

Prior efforts have utilized other automated methods to detect gonioscopic angle closure and 

PACD. Two semi-automated machine learning classifiers applied logistic regression 

algorithms to detect gonioscopic angle closure based on AS-OCT measurements of 

biometric risk factors.23,24 These classifiers, which required manual annotation of the scleral 

spur, achieved AUCs of 0.94 and 0.957 based on the two-quadrant definition of PACD. 

Classifiers utilizing feature-based learning methods to automatically localize and analyze the 

ACA on AS-OCT images achieved mixed performance, with AUCs ranging between 0.821 

to 0.921.34 The fact that a deep learning classifier with no instruction on the saliency of 

anatomical structures or features performed better than classifiers based on known biometric 

risk factors further supports the role of deep learning methods for detecting clinical disease.

The performance of deep learning classifiers is limited by the reproducibility of “ground 

truth” clinical labels and inherent uncertainty of predicted diagnoses. There are limited 

studies on inter- and intra-examiner reproducibility of gonioscopic angle closure diagnosis, 

and these metrics could not be calculated for the CHES examiners based on available data.9 

However, we were able to estimate the contribution of clinical uncertainty to classifier 

performance by calculating prediction accuracy segregated by examiner-assigned Shaffer 

grade. The highest accuracy of predicting gonioscopic angle closure was among images 

corresponding to grades 0 and 4 followed by grades 1 and 3, which intuitively correlates 

with degree of examiner certainty. The accuracy of predicting images corresponding to grade 

2 as open was close to chance, likely because examiner certainty is low and detection of 

pigmented TM is highly dependent on dynamic examination techniques (e.g. lens tilting, 

indentation) that are difficult to model. However, this distribution of performance is 
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reassuring since images with the highest degree of angle closure are also classified with the 

highest degree of accuracy.

The ResNet-18 classifier was developed to identify gonioscopic angle closure in individual 

angle quadrants and then adapted to detect PACD. While this differs from previous machine 

learning classifiers that detected PACD based on AS-OCT measurements, there are several 

reasons for this approach.23,24 Classifiers for individual angle quadrants replicate the clinical 

experience of performing gonioscopy quadrant by quadrant. In addition, the clinical 

significance of current definitions of PACD, originally conceived for epidemiological 

studies, is incompletely understood.25 Single-quadrant classifiers provide increased 

flexibility; the definition of PACD could be refined in the future as the predictive values of 

current definitions are revealed by longitudinal studies.35

One challenge in practical applications of deep learning is identifying the features that 

classifiers evaluate to make their predictions. We computed saliency maps to visualize which 

pixels were utilized by the ResNet-18 classifier to make its predictions. The maps support 

previous studies that identified features related to the iridocorneal junction as highly 

discriminative for gonioscopic angle closure.36 Interestingly, the maps appear to ignore LV, 

an important risk factor for gonioscopic angle closure, likely because LV cannot be deduced 

based on half of a cross-sectional AS-OCT image.11,12 In addition, the maps appear to 

incorporate variable portions of the iris, which supports iris thickness or curvature as 

important discriminative features in some eyes.13,14 However, further work is needed to 

identify the precise features that enable image-based classifiers to out-perform 

measurement-based classifiers.24

Our approach to classifier development included measures to optimize performance and 

limit biases associated with deep learning methodology. First, we developed three competing 

classifiers using different CNN architectures. The ResNet-18 architecture was ultimately 

superior to the other two approaches, likely because transfer learning allowed ResNet-18 to 

take advantage of pre-trained weights compared to the custom 14-layer architecture, while 

its relatively shallow depth may have reduced overfitting compared to the Inception-v3 

architecture. Second, recent studies applying deep learning methods to detect eye disease 

used hundreds of thousands of images as inputs.37–39 The size of our image database was 

limited to CHES subjects and was relatively small, which could have limited classifier 

performance. However, the benefit of using additional images to train the ResNet-18 

classifier was minimal above 25% of the cross-validation dataset, suggesting that relatively 

few images are needed to train this type of classifier. Third, we minimized the likelihood of 

classifier bias toward closed or open angles by balancing the number of images in the two 

groups. Finally, we accounted for the effects of inter- and intra-eye correlations by 

segregating subjects into either the cross-validation or test dataset, which did not 

significantly affect classifier performance on the test dataset.

Our study has some limitations. Gonioscopy in CHES was performed primarily by one 

expert examiner (D.W.), which could limit classifier generalizability due to inherent inter-

examiner differences in gonioscopy grading. In addition, all subjects in CHES were self-

identified as Chinese-American, which could limit classifier performance among patients of 
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other ethnicities. However, the excellent performance demonstrated by the ResNet-18 CNN 

architecture strongly suggests that the same method could be effectively applied to clinical 

labels from gonioscopy performed by a panel of experts on a multi-ethnic cohort. While 

there are logistic challenges to this approach, such as patient discomfort and alterations of 

ocular biometry associated with multiple consecutive gonioscopic examinations, it would 

likely alleviate issues related to classifier generalizability. Finally, our classifiers were 

trained using only one AS-OCT image to per quadrant, similar to previous classifiers based 

on AS-OCT measurements.23,24 There are eyes in which the ACA is open in one portion of 

a quadrant but closed in another. While the ResNet-18 demonstrated excellent performance, 

it is possible that a more complex classifier developed using multiple images per quadrant 

could achieve even greater performance.

In this study, we developed fully automated deep learning classifiers for detecting eyes with 

gonioscopic angle closure and PACD that achieve favorable performance compared to 

previous manual and semi-automated methods. Recent work demonstrated that the vast 

majority of eyes with early PACD do not progress even in the absence of treatment with LPI.
40 Therefore, future directions of research should include efforts to develop automated 

methods that identify the subset of patients with PACD who are at high risk for elevated IOP 

and glaucomatous optic neuropathy.41 We hope this study prompts further development of 

automated clinical methods that improve and modernize the detection and management of 

PACD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
a) Schematic of binary classification process (top). Unmarked AS-OCT images were used as 

inputs to the convolutional neural network (CNN) classifiers. Gonioscopy grade 

probabilities (p0 to p4) were summed to make the binary prediction of angle status: angle 

closure = grades 0 and 1, open angle = grades 2, 3, and 4. b) Representative AS-OCT 

images corresponding to open (bottom left, grade 4) and closed (bottom right; grade 0) 

angles based on gonioscopic examination.
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Figure 2: 
ROC curves of three competing classifiers for detecting gonioscopic angle closure developed 

using different deep learning architectures: ResNet-18 (blue, AUC = 0.933), custom 14-layer 

CNN, (green, AUC = 0.910), Inception-v3 (red, AUC = 901). Performance was evaluated on 

the training dataset.
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Figure 3: 
ROC curves of the ResNet-18 classifier for detecting gonioscopic angle closure (red, AUC = 

0.928) and PACD based on either the two- (blue, AUC = 0.964) or three-quadrant (green, 

AUC = 0.952) definition. Performance was evaluated on the test dataset.
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Figure 4: 
Representative saliency maps highlight the pixels that are most discriminative in the 

prediction of angle closure status by the ResNet-18 classifier. Colormap indicates colors in 

descending order of salience: white, yellow, red, black.
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