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Abstract

The impact of infections and inflammation during pregnancy on the developing fetal brain remains 

incompletely defined with important clinical and research gaps. Though the classic infectious 

TORCH pathogens [i.e. Toxoplasma gondii, rubella virus, cytomegalovirus (CMV), herpes 

simplex virus] are known to be directly teratogenic, emerging evidence suggests that these 

infections represent the most extreme end of a much larger spectrum of injury. We present the 

accumulating evidence that prenatal exposure to a wide variety of viral and bacterial infections – 

or simply inflammation – may subtly alter fetal brain development, leading to neuropsychiatric 

consequences for the child later in life. The link between influenza infections in pregnant women 

and an increased risk for development of schizophrenia in their children was first described more 

than 30 years ago. Since then, evidence suggests that a range of infections during pregnancy may 

also increase risk for autism spectrum disorder and depression in the child. Subsequent studies in 

animal models demonstrated that both pregnancy infections and inflammation can result in direct 

injury to neurons and neural progenitor cells or indirect injury through activation of microglia and 

astrocytes, which can trigger cytokine production and oxidative stress. Infectious exposures can 

also alter placental serotonin production, which can perturb neurotransmitter signaling in the 

developing brain. Clinically, detection of these subtle injuries to the fetal brain is difficult. As the 

neuropsychiatric impact of perinatal infections or inflammation may not be known for decades 

after birth, our construct for defining teratogenic infections in pregnancy (e.g. TORCH) based on 

congenital anomalies is insufficient to capture the full adverse impact on the child. We discuss the 

clinical implications of this body of evidence and how we might place greater emphasis on 

prevention of prenatal infections. For example, increasing uptake of the seasonal influenza vaccine 

is a key strategy to reduce perinatal infections and the risk for fetal brain injury. An important 

research gap exists in understanding how antibiotic therapy during pregnancy impacts the fetal 

inflammatory load and how to avoid inflammation-mediated injury to the fetal brain. In summary, 

we discuss the current evidence and mechanisms linking infections and inflammation with the 

increased lifelong risk of neuropsychiatric disorders in the child, and how we might improve 

prenatal care to protect the fetal brain.
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Condensation

This review summarizes new evidence for how infections during pregnancy can alter fetal brain 

development and predispose the child to mental illness decades after birth.

Keywords

pregnancy; infection; inflammation; fetus; brain; schizophrenia; depression; autism; influenza 
virus; urinary tract infection; TORCH; microglia; neuronal injury; seasonality of birth hypothesis

Introduction

The impact of infection and inflammation on the developing fetal brain is poorly understood 

but is thought to increase the lifetime risk for some types of mental illness. The severe 

infectious teratogens known by the acronym TORCH [e.g. Toxoplasma gondii, rubella virus, 

cytomegalovirus, herpes simplex virus] have commanded a focal point in obstetrics due to 

their potential to cause catastrophic structural anomalies in the fetal brain including 

anencephaly, ventriculomegaly, deafness, and ocular injury.1–5 However, evidence that other 

perinatal infections may increase the lifetime risk of schizophrenia for the fetus has 

accumulated for more than half a century.6 By the 1960s, several studies found a slight 

increase in the incidence of schizophrenia among children and adults that had been born 

during the winter months in both northern and southern hemispheres, suggesting a link with 

viral infections more prevalent during the winter.6–8 These observations led to a “seasonality 

of birth” hypothesis suggesting that some proportion of adult schizophrenia was caused by 

virus-induced fetal brain injury.9

Subsequent studies in humans and mouse models linked prenatal exposure to single 

pathogens, complex infections, and inflammatory disorders with changes in fetal brain 

development leading to a wide spectrum of cognitive deficits and neuropsychiatric disorders 

including autism spectrum disorder (ASD).10,11 Recently, the concerning finding that 

maternal hospitalization with any infection in pregnancy, including urinary tract infections, 

increased risk of ASD and depression in the exposed offspring suggests that the fetal brain 

may be more vulnerable than previously thought to a wide variety of infections.11 Overall, it 

appears that a broad category of infectious and inflammatory events in pregnancy can result 

in an increased risk of neuropsychiatric disease for exposed children. This evidence requires 

a reconception of infectious risks during pregnancy beyond those imparted by TORCH 

pathogens. In this review, we aim to highlight what is currently known about the fetal 

infectious and inflammatory origins of mental illness. We also discuss the clinical and 

research implications of how we might reconsider infection prevention and treatment with 

an emphasis on protecting the fetal brain.
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Infectious Prenatal Origins of Schizophrenia, Autism Spectrum Disorder, 

Bipolar Disorder and Depression

Schizophrenia

The earliest studies of psychiatric disease after exposure to infection in utero focused on 

schizophrenia. This disorder is typically first diagnosed in early adult life and has been 

associated with events occurring early in brain development; accordingly, many studies have 

focused on pregnancy complications and the role of infectious exposures.12 Evidence for the 

fetal origins of schizophrenia risk include: numerous studies of in utero infection across 

trimesters,13 an archival cohort study of gestational starvation during the so-called “Dutch 

Hunger Winter” of Nazi occupation,14 data from the famine years in China’s Anhui 

Province,15 and studies on the effect of smoking16 and limited maternal weight gain.17 In the 

1960s and 1970s, multiple studies found an increased incidence of schizophrenia among 

adults born during the winter months, suggesting an association with fetal exposure to 

maternal viral infections; these and other studies culminated in a “seasonality of birth” 

hypothesis for the etiology of schizophrenia.6–9,18–21

The 1957 influenza pandemic offered an opportunity to study the long-term mental health 

outcomes of adults who were likely to have been prenatally exposed to influenza. In a study 

of Finnish adults, there was a markedly higher risk of hospitalization for schizophrenia in 

adults who were fetuses in the second trimester during the peak of the 1957 influenza 

epidemic compared to adults who were born in the 6 years prior to the epidemic.22 This 

“second trimester” effect was observed independently across several greater Helsinki 

psychiatric hospitals and occurred in both men and women. Subsequent studies focused on 

serologic testing as a method to link schizophrenia with perinatal exposure to a variety of 

microbes.23–27 Overall, these studies strongly implicated perinatal infections and 

complications as risk factors for schizophrenia, but were limited by insufficient power and 

were mainly exploratory in nature. Significant variability in study exposures and subjects 

has made systematic reviews of this body of work difficult to interpret, but the 

preponderance of evidence suggests that prenatal infection and inflammation play important 

roles in some proportion of schizophrenia.28

Autism

Several systematic and meta-analytic reviews provide converging evidence that infections 

during pregnancy elevate the risk for ASD in the offspring.29–31 A meta-analysis of 15 

studies with more than 40,000 ASD cases demonstrated an increased risk for ASD after 

prenatal exposure to infection (OR = 1.13, 95% confidence interval (CI): 1.03–1.23)), 

particularly when the mother was hospitalized for the infection (OR = 1.30, 95% CI: 1.14–

1.50).31 The largest of these studies in the meta-analysis could not determine whether the 

timing of infection during pregnancy was important, but was likely underpowered to detect 

trimester effects.34 Prenatal fever has also been associated with development of ASD in the 

Norwegian Mother and Child Cohort Study (114,500 pregnant women). In this study, a 

second trimester prenatal fever was associated with a 1.40 adjusted odds ratio [aOR; 95% 

confidence interval (CI) 1.1–1.8]; multiple fevers were associated with an even higher risk of 

ASD (aoR 3.1, 95% CI 1.3–7.6 with 3 or more fevers). Animal models of both viral and 
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bacterial infections in rodents and rhesus macaques support these findings; maternal 

infections have been associated with ASD-like phenotypes in the offspring with reduced 

socialization, atypical vocalizations, and repetitive behaviors.35–45 Both maternal and 

immune system dysfunction have emerged as central mechanisms that tie together many of 

the proposed environmental and pregnancy risk factors for ASD.32 For example, there is a 

clear linkage between the inflammatory response and both environmental toxicants46–48 and 

obesity.49,50 Meta-analyses also consistently demonstrate small, but significant and precise 

associations of family history of autoimmune disorders and ASD in offspring.51,52

Further, sexually dimorphic differences in the differential expression of innate immune 

genes in the brain are implicated in the strong male bias for ASD.53–55 Overall, the evidence 

supports a role for prenatal infections and other sources of maternal-fetal immune activation 

in the fetal origins of ASD.

Bipolar Disorder and Depression

The link between exposure to prenatal infections and development of bipolar disorder and 

depression is less clear. While there have been several studies to determine whether maternal 

infections during pregnancy increased the risk of bipolar disorder in the child, the results 

have been mixed and suffered from insufficient power and lack of correction for multiple 

hypothesis testing.56–58 In at least one study, maternal influenza infection was not linked 

with development of classical bipolar disorder in the child, but instead was associated with 

bipolar disorder with psychotic features.59 A recent study similarly found no increased risk 

for bipolar after maternal infection.11 Reflecting this uncertainty, a systematic review of risk 

of bipolar disorder after perinatal infection determined that results were mixed and more 

research was needed.60

There have been comparatively few studies examining the possible increased risk for 

depression after prenatal exposure to inflammation or infection and the results have also 

been mixed.11,58,61–70 However, many of these studies have relied on maternal self-report of 

infection during pregnancy or have studied depression outcomes of adults born during 

epidemics. Recent evidence from a population-based cohort in Sweden demonstrated 

increased risk of depression after fetal exposure to any type of hospitalized maternal 

infection (Hazard Ratio=1.24; 95%CI: 0.88–1.73) including urinary tract infections.11 

Separate observational data from the Swedish death registry demonstrated an increased risk 

of suicide starting at age 21 years among adults who had been exposed to a maternal 

infection during a hospitalization in utero.11 In addition, multiple studies in mouse models 

have found that fetal mice exposed to maternal immune activation may demonstrate 

depression-like behaviors.71–77 Overall, the evidence that prenatal infections underlie the 

fetal origins of depression is emerging and warrants more investigation.

Mechanisms of Fetal Brain injury

Many bacteria, viruses and parasites can cause direct or indirect injury to the fetal brain 

resulting in mild and severe neurodevelopmental injuries (Figure 1). The classical TORCH 

infections are known to cause direct injury to fetal brain cells by crossing the placenta and 

concentrating within the fetal compartment. These pathogens can cause varying degrees of 
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injury to the cortical white matter, eye, and ear78, resulting in a broad spectrum of pathology, 

from mild hearing deficit to severe neurodevelopmental delay.79 However, many infectious 

diseases can also injure the fetal central nervous system indirectly by potentiating the fetal 

inflammatory response resulting in activation of astrocytes and microglia causing cytokine 

release, apoptosis, attenuation of growth, and direct cellular damage (see CMV example, 

Figure 2).78 Placental inflammation is a key feature associated with fetal brain injury; 

inflammatory mediators or cells in the placenta can be transferred to the fetus, which can 

ultimately injure the fetal brain either through release of fetal cytokines, neurotransmitters or 

excitotoxic metabolites (Figures 2 and 3). To understand the pathogenesis of subtle fetal 

brain injuries that contribute to the future risk of mental illness, we review the linkage 

between perinatal infections, placental inflammation, activation of astrocytes and microglia 

in the fetal brain, genetic predisposition and epigenetic modifications.

Placental inflammation

Among the mechanisms implicated in fetal brain injury, evidence strongly indicates that the 

immunologic milieu of the placenta plays an important role in neurodevelopment. Placental 

mediation of immune activation was suggested by a study finding a higher concordance of 

schizophrenia among monochorionic twins sharing one placenta compared to dichorionic 

twins, each with its own placenta.80 A recent study demonstrated that many perinatal 

complications including infections can upregulate transcriptional programs in the placenta 

involved in oxidative stress response, synaptic function and cellular metabolism.81 

Suggestively, these same genetic loci are critical for normal neurodevelopment, and are also 

independently upregulated in patients with schizophrenia. The genetic risk for schizophrenia 

appears to be mediated through these perinatal complications such that a diagnosis of 

schizophrenia was most likely when a patient with a high genetic risk also experienced a 

perinatal complication; this effect was more pronounced in males. Taken together, these 

findings suggest that pregnancy complications and presumably inflammation may alter 

placental regulation of transcriptional programs, which can increase risk for development of 

schizophrenia.81

Both adaptive and innate immune responses in the placenta have been linked with the fetal 

origins of mental illness. CD8+ T cell infiltration of the placenta has emerged as a key 

immunological event following viral infection that can have destructive effects on the 

placental villous architecture and the chorioamniotic membranes.82 Following 

lipopolysaccharide-induced intrauterine inflammation in a mouse model, CD8+ T cells 

accumulated at the maternal-fetal interface; treatment with an anti-inflammatory led to 

reduced CD8+ T cell infiltration and improved fetal neurobehavioral outcomes.83 Depletion 

of CD8+ T cells in the same model of intrauterine inflammation was also associated with 

improved fetal neurologic outcomes and increased cortical neuron density.84 Less is known 

about the contribution of innate immune responses to the fetal origins of mental illness and 

the specific role of inflammatory cytokines,32,85,86 but there is some evidence that TGF-β1 

and granulocyte colony-stimulating factor may cross the placenta to enter the fetal 

circulation.87–90 Emerging evidence suggests that IL-17A and IL-2 also play important roles 

in fetal brain injury.35,91–93 The best support for a role for cytokines in the biology of 

neuropsychiatric conditions comes from studies of children and adults diagnosed with ASD, 
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in whom interleukin-6 (IL-6) is elevated in the peripheral blood.94–101 IL-6 can cross the 

placenta94,95 and administration of IL-6 can cause behavioral abnormalities in prenatally 

exposed mice in the absence of maternal inflammation, which is preventable by IL-6 

inhibition.101,102 Activation of both innate and adaptive immune responses in the placenta 

and periphery are associated with adverse neuropsychiatric outcomes.

Serotonergic dysregulation

The placenta is known to secrete neurotransmitters, which are linked with normal fetal brain 

development and abnormal neurodevelopment. In mice, maternal inflammation changes 

placental serotonin secretion which results in concentration of serotonin in the fetal 

forebrain, decreased serotonergic receptor expression and blunted serotonergic axon 

outgrowth.103 Fascinatingly, this process appears to occur in the absence of increased levels 

of inflammatory cytokines within the fetal brain.103–105 Other work has demonstrated a 

connection between elevated levels of serotonin and altered oligodendrocyte development 

and myelination.106 Maternal inflammation has also been found in animal studies to change 

dopaminergic and GABAergic activity in the fetal brain, which correlates with observations 

from human studies in people with schizophrenia and ASD.107–112 Lastly, maternal immune 

activation may also change development of cholinergic neurons in the fetal basal forebrain.
113 The connection between maternal infections or inflammation, placental neurotransmitter 

secretion, and fetal brain development is an active area of investigation.

Activated microglia, astrocytes and oligodendrocytes

Perinatal inflammation can activate fetal microglia and astrocytes to trigger cytokine release, 

which can injure neurons and oligodendrocytes.114 Histopathological studies of the brains of 

individuals with ASD have found microglial activation and an abnormal morphology and 

distribution of microglia.99,115–118 Further, in vivo imaging has demonstrated increased 

microglial activity in patients with ASD119 and other work has demonstrated possible 

abnormal microglia-neuron interactions.118 In numerous animal studies, maternal 

inflammation induces microglial activation113,120–122in the fetal brain, although these 

findings have not been universally replicated.123–125 In vitro studies have demonstrated 

increased neurotoxic cytokine release from activated microglia, which may damage or kill 

neurons and glia.113 There have been findings of microglial activation in 

schizophrenia126–132, though again with substantial inconsistencies, and some work has 

examined the role of microglia in bipolar disorder and depression.133–135

Astrocyte-associated pathologies are associated with exposure to pregnancy infections and 

development of ASD through effects on mitochondrial dysfunction, glutamate regulation 

and neuronal architecture.99,114,136–139 For example, increased expression of mitochondrial 

potassium channels within astrocytes has been found in people with ASD; in the fetal mouse 

brain, expression of these channels is also upregulated by a perinatal influenza infection.
140–142 Astrocyte dysfunction is also under investigation in depression143,144 and 

schizophrenia.144 Some organisms like Toxoplasma gondii may increase the risk for 

schizophrenia through astrocyte activation and dysregulation of kynurenic acid metabolism.
145–147 Aberrant astrocyte activation is associated with the development of neuropsychiatric 

disorders and fetal exposure to obstetrical infections.
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Inflammatory cytokines from activated microglia and astrocytes may alter the development 

of fetal oligodendrocytes148 which has been implicated in the pathology of schizophrenia, 

depression, ASD and bipolar disorder.149–156 Oligodendrocytes are the myelinating cells of 

the central nervous system. Evidence suggests that oligodendrocyte precursor dysfunction 

and hypomyelination may play important roles in ASD pathophysiology.157,158 Several 

recent and interesting studies are also implicating deficits in myelination and white matter 

integrity in the pathogenesis of schizophrenia and brain “disconnectivity”.159 Damaged 

oligodendrocytes and precursors from antenatal exposure to maternal immune activation 

may also be more susceptible to hypoxic insults over the life course and this combination 

may increase risk of multiple psychiatric illnesses.160 Interestingly, genes and transcription 

factors associated with oligodendrocyte myelination function have been found to be 

downregulated in the brains of adults with schizophrenia and bipolar disorder.161,162 In 

summary, there is a body of evidence to link obstetrical infections or inflammation with 

activation of innate immune cells in the fetal brain, which contribute to abnormal 

oligodendrocyte development and may increase risk for development of a spectrum of 

neuropsychiatric disorders in the child.

Inflammation, genetic susceptibility and epigenetics

The link between perinatal infection and fetal brain injury reflects a complex spectrum of 

exposure severity (e.g. pathogen virulence, maternal-fetal immune response) and genetic 

susceptibility that can alter brain development and predispose to ASD and schizophrenia 

(Figure 1).163 Maternal immune activation can also alter fetal brain transcription through 

epigenetic changes even in the apparent absence of fetal inflammation.164 In a mouse model, 

inflammation that is insufficient to trigger preterm birth was associated with decreased 

dendritic counts and altered protein expression in the fetal brain165, along with epigenetic 

changes in the mouse adolescent brain.166 Indirect evidence from one study involving nearly 

3,000 children with ASD found that interactions between maternal infection and the 

presence of a genetic predisposition in the child led to increased ASD symptom severity.167 

Schizophrenia has also been associated with epigenetic modifications168–171; epigenetics is 

the heritable change in gene expression that is not defined by the underlying DNA sequence, 

which is often accomplished through DNA methylation or histone modifications.172 

Perinatal inflammation has been associated with genome-wide methylation changes in the 

fetal brain173,174 and epigenetic changes in the striatum and hypothalamus thought to 

increase risk for schizophrenia.166 Inflammation-gene interactions have been found to 

induce psychosis-like behavior in mice175,176; the interaction between maternal 

inflammation and gene variants associated with neuropsychiatric disorders (e.g., DISC1, 

Nurr1) are also linked with a greater risk for psychosis-like behavior in mice than either 

inflammation or genetic mutation alone.92 In a recent study of five independent cohorts of 

humans with diverse ancestries, perinatal complications were observed to increase the risk of 

schizophrenia 5-fold among fetuses with an increased genetic risk.81 In this study, a 

polygenic risk profile score was constructed based on genome-wide association data from 

the Psychiatric Genetic Consortium datasets; this polygenic risk score was then overlaid 

upon the occurrence of obstetrical complications through medical records and personal 

interviews. When the polygenic risk scores were grouped into quintiles based on levels and 

then stratified into groups with and without obstetrical complications, the odds ratio for 
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schizophrenia increased with higher polygenic risk scores only in the group with obstetrical 

complications. An individual having the highest polygenic risk score with an obstetrical 

complication had an OR of 8.4 (95% CI: 3.8–18.5, p=3 × 10−8). Interestingly, the genes 

mapping to the loci with the strongest link to schizophrenia also had significantly higher 

gene expression in the placenta. In summary, evidence from human studies and animal 

models implicate an interaction between inflammation, perinatal complications and 

epigenetic changes in the fetal brain that can increase the risk for schizophrenia and ASD.

Clinical Recommendations

As data accumulate on the connection between perinatal inflammation and neuropsychiatric 

disease, preventing infections during pregnancy assumes greater importance (Box 1). While 

some perinatal infections are unexpected (e.g. chorioamnionitis), many can be prevented 

through vaccination including influenza, measles and chicken pox. Influenza vaccination of 

pregnant women is a best practice for promoting health of the mother and protecting the 

fetal brain. Influenza infection during pregnancy is associated with serious immediate risks 

(i.e. maternal mortality, preterm birth),177,178 as well as possible long-term risks of 

neuropsychiatric disease in the child. Maternal vaccination also partially protects the infant 

through passive immunity.179–183 The World Health Organization not only recommends that 

pregnant women receive the influenza vaccine, but that they have highest priority among 

vulnerable groups.184

Despite the well-established efficacy of the vaccine for maternal and neonatal protection 

from influenza infection, global vaccination rates among pregnant women remain low. In the 

United States, approximately half of pregnant women are estimated to receive the seasonal 

influenza vaccine.185,186 Limited data exists outside of the United States187, but recent 

European data suggested that approximately 25% of pregnant women were vaccinated.188 

Lastly, despite evidence that inactivated influenza vaccine is safe to administer in the first 

trimester, some countries have national policies recommending vaccination only in the 

second and third trimesters.189–196 These policies leave pregnant women vulnerable to 

influenza infection in the first trimester, which is a critical period of fetal neurodevelopment.

Although many pathogens have yet to be studied for the risk that they could impart to the 

developing fetal brain, any severe maternal infection may increase the risk for 

neuropsychiatric disease in the fetus that may not manifest for many years after birth. 

Rubeola virus (measles), Zika virus, and malaria represent both new and ancient potential 

infectious threats to the developing fetal brain. Currently, the United States is in the midst of 

one of the most significant outbreaks of the measles virus since virtual eradication of 

measles in the U.S. in 2000.197 Measles infection during pregnancy is linked to preterm 

labor, preterm birth, and stillbirth.198–201 While pregnant women cannot receive the MMR 

vaccine, obstetrical providers can encourage their patients to fully vaccinate their children to 

promote beneficial herd immunity. Pregnant women in Zika and malaria-endemic zones 

should protect themselves from mosquitos using bed nets, protective clothing and mosquito 

repellant.202–204 The World Health Organization recommends intermittent preventative 

therapy with sulfadoxine-pyrimethamine for pregnant women living in regions with middle 

and high malaria transmission.205 An important part of prenatal care is discussing the fetal 
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risks due to infections that may be acquired during travel that can result in teratogenesis or a 

severe maternal illness..

Further Research Directions

The studies exploring a fetal origin for mental illness have raised many questions (Box 2). 

Recent work has suggested that urinary tract infections (UTI) in hospitalized women may 

increase the risk for autism or depression to a similar degree as infections typically 

considered more severe (e.g. influenza infection, chorioamnionitis).11 UTIs are the most 

common infection in reproductive aged women, occur more frequently during pregnancy 

and can be associated with serious maternal and fetal morbidity and mortality.206,207 

Interestingly, there is some evidence linking UTIs with a systemic inflammatory response 

and preeclampsia.208 Other work has demonstrated that infants born to mothers with a UTI 

during pregnancy had elevated levels of several pro-inflammatory cytokines.209 Maternal 

UTIs have also been linked to development of cerebral palsy.210 These studies are suggestive 

and future work should attempt to correlate UTI-associated local and systemic inflammatory 

responses with inflammation in the placenta, amniotic fluid and fetus. Animal models have 

typically studied the link between a systemic or uterine infection with fetal brain injury; new 

studies could determine whether chronic inflammation resulting from a UTI is sufficient to 

induce fetal brain injury and activate microglia.

Questions have also emerged on the pro and anti-inflammatory roles of antibiotics in treating 

bacterial infections in pregnant women. The duration and extent of the infection coupled 

with the choice of antimicrobial therapy may play a role in the maternal immune response 

and possible subsequent neurodevelopmental abnormalities in offspring. Indeed, maternal 

immune activation may be induced by certain antibiotics, enhancing an inflammatory 

response detrimental to neurological development via lipopolysaccharide and other 

pathogen-associated molecular patterns (PAMPs).211 PAMPs have been studied in limited 

settings but early evidence suggests a possible link to worsened fetal outcomes. In a mouse 

pregnancy model, treatment of maternal Streptococcus pneumoniae bloodstream infection 

with ampicillin, known to be bacteriolytic and to induce release of bacterial cell wall 

components, resulted in abnormal fetal neuronal development.211 Yet, treating the same 

maternal infection with clindamycin, a non-bacteriolytic protein synthesis inhibitor, had no 

effect on the fetal brain.211 There are few experimental and epidemiological studies 

exploring the effect of antimicrobial treatment of systemic or local maternal infections (e.g. 

UTI) on brain development, but some evidence suggests that dampening pathogen-induced 

inflammation during pregnancy may mitigate neurodevelopmental abnormalities in 

offspring.212–215 The alternative, namely not treating a bacterial infection with antibiotics, is 

simply not an option as this could lead to bacterial dissemination and sepsis with even worse 

outcomes for the mother and fetus. Overall, investigation of the role of anti-inflammatory 

drugs with and without antibiotic therapy coupled with fetal outcome remains a significant 

research gap.

Large birth cohorts with long-term follow-up of the children are essential to investigating the 

relationship between perinatal infections and risk for neuropsychiatric disorders in the 

children. With better powered studies, it may be possible to clarify how the gestational 
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timing of the inflammatory insult alters fetal neurodevelopment and whether this risk is 

modified by fetal sex.81,216–218 Further, it is possible that some portion of more subtle 

pathologies like Attention Deficit Hyperactivity Disorder may have a fetal origin associated 

with exposure to inflammation.219,220 Future studies are important to define the role of 

placental secretion of neurotransmitters and cytokines in mediating fetal injury.102,163 

Lastly, a nascent body of work is exploring how the maternal gut microbiome may interact 

with maternal inflammation to alter the intrauterine environment.221,222

Conclusions

The classic TORCH paradigm was coined to create a mnemonic to aid in the recall of a 

select number of pathogens (i.e. Treponema pallidum, rubella virus, cytomegalovirus) 

thought to induce birth defects. However, a growing body of evidence suggests that focusing 

only on TORCH pathogens as a threat to the fetal brain is insufficient to capture the 

widening spectrum of pathogens and inflammatory conditions associated with 

neurocognitive deficits or psychiatric disorders in the child. As fetal brain development 

continues up to and beyond birth, the brain may be the single most vulnerable fetal organ to 

infectious and environmental insults over the course of the entire pregnancy.223 The nature 

of how fetal exposure to infections or maternal immune activation might synergistically 

increase the risk of these disorders with other risk factors (e.g. genetic) remains 

understudied. Finally, the clinical emphasis on preventing infections and inflammation in 

pregnancy to protect the fetal brain has not matched the gravity of the accumulating 

scientific evidence. Obstetrical providers should ensure that pregnant women receive the 

influenza vaccine, including in the first trimester, as a safe strategy to protect both the 

mother from severe disease, as well as the fetal brain. Determining additional interventions 

to lower the risk of neuropsychiatric disorders in the fetus will require both human cohorts 

and animal studies to correlate the complex biological events linking perinatal infections 

with fetal brain injury.
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Box 1.

Clinical and research recommendations

• Emerging infections

– Strengthen public health surveillance for birth defects and long-term 

adverse outcomes to better determine whether an emerging 

infectious disease might be teratogenic or result in subtle fetal brain 

injuries that could predispose to mental illness.

– Prioritize pregnant women as a high-risk group for efforts to develop 

acceptable and safe vaccines for use in pregnancy across a spectrum 

of emerging infections that may be dangerous for pregnancy.

– Enroll pregnant women in clinical trials to study new vaccines that 

are anticipated to provide them with benefit (e.g. Zika virus vaccine) 

at the same time as other study participants and collect information 

about potential adverse outcomes in pregnancy.

• Influenza virus infection

– Improve uptake of the seasonal influenza vaccine in pregnant 

women and encourage administration as early as possible once the 

vaccine is available, including during the first trimester to prevent 

maternal influenza infections.

– Educate pregnant women during “influenza season” to notify their 

provider right away if they have a fever, in order to expedite 

administration of antiviral therapeutics and supportive care.

• Preterm labor and intra-amniotic infection

– Perform amniocentesis in women presenting with early preterm 

labor to better evaluate the risk for amniotic fluid infection and need 

for antimicrobial therapy.

• Urinary tract infection

– Screen women at risk for genitourinary infections with a urine 

culture once per trimester. Higher risk individuals include women 

taking immunosuppressive medications or with autoimmune disease 

(e.g. systemic lupus erythematosus), sickle cell disease, urinary 

retention, anatomical urinary tract abnormalities, recurrent urinary 

tract infections or diabetes.
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Box 2.

Future research directions

• Epidemiology and policy

– What are the barriers to investigating the link between pregnancy 

infections, complications, fetal brain injury, birth defects and a long-

term increased risk of mental illness for the child?

– What are the barriers to improving seasonal influenza vaccine uptake 

in pregnant women around the world?

– How might improved prenatal care in low income countries reduce 

long-term burden of psychiatric disease?

• Pathobiology and the maternal-fetal immune response

– What are the risks posed by emerging infectious diseases to the 

long-term mental health of the child when an infectious exposure 

occurs during pregnancy?

– Can emerging infectious diseases penetrate placental defenses?

– What are the placental and fetal immune correlates of fetal brain 

injury that predispose to a long-term risk of mental illness?

– Is there a gestational age window of greatest susceptibility to fetal 

brain injury?

– Is there a differential risk for fetal brain injury depending upon fetal 

sex?

• Antimicrobial therapeutics

– What is the relationship between the use of antibiotics and the fetal 

inflammatory response? Is this relationship dependent upon the class 

and type of antibiotic used? How does antibiotic administration 

timing in relation to infection onset alter inflammatory response?

• Preterm labor and intra-amniotic infection

– Can amniocentesis or vaginal/cervical point of care tests be used to 

better identify pregnancies with an intra-amniotic infection that 

might benefit from antibiotics?

– In the context of an intra-amniotic infection, can fetal brain injury 

and the long-term risk of mental illness in the child be mitigated by 

the use of anti-inflammatory therapies in conjunction with 

antibiotics?

• Urinary tract infection
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– Does a maternal urinary tract infection result in a regional 

inflammatory response that imparts a higher risk for subtle fetal 

brain injury and long-term risk of mental illness?

– Does screening pregnant women at high-risk for recurrent urinary 

tract infections mitigate the long-term increased risk of mental 

illness for the fetus?
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Figure 1. 
Factors linking perinatal infections with mild and severe fetal brain injury. Several factors 

are thought to influence the severity and extent of a maternal infection leading to mild or 

severe fetal brain injury. Mild fetal brain injuries may not be detected clinically at birth and 

may only manifest later in life as a neurodevelopmental or neuropsychiatric disorder.
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Figure 2. 
Photomicrographs of the placenta and fetal or neonatal brain infected with CMV. In the 

placenta (A), there is hyperplasia of fetal macrophages (Hofbauer cells) and infiltration with 

lymphocytes and plasma cells. Inclusions are shown, which are pathognomonic for CMV 

infection. (B) In the brainstem of a 4 month-old infant born at 26 weeks gestation with a 

prenatal CMV infection, a microglial nodule (within the white circle) is shown with most 

cells reflecting lymphocytes, activated microglia and reactive astrocytes. (C) In the white 

matter of a 25-day old neonate born at 24 weeks gestation with a CMV prenatal infection, a 

focus of remote necrosis and dystrophic mineralization (refractile dark purple deposits) is 

shown. (D) In the fetal brain of a 23-week fetus, the acute phase of a CMV infection is 

shown with a hypercellular focus containing a mixture of activated microglial cells, reactive 

astrocytes, and a presumed neuron with pathognomonic CMV cytoplasmic and nuclear 

inclusions. A measurement bar representing 100 um is shown in panel C, which is applicable 

to all panels.
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Figure 3. 
Perinatal infections, placental immune response and cellular targets in the fetal brain. A 

spectrum of maternal infections induced by viruses, bacteria and parasites have been 

implicated in the development of placental pathology and fetal brain injury. Infiltration of 

the placenta by immune cells, notably maternal CD8+ T cells and plasma cells, has been 

strongly linked to fetal brain injury. Neutrophilic infiltration of the placenta is classically 

associated with bacterial infections, like Group B Streptococcus, which can cause meningitis 

and fetal brain injury. The cellular response in the fetal brain typically associated with 

perinatal infectious or inflammatory injury reflects activation of microglia and astrocytes 

with neuronal loss and oligodendrocyte dysfunction. The pathogens listed are associated 

with fetal brain injury and in some instances with development of mental illness in the child.
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