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Acyl ethanolamides in Diabetes 
and Diabetic Nephropathy: Novel 
targets from untargeted plasma 
metabolomic profiles of South 
Asian Indian men
Sarita Devi1,4, Bajanai Nongkhlaw1,4, M. Limesh2, Roshni M. Pasanna1, Tinku Thomas   3, 
Rebecca Kuriyan1, Anura V. Kurpad1,5 & Arpita Mukhopadhyay   1,5*

The pathophysiology of diabetic nephropathy (DN) in type 2 diabetes (T2D) patients is minimally 
understood. We compared untargeted high-resolution accurate mass (HRAM) orbitrap-based plasma 
metabolomic profiles of 31 T2D-DN (with estimated glomerular filtration rate ≤80 mL/min/1.73 m2), 
29 T2D and 30 normal glucose tolerance (NGT) Indian men. Of the 939 plasma metabolites that were 
differentially abundant amongst the NGT, T2D and T2D-DN (ANOVA, False Discovery Rate – FDR 
adjusted p-value < 0.05), 48 were associated with T2D irrespective of the renal function of the subjects. 
Acyl ethanolamides and acetylcholine were decreased while monoacylglycerols (MAGs) and cortisol 
were elevated in both T2D and T2D-DN. Sixteen metabolites, including amino acid metabolites 
Imidazolelactate and N-Acetylornithine, changed significantly between NGT, T2D and T2D-DN. 192 
metabolites were specifically dysregulated in T2D-DN (ratio ≥2 or ≤0.5 between T2D-DN and T2D, 
similar abundance in NGT and T2D). These included increased levels of multiple acylcarnitine and amino 
acid metabolites. We observed a significant dysregulation of amino acid and fatty acid metabolism 
in South Asian Indian male T2D-DN subjects. Unique to this study, we report a reduction in acyl 
ethanolamide levels in both T2D and T2D-DN males. Those with dysregulation in acyl ethanolamides, 
which are endogenous agonists of GPR119, are likely to exhibit improved glycemic control with GPR119 
agonists.

The global prevalence of T2D is estimated to be 9% among adults1. Individuals of South Asian descent seem 
especially at high risk2. Even more disconcerting is the possibility of a more aggressive course of the underlying 
pathophysiology of the disease in South Asian Indians as underlined by the recent findings in Chennai, India, 
of one of the highest rates of conversion from pre-diabetes to T2D3. It is still not clear what specific metabolic 
dysregulations underlie this susceptibility or aggressive course.

Diabetic nephropathy (DN) is the leading cause of end stage renal disease (ESRD) worldwide4. A 2% prev-
alence of overt nephropathy and a 27% prevalence of microalbuminuria has been reported amongst South 
Asian Indian T2D patients in India5. The prevalence of DN is higher in Asians, African Americans and Native 
Americans compared to Caucasians, raising the possibility of a higher susceptibility of some populations to DN6. 
Only a subset of T2D patients (about 40%) develop DN and the progression from DN to ESRD is not uniform7, 
further emphasizing the heterogeneity of the pathophysiology of DN.

Strong correlations have been reported between insulin resistance and dysregulated lipid and amino acid 
metabolism8,9. Some of the primary metabolic coupling factors that might affect beta-cell function include 
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glutamate, long chain acyl-CoA and diacylglycerol10. Further, metabolites associated with branched chain amino 
acid (BCAA) catabolism such as 3-hydroxy Isovalerate, 2-Ethyl 3-Hydroxy Propionate, Hydroxy Propionic acid 
as well as sphingolipid metabolism have been reported to be dysregulated in DN patients11,12.

Except for the prospective follow-up studies tracking the progression of T2D to DN13, most studies have com-
pared metabolomic profiles directly between DN and healthy controls without comparing uncomplicated T2D 
metabolomic profiles, or have not specifically looked at metabolites associated with T2D and progression to DN 
in South Asian Indian subjects or have not adjusted their findings for the sex of the subjects. In this backdrop, we 
have compared untargeted plasma metabolomic profiles of well-characterized South Asian Indian male normal 
glucose tolerance (NGT), T2D and T2D-DN subjects with the goal of identifying metabolites that are common 
or different between T2D and T2D-DN in this high-risk population. In this hypothesis generating study, data on 
such metabolites and the associated biochemical pathways will form the basis for testable hypotheses for better 
understanding of the pathophysiology of T2D and T2D-DN toward elucidation of novel targets for prevention 
as well as treatment.

Results
Socio-demographic characteristics, anthropometric measurements, metabolic profiles and dietary intakes of the 
study participants are summarized in Table 1. BMI, body fat%, fat mass, appendicular lean mass and dietary 
intakes (energy and macronutrients) were similar between the diabetic (T2D and T2D-DN) and NGT control 
groups. The diabetic groups were older, had higher waist-hip ratio and higher fasting glucose (>120 mg/dL) and 
HbA1c (>6.5%). Systolic blood pressure and serum creatinine levels were higher in the T2D-DN group.

For each fasted plasma sample, 5781 metabolite features were detected, of which 1763 could be assigned iden-
tities. Based on PCA, the 3 subject groups could be separated along PC1 (Fig. 1). PC1 and PC2 explained 10.0% 
and 5.5% respectively of the variance in the metabolomic data.

On further conducting univariate analyses by ANOVA, we observed that 939 metabolites were differentially 
abundant amongst the NGT, T2D and T2D-DN groups. In order to specifically identify the metabolites associated 
with the T2D and T2D-DN, we further conducted systematic pathway analysis on these 939 metabolites.

Metabolites significantly dysregulated between NGT, T2D and T2D-DN.  To identify metabolites 
significantly elevated or reduced in both T2D and T2D-DN compared to the NGT as well as dysregulated between 
T2D and T2D-DN in the same direction, we selected metabolites that were significantly dysregulated between 
NGT and T2D, between T2D and T2D-DN as well as between NGT and T2D-DN (FDR adjusted p-value <0.05). 
Of 36 such metabolites identified, 16 could be mapped to biochemical pathways using CytoScape (Supplementary 
Table 1, Fig. 2a). We observed an increase in amino acid metabolites such as Imidazolelactate (Supplementary 
Fig. 1a), N-Acetylornithine and 6-Oxo-2-piperidinecarboxylic acid as well as in (R)-3-hydroxybutyrylcarnitine. 
Lauramide and cholecalciferol levels declined, by 20% and 30% in T2D compared to NGT and by 18% and 24% 
in T2D-DN compared to T2D, respectively (Fig. 3a, Supplementary Fig. 1b).

Metabolites specifically dysregulated in T2D and T2D-DN irrespective of renal function.  We 
deemed metabolites that were significantly (FDR adjusted p-value <0.05) dysregulated between NGT and T2D 
and between NGT and T2D-DN but were similar between T2D and T2D-DN groups to be associated with T2D 
irrespective of the renal function. Of 208 such metabolites identified, we could map 48 to distinct biochemi-
cal pathways (Supplementary Table 2, Fig. 2b). Monoacylglycerols (MAGs) 1-Stearoylglycerol (Supplementary 
Fig. 1c), 1-Linoleoyl glycerol and 2-Linoleoyl glycerol were elevated while acyl ethanolamides such as pal-
mitamide (hexadecanamide), linoleamide, oleamide, palmitoleoyl ethanolamide and stearamide (Fig. 3b–f) 
were all decreased in T2D and T2D-DN compared to NGT with similar levels between T2D and T2D-DN 
groups. Cortisol and few phosphatidylcholine species, such as 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)
-sn-glycero-3-phosphocholine were elevated while acetylcholine was decreased in T2D and T2D-DN. As 
expected, drugs such as metformin and glimepiride were elevated in T2D and T2D-DN.

Metabolites specifically dysregulated in T2D-DN.  To identify metabolites specifically associated with 
T2D-DN, we selected metabolites that were significantly dysregulated between NGT and T2D-DN as well as 
between T2D and T2D-DN (FDR adjusted p-value <0.05) but not between NGT and T2D. This constituted 
the largest group of 1447 metabolites, of which 501 could be mapped to biochemical pathways. To reduce the 
complexity of the resulting pathway map and to focus on the metabolites with relatively higher effect sizes, we 
further mapped 192 of the 501 metabolites that exhibited a difference in ratio of ≥2 or ≤0.5 between the T2D-DN 
and T2D groups (Supplementary Table 3, Supplementary Fig. 2). Multiple amino acids and their metabolites 
were elevated in T2D-DN. Amongst the amino acids, methionine exhibited the largest increase (12.5 fold higher 
compared to NGT and 6.9 folds higher compared to T2D). The n-6 and n-3 fatty acid pathways were dysreg-
ulated, with increase in arachidonic acid and docosahexaenoic acid ethyl ester and decrease in docosapentae-
noic acid. We also observed dysregulation in the carnitine-fatty acid metabolism pathway, with elevated levels of 
DL-Carnitine, O-3-methylglutarylcarnitine, acetyl-L-carnitine, propionylcarnitine, hydroxypropionylcarnitine 
and hexanoylcarnitine while levels of palmitoylcarnitine (Supplementary Fig. 1d) and 2-methylbutyrylcarnitine 
were reduced. As expected, creatinine, multiple medication and medication-related metabolites were 
increased exclusively in T2D-DN. The choline-phosphatidylcholine pathway was dysregulated in T2D-DN 
with reduced levels of oleoyl-lysophosphatidylcholine, 1-Hexadecanoyl-sn-glycero-3-phosphocholine 
and L-alpha-Glycerylphosphorylcholine and elevated levels of 1-tetradecanoyl-2-[(9Z)-octadecenoyl]
-sn-glycero-3-phosphocholine. Choline levels were 2.3 and 1.9 folds higher in T2D-DN compared to NGT and 
T2D respectively (Supplementary Fig. 1e).
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As the metabolites observed to be dysregulated in T2D-DN are likely to be associated with renal function, 
we tested and observed within the T2D-DN group, significant association between renal function, expressed as 
estimated Glomerular Filtration Rate (eGFR), and abundance of the 20 metabolites with the lowest FDR adjusted 
p-value in difference in abundance between T2D and T2D-DN (Supplementary Table 4).

Metabolites associated specifically with T2D.  Only 3 metabolites, 1-arachidonoyl-sn-glycero-3
-phosphocholine, phenylalanylproline and 4-(8-Methyl-8,9-dihydro-7H-[1,3]dioxolo[4,5-h][2,3]

NGT T2D T2D-DN P value

n 30 29 31

Age (years) 38.2 ± 5.7a 48.8 ± 8.1b 52.8 ± 7.2b <0.001

Height (cm) 168.3 ± 8.2 165.9 ± 5.0 166.0 ± 6.4 0.281

Weight (kg) 71.2 ± 8.8 68.0 ± 9.3 67.6 ± 8.1 0.229

BMI (kg/m2) 25.1 ± 2.2 24.7 ± 2.8 24.5 ± 2.4 0.659

Waist-Hip Ratio (cm) 0.91 ± 0.05a 0.96 ± 0.06b 0.98 ± 0.08c <0.001

Years since diagnosed as T2D* 0.0 (0.0, 0.0)a 3.0 (1.0, 12.3)b 10.0 (5.8, 15.5)b <0.001

Systolic blood pressure (mmHg) 121.0 ± 11.7a 128.8 ± 16.2a 141.9 ± 27.3b <0.001

Diastolic blood pressure (mmHg) 81.4 ± 8.0 83.3 ± 8.5 87.3 ± 15.1 0.117

Body fat (%) 30.9 ± 4.8 29.5 ± 5.2 29.0 ± 6.3 0.384

Fat mass (kg) 21.3 ± 5.3 19.5 ± 5.3 19.2 ± 5.5 0.257

Android Fat (%) 42.8 ± 5.1 41.2 ± 6.1 40.2 ± 7.1 0.250

Gynoid Fat (%) 34.7 ± 4.8a 31.1 ± 5.0b 29.8 ± 6.b 0.002

Android:Gynoid ratio 1.24 ± 0.15a 1.34 ± 0.16a 1.36 ± 0.18b 0.014

Appendicular lean mass (kg) 47.0 ± 5.0 45.8 ± 5.2 45.8 ± 4.5 0.572

Bone Mineral Content (kg) 2.9 ± 0.4a 2.6 ± 0.3a,b 2.6 ± 0.4b 0.020

Metabolic profile†

HbA1c (%) 5.2 ± 0.2a 7.9 ± 1.6b 7.9 ± 1.9b <0.001

Fasting Glucose (mg/dL) 85.9 ± 7.5a 153.9 ± 68.3b 135.9 ± 67.2b <0.001

Fasting Insulin (mU/L)# 10.2 ± 5.8 11.6 ± 6.8 17.7 ± 20.7 0.070

C-Peptide (ng/mL) 2.6 ± 0.9a 3.9 ± 1.9a 4.7 ± 3.0b 0.001

Cholesterol (mg/dL) 183.2 ± 31.7 194.7 ± 44.6 171.7 ± 64.0 0.195

HDL Cholesterol (mg/dL) 42.7 ± 7.1 39.2 ± 7.6 38.9 ± 8.0 0.109

LDL Cholesterol (mg/dL) 122.4 ± 27.1 123.7 ± 34.4 107.0 ± 45.9 0.151

Triglycerides (mg/dL) 120.1 ± 52.8a 181.8 ± 89.1b 172.0 ± 122.9a 0.027

Creatinine (mg/dL) 0.9 ± 0.1a 0.9 ± 0.2a 2.1 ± 1.5b <0.001

Dietary intake^

Energy (kcal) 1534 (1392, 1667) 1577 (1269, 1907) 1325 (1043, 1709) 0.126

Protein (g) 47.2 (38.4, 55.6) 51.2 (40.9, 71.1) 41.7 (30.6, 54.1) 0.111

Protein energy% 11.8 (10.0, 13.7) 12.5 (11.7, 16.5) 12.1 (10.9, 14.0) 0.112

Carbohydrate (g) 247.3 (213.9, 277.9) 235.0 (173.0, 305.0) 213.5 (168.1, 270.5) 0.091

Carbohydrate energy% 66.4 (61.6, 69.2) 61.0 (51.5, 70.6) 62.7 (59.6, 67.5) 0.297

Fat (g) 37.1 (30.9, 48.0) 43.4 (28.4, 52.9) 32.2 (25.2, 50.3) 0.489

Fat energy% 22.7 (19.7, 26.7) 24.1 (18.3, 29.3) 24.4 (20.0, 28.9) 0.659

Saturated fat (g) 11.8 (8.9, 17.8) 12.3 (8.2, 18.5) 13.1 (5.9, 19.0) 0.813

Palmitic acid (g) 4.85 (3.54, 6.30) 5.10 (3.38, 6.57) 4.13 (2.83, 5.60) 0.266

Steric acid (g) 2.13 (1.59, 3.07) 2.38 (1.46, 3.22) 1.83 (1.22, 2.80) 0.354

Monounsaturated fat (g) 7.91 (7.52, 13.67) 9.60 (5.95, 14.3) 8.0 (5.7, 11.7) 0.559

Palmitoleic acid (g) 0.21 (0.14, 0.33) 0.29 (0.13, 0.37) 0.20 (0.11, 0.33) 0.379

Oleic acid (g) 7.40 (6.76, 13.09) 8.91 (5.45, 13.4) 7.15 (5.20, 10.17) 0.368

Polyunsaturated fat (g) 14.4 (10.8, 17.9) 13.4 (8.8, 17.4) 13.6 (8.4, 17.0) 0.818

Linoleic acid (g) 14.0 (10.5, 17.5) 13.0 (8.5, 17.0) 13.5 (8.2, 16.6) 0.782

Linolenic acid (g) 0.30 (0.25, 0.36) 0.29 (0.20, 0.39) 0.26 (0.19, 0.34) 0.474

Arachidonic acid (g) 0.000 (0.000, 0.010)a 0.002 (0.000, 0.081)a,b 0.001 (0.001, 0.011)b 0.031

Table 1.  Subject characteristics, metabolic profile and dietary intake of the 90 study subjects. Data presented 
as mean ± SD, Labelled means in a row without a common superscript letter differ by post-hoc Tukey’s test, 
P < 0.05. *Data presented as median (quartile1, quartile3). Labelled medians in a row without a common 
superscript letter differ by post-hoc Dunn test, Bonferroni adjusted for multiple testing P < 0.05. †Blood was 
drawn from fasting volunteers. #Value for n = 89 (NGT: n = 29). ^Data calculated from one 24-hour recall of 
dietary intake.
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Figure 1.  Multivariate analysis of untargeted metabolomics data using 5781 metabolites. Principal component 
analysis (PCA) plot of principal component (PC)1 and PC2 for each of the 90 plasma samples from subjects 
of normal glucose tolerance (NGT: dark blue circles), type 2 diabetes mellitus (T2D: orange circles) and T2D-
Diabetic nephropathy (T2D-DN: light blue circles) groups.

Figure 2.  Biochemical pathway and chemical relationships network of (a) the 16 metabolites significantly 
dysregulated between NGT and T2D, T2D and T2D-DN as well as NGT and T2D-DN (FDR adjusted p-value 
<0.05) and (b) the 48 metabolites significantly associated with T2D irrespective of renal function of the subjects 
[significantly dysregulated (FDR adjusted p-value <0.05) between NGT and T2D and between NGT and 
T2D-DN but not between T2D and T2D-DN]. Blue represents downregulated and red represents upregulated 
metabolites in the diabetic groups (T2D and T2D-DN) compared to NGT. (NGT: normal glucose tolerance, 
T2D: type 2 diabetes mellitus, T2D-DN: type 2 diabetes mellitus-diabetic nephropathy).
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benzodiazepin-5-yl)aniline were significantly dysregulated between T2D and NGT and between T2D 
and T2D-DN (FDR adjusted p-value <0.05) but were similar in abundance between NGT and T2D-DN 
(Supplementary Table 5, Supplementary Fig. 1f–h).

Discussion
We have analysed untargeted plasma metabolomic patterns associated with T2D and T2D-DN to parse plasma 
metabolites into those that are associated with T2D irrespective renal involvement and those associated specif-
ically with T2D-DN, in Indian men, a high-risk population whose T2D and T2D-DN associated metabolomic 
profile has not been reported.

Unique to our study, we observed consistent reduction of multiple species of acyl ethanolamides in both T2D 
and T2D-DN fasting plasma. N-acylphosphatidylethanolamine (N-APE), the precursor of acyl ethanolamides14, 
as well as acyl ethanolamides such as oleamide, have been implicated as small intestine-derived circulating fac-
tors synthesized in response to ingested fat, that promote satiety and inhibit food intake by activating the nuclear 
receptor PPAR-α15. Since we exclusively analysed fasted plasma samples, and dietary intakes of energy or macro-
nutrients were similar between the control and diabetic groups, it is unlikely that role of acyl ethanolamides in 
T2D-associated dysglycemia could be mediated by regulation of feeding. Further supporting this argument, intes-
tinal epithelia-specific mouse knockout of N-acylphosphatidylethanolamine phospholipase D (N-APE-PLD), 
the enzyme catalysing conversion of N-acylphosphatidylethanolamines to acyl ethanolamides, results in exac-
erbation of high fat diet-induced obesity and hepatic steatosis but does not affect glucose metabolism16 whereas 
adipocyte-specific N-APE-PLD knockout mice exhibit whole body fasted hyperglycemia and hyperinsulinemia, 
as well as hepatic and skeletal muscle but not adipose insulin resistance17.

Low plasma acyl ethanolamide levels in the T2D and T2D-DN groups could result in low brain acyl ethanol-
amide levels as both radiolabelled N-APE14 and palmitoylethanolamide can cross the rat blood-brain barrier and 
concentrate in the hypothalamus18. In the paraventricular hypothalamic nucleus (PVN), the acyl ethanolamides 
and the cannabinoid signalling system could downregulate the hypothalamic-pituitary-adrenal (HPA) axis, as 
oral treatment of lean and obese Zucker rats with the cannabinoid-1 receptor (CB1) antagonist rimonabant, an 
anorectic drug, leads to increase in basal corticosterone levels19, similar to the higher fasting plasma cortisol levels 
that we observed in the T2D and T2D-DN groups. Significant, positive associations between morning, fasting 
serum cortisol and fasting glucose concentrations and insulin resistance in 509 subjects from Mysore, India, with 
15% prevalence of T2D have been reported earlier20. Persistent activation of the HPA axis, therefore, could likely 
precipitate the T2D-associated dysglycemia via increase in central adiposity,21 evident in the T2D and T2D-DN 
groups based on higher ratio of Android:Gynoid fat% and waist-hip ratio. Based on our findings and associated 
relevant findings in humans and animal models summarized above, we hypothesize that lower plasma N-APE 
levels could lead to lower hypothalamic N-APE levels, upregulating the hypothalamic-pituitary-adrenal (HPA) 
axis, leading to increased plasma cortisol levels, central adiposity and development of dysglycemia associated 
with T2D (Fig. 4).

Apart from their cannabinoid-signaling related effects on dysglycemia, palmitoleoyl ethanolamide could also 
be acting as a potent lipid agonist of GPR11922, sensing lipids in the intestinal enteroendocrine cells, stimulating 

Figure 3.  Box plots depicting levels of (a) Hexadecanamide, (b) Lauramide (c) Linoleamide, (d) Oleamide, (e) 
Palmitoleoyl ethanolamide and (f) Stearamide in normal glucose tolerance (dark blue), type 2 diabetes mellitus 
(orange) and type 2 diabetes mellitus-diabetic nephropathy (light blue) subjects.
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glucagon-like peptide-1 (GLP-1) release as well as in the pancreatic β-cells, and enhancing glucose-dependent 
insulin secretion23. Though many GPR119 agonists have been recently tested as a novel class of antidiabetic 
drugs relying on such data from in vitro and animal studies, none have progressed beyond phase II trials24 except 
DS-8500a, that was reported to significantly improve glycemic control in a randomized, double-blind phase II 
trial in Japanese diabetic patients25. Considering there are no epidemiological data available on plasma levels of 
acyl ethanolamide, or endogenous agonists of GPR119, it is likely that the synthetic agonists are possibly going 
to be effective in improving glycemic control in ethnic populations where the endogenous GPR119 agonists are 
dysregulated in diabetic patients, such as in our study.

Multiple MAGs were consistently elevated in our diabetic study population (both T2D and T2D-DN, with no 
further dysregulation between T2D and T2D-DN). We postulate that such metabolites highlight T2D-associated 
dysglycemia with minimal or no involvement in diabetic nephropathy. As such, these metabolites are also likely to 
have prospective prognostic potential owing to their causal involvement in T2D-associated dysglycemia. MAGs 
such as 1-Palmitoylglycerol have been reported26 as positive contributors to Metabolomic Risk Scores discrimi-
nating between T2D and control fasting plasma from middle-aged European participants at baseline, implicating 
higher ‘fasting’ levels of MAGs in normoglycemic individuals as a sign of on-going or impending exhaustion of 
β-cell function/mass as MAGs enhance glucose-stimulated insulin secretion (GSIS) in the presence of glucose, in 
rat insulinoma cells, rat islets and human islets27.

We also observed significantly reduced levels of acetylcholine in T2D and T2D-DN plasma. This has been 
reported earlier, where a reduction of 50% in the risk of incident T2D of the highest quartile of plasma acetyl-
choline was observed in Chinese adults28, confirming the power of the present untargeted cross-sectional plasma 
metabolomic approach in identifying plasma metabolites likely to have predictive role in development of dysgly-
cemia. Similar prospective studies from India have not yet been reported. We did not detect or quantitate glucose 
in our untargeted plasma metabolomics dataset as the analysis of polar metabolites requires pre-column derivat-
ization (such as silylation before analysis by GCMS) or specialized chromatography29–31.

Very few metabolites exhibited a step-wise dysregulation between NGT, T2D and T2D-DN groups. The pro-
gressive increase in levels of amino acid metabolites such as Imidazolelactate and N-Acetylornithine are likely 
to be reflective of the role of kidney in amino acid metabolism32, and this needs to be confirmed in prospective 
studies. We also observed a progressive decline of cholecalciferol in T2D and T2D-DN, which is expected in light 
of the widely recognized renoprotective role of vitamin D33.

The T2D-DN specific metabolites formed the largest category of dysregulated metabolites, primarily due 
to the varied drug regimens the T2D-DN patients were on. Amino acids such as methionine, proline, leucine, 
tyrosine, glutamine, glutamic acid and their derivatives were uniformly increased in T2D-DN, which converges 
with the role of the kidney in amino acid metabolism, as well as earlier reports on plasma metabolomic profiles 
in patients with kidney dysfunction34. In addition, we also observed an elevation of plasma choline levels in 

Figure 4.  Framework for understanding the role of fatty acyl ethanolamides (FAEs) in precipitating T2D-
associated dysglycemia. Lower plasma N-APE levels could lead to lower hypothalamic N-APE levels, 
upregulating the hypothalamic-pituitary-adrenal (HPA) axis, leading to increased plasma cortisol levels, 
central adiposity and development of dysglycemia associated with T2D. Proposed steps stemming from the 
findings of the current study are highlighted in bold while those lacking available evidence are highlighted with 
question marks. N-APE: N-acylphosphatidylethanolamine, N-APE-PLD: N-acylphosphatidylethanolamine 
phospholipase D, CRH: Corticotropin-releasing Hormone, ACTH: Adrenocorticotropic Hormone.
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T2D-DN subjects. Choline has been recently reported to be one of the 24 plasma metabolites associated nega-
tively with HOMA-IR in the PREDIMED study35.

We observed significant dysregulation of the carnitine-fatty acid metabolism in T2D-DN subjects. A system-
atic review and meta-analysis of carnitine supplementation in ESRD patients reported a significant reduction 
of serum low-density lipoprotein (LDL), C-reactive protein (CRP) and associated reduction in inflammation, 
further linking this to lower cardiovascular complications and all-cause mortality in these patients36. L-carnitine 
is well known for its role as a protectant against cellular oxidative stress from various sources including lipid per-
oxidation37. Overall, the reduced levels of long-chain acylcarnitines combined with increased levels of short-chain 
acylcarnitines as well as of DL-carnitine in the T2D-DN subjects from our study suggest an impaired rate of 
β-oxidation, which has been recently reported to worsen with advancing chronic kidney disease (CKD)38.

We observed significant association between renal function, expressed as eGFR, and abundance of the 20 
metabolites with the lowest FDR adjusted p-value in difference in abundance between T2D and T2D-DN, within 
the T2D-DN group. For instance, higher plasma imidazolelactate abundance was associated with lower eGFR 
values, both within the T2D-DN and T2D groups. This is expected as imidazolelactate is a non-metabolizable 
catabolite of histidine in humans39 and therefore, plasma abundance of imidazolelactate could be acting as an 
indicator of renal excretory potential. The endogenous metabolites that exhibit significant association with renal 
function can potentially be utilized to track renal function once validating prospective studies are conducted to 
confirm our observations.

The strength of this study is the utilization of a logical data analysis plan in three groups of subjects, through 
which untargeted plasma metabolomic profiles were parsed toward identifying metabolites that first, are dys-
regulated between NGT and T2D subjects irrespective of renal function; second, are dysregulated in a step-wise 
manner between NGT, T2D and T2D-DN subjects, thereby likely to be associated with worsening kidney func-
tion in T2D-DN subjects and third, are dysregulated specifically in T2D-DN subjects, that included most of the 
myriad medications that the T2D-DN subjects consume. Further, to the best of our knowledge, we have described 
these plasma metabolomic patterns for the first time in South Asian Indians, a high-risk group, living in India, a 
country going through economic and nutrition transition40. We also intentionally restricted our study to plasma 
samples to men to avoid the probability of sex-specific metabolites masking metabolite perturbations associ-
ated with T2D and T2D-DN, as sex-specific differences in plasma metabolomic profiles is well documented41–43. 
Potential weaknesses of our study include the relatively small sample size and utilization of a single untargeted 
metabolomic platform and a single type of body fluid for metabolomic analyses. Also, difference in levels of 
metabolites between NGT and T2D as well as T2D-DN groups could potentially be explainable by the higher age 
of the T2D and T2D-DN groups compared to the NGT group as levels of a fraction of plasma metabolites have 
been reported by various groups to be associated with age44,45. For instance, elevated levels of cortisol in T2D 
and T2D-DN in our study could be attributed to age as plasma cortisol levels have been reported to be positively 
associated with age in both males and females46. Nevertheless, Fanelli et al. did not find plasma palmitoylethanol-
amide, oleoylethanolamide and anandamide levels to be associated with age in 144 Italian men, in the only study 
to date that has analysed association of these metabolites with age in human plasma47. Further, activity of brain 
and heart N-acylphosphatidylethanolamine phospholipase D (N-APE-PLD), the enzyme catalysing conversion of 
N-acylphosphatidylethanolamines to acyl ethanolamides, has been reported to increase ~15 folds from neonatal 
stage to adulthood in male Wistar rats while that of liver N-APE-PLD stayed unchanged with increasing age48, 
making it mechanistically unlikely that the that the reduced levels of multiple acyl ethanolamide species that we 
have observed in the T2D and T2D-DN plasma is due to their decline with age.

In summary, our findings suggest that the downregulation of acyl ethanolamides is a likely novel mechanism 
of T2D associated dysglycemia. Carnitine-fatty acid and amino acid metabolic pathways exhibit progressive dys-
regulation from normoglycemia to T2D and further to diabetic nephropathy. Prospective studies in both men 
and women can test the causal role of these metabolites in the precipitation of dysglycemia associated with T2D 
and in perturbed renal function in T2D-DN. These metabolites also provide fertile avenues for future mechanistic 
studies to identify on one hand, novel modifiable lifestyle changes for prevention and on the other, novel therapy 
targets for treatment of T2D and T2D-DN.

Methods
Study design and inclusion criteria.  The study sample consisted of control (NGT), T2D and T2D-DN 
men who were recruited through the Department of Nephroplogy and the Nutrition and Lifestyle Clinic at St. 
John’s Medical College and Hospital, Bangalore.

Subjects included were in the age group 18–60 years, who consented to participate in the study, and were 
recruited according to American Diabetes Association (ADA) criteria in the following 3 groups: a) T2D subjects 
with DN (T2D-DN, n = 31) with an estimated glomerular filtration rate (eGFR, Modification of Diet in Renal 
Disease equation) ≤80 mL/min/1.73 m2); b) T2D subjects without diabetic nephropathy (T2D, n = 29); and c) 
Control subjects with normal glucose tolerance (NGT, n = 30) of age, sex and BMI similar to that of the case 
group subjects.

Subjects were excluded if their age was outside the range of 18–60 years, unwilling to participate in the study, 
participating in any other study and those who tested positive for hepatitis (HBsAg) and HIV. Those who had 
serious pre-existing medical conditions or required chronic or daily medical therapy (connective tissue diseases, 
inflammatory bowel disease, active tuberculosis, symptomatic heart disease) were excluded.

Ethical approval and informed consent.  The Institutional Ethics Committee of St. John’s Medical 
College and Hospital, Bangalore approved the study. The study protocol was explained in the local language of the 
participants and their signed, informed consent was obtained at recruitment. The study protocol was carried out 
in accordance with relevant guidelines and regulations.
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Socio-demographic data and medical history.  Detailed socio-demographic data was collected by 
trained personnel using a well-structured questionnaire. The questionnaires was provided and explained in 
English or a local language in which the subject is most comfortable. A detailed clinical examination was per-
formed for all subjects to ensure that subjects met inclusion criteria, and a blood and urine workup was included 
to evaluate liver and renal function. Participants were also asked for information regarding the medications and 
supplements they were currently taking, and verified from prescriptions that they were using.

Anthropometric, blood pressure and pulse measurements.  Subjects were weighed in minimal cloth-
ing using a digital scale, to a precision of 0.1 kg. The height of the subjects were recorded to the nearest 0.1 cm. 
Waist and hip measurements were also taken to estimate the Waist to hip ratio (WHR). Blood pressure and pulse 
was measured and recorded by trained staff after a relaxation period. Whole body and regional body composition 
was assessed by Dual-energy X-ray absorptiometry (DXA; DPXMD 7254, Lunar Corporation, Madison, WI). 
Total body fat (BF) was measured and expressed as a percentage of body weight (% BF).

Sample Collection, clinical chemistry.  Ten mL of blood was collected in EDTA (BD Vacutainer®, Becton, 
Dickinson and Company, Franklin Lakes, NJ) tubes between ∼0900 and 0930 hours by arm venepuncture after 
an overnight fast, and immediately transferred to an ice box until further processing. Samples were centrifuged 
within 1.5 hours of collection at 117 rcf for 10 minutes in a cold centrifuge (4 °C; REMI C-23 BL Cooling cen-
trifuge, Mumbai, India), after which the plasma was separated, aliquoted in cryovials and stored at −80 °C until 
analysis.

Standard plasma and serum clinical chemistry assays on fasted samples included glucose, total cholesterol, 
HDL cholesterol, LDL cholesterol, triglycerides and creatinine (Beckman Coulter AU480 Chemistry Analyzer, 
Beckman Coulter, Brea, CA), insulin and C-peptide (ROCHE Hitachi Elecsys 2010 Chemistry Analyzer, Basel, 
Switzerland) and hemoglobin A1c (Siemens Dimension XPand Plus Analyzer, Siemens, Erlangen, Germany). 
The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) creatinine equation recommended 
by the National Kidney Foundation, USA was used to estimate the Glomerular Filtration Rate (eGFR) for the 
subjects49,50.

High-Resolution Accurate-Mass (HRAM) data analysis.  Plasma samples were spiked with an inter-
nal standard (IS) of a 2H-labelled amino acid mixture (1 ng/mL; U-2H labelled amino acid mix >97% purity; 
Cambridge Isotope Laboratories, Massachusetts, USA), diluted 3-fold with chilled organic solvent (8:1:1, ace-
tonitrile: methanol: acetone) and vortex-mixed. They were then incubated at 4 °C for 30 min and centrifuged 
at 20000 rcf for 20 min in a refrigerated centrifuge (5810 R, Eppendorf, Eppendorf AG, Hamburg, Germany). 
Supernatants were transferred to another vial and dried at 40 °C in a vacuum concentrator (Labconco, USA). 
Metabolites were reconstituted in acetonitrile/water (1:1) and high-throughput, untargeted metabolomics anal-
ysis was performed on a high-resolution accurate-mass (HRAM) platform consisting of an ultra-high pressure 
liquid chromatograph (UHPLC, Thermo Scientific, Vanquish Flex Binary, Waltham, MA, USA) coupled to an 
orbitrap based mass spectrometer (Q Exactive, Thermo Scientific, San Jose, USA). The mass spectrometer was 
calibrated by using a positive ion calibration solution (Thermo ScientificTM Pierce LTQ Velos ESI) as an external 
calibration on daily basis. Separation of the metabolites was achieved by using a Zorbax Eclipse plus-C18 column 
(150*2.1*1.8 micron, Agilent Technologies, Santa Clara, CA, USA) at 40 °C. The mobile phase was delivered in a 
reversed-phase gradient elution at 0.35 mL/min, using water (eluent A) and acetonitrile (eluent B), both contain-
ing 0.1% formic acid. The following gradient profile was used: 0–3 min: 1% B and increased to 95% B at 14 min 
and held for 3 min then decreased to 1% B at 17.5 and equilibrated for another 3 min. Reconstituted extracts were 
loaded on an autosampler where the injection volume was set at 5 μL for each of the solvent blanks, pooled quality 
control (QC) samples, which included four technical replicates of a pool of aliquots from plasma samples (from 
each of the study groups,51 and study samples in a daily analytical batch.

The mass spectrometer was operated under heated electrospray ionization (HESI-II) positive mode in full 
scan (m/z 100–1500) and used resolution 70,000 (FWHM) at m/z 200, with automatic gain control (AGC) target 
of 1 × 106 ions and a maximum ion injection time (IT) of 100 ms. Data-dependent MS/MS were acquired on a 
“Top5” data-dependent mode using the following parameters: resolution 35,000; AGC 1 × 105 ions; maximum 
IT 50 ms; 1.0 amu isolation window; combined NCE 25%, 35% and 50% and dynamic exclusion time was set at 
10 s. Source ionization parameters were: spray voltage, 3.80 kV; capillary temperature, 330 °C; heater temperature 
350 °C and S-Lens level, 50.

Metabolites were visualized, mapped to pathways and automatically identified by mzCloud using Thermo 
Scientific™ Compound Discoverer™ 3.0 software. An untargeted metabolomics workflow was used to identify 
the differences in metabolites between samples from the three study groups. This workflow performed the reten-
tion time alignment, unknown metabolite detection, metabolite grouping across all samples, predicted elemental 
compositions for all metabolites, filled gaps across all samples, corrected the chemical background (using blank 
samples) and normalized the data by using constant mean parameters. QC samples were used for batch normal-
ization and statistical data analysis. Identification of the metabolites was done by using mzCloud (ddMS2) and 
ChemSpider (formula or exact mass) along with similarity searches for all compounds with ddMS2 data using 
mzCloud. The identification also applied mzLogic algorithm to rank order ChemSpider results and mapped com-
pounds to biological pathways using Metabolika, BioCys and KEGG (available within Compound Discoverer™ 
3.0 software).

Statistical analyses.  Anthropometric, biochemical and dietary data were presented as mean ± SD for nor-
mally distributed data or median (quartile1, quartile3) for non-normally distributed data. Normal distributions 
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were examined using the Shapiro-Wilk test and Q-Q plots. Comparison between groups of normally distributed 
data was performed using ANOVA followed by Tukey’s Post-hoc test and that between non-normally distributed 
data was performed using Kruskal-Wallis one-way ANOVA followed by Dunn post-hoc test with Bonferroni 
adjustment for multiple testing. Associations between non-normally distributed data was tested using Spearman’s 
correlation. P-value < 0.05 was considered statistically significant.

For untargeted metabolomic data, groups area ratios, fold change (log2 scale), study group-wise coefficient 
of variance, trend charts, Principal Component Analysis (PCA), as well as differential analysis by ANOVA (per 
group ratio by ANOVA and TukeyHSD post-hoc test for significance testing adjusted with Benjamini-Hochberg 
corrections for the false discovery rate) were analysed using the Compound Discoverer™ 3.0 software. Data 
analyses were conducted using principal component analysis (PCA), an unsupervised method where each point 
represents an MS spectrum allowing identification of the similarity or the differences between the sample profiles. 
A framework for assessing specific differences by ANOVA between groups was conducted as follows: first, metab-
olites were unequivocally identified, confirmed and categorized as significantly different in abundance (dysreg-
ulated) between each of the groups (NGT, T2D, and T2D-DN). Next, significant differences in metabolites were 
sought between the controls and the both diabetes groups, irrespective of their renal function (between NGT and 
T2D or T2D-DN but similar between T2D and T2D-DN). Next, specific differences were sought for the T2D-DN 
group (between NGT and T2D-DN and between T2D and T2D-DN but similar between NGT and T2D). Finally, 
specific differences were sought for the T2D group (between T2D and NGT and between T2D and T2D-DN but 
similar between NGT and T2D-DN). The FDR adjusted p-value was <0.05 for all such metabolites. We used an 
improved and integrated way of visualizing all the detected metabolites by ‘MetaMapp’ to map all the detected 
metabolites (with P ≤0.05 and fold change ≥1) in network graphs by using KEGG reactant pair database, and 
Tanimoto similarity-chemical relationship scores52. The output from MetaMapp network was further visualized 
by an open-source platform Cytoscape (version 3.0.) for the metabolite categories that were found to be dysreg-
ulated in this study53. Each node of the network represents a metabolite or class of metabolites and an edge or 
line between the nodes denotes a similarity relationship between those metabolites or class of metabolites. The 
radial layouts were used so that nodes are clustered more tightly if they are more highly interconnected within the 
network of metabolites for each group.

Data availability
The datasets generated and analysed during the current study that support the findings of this study are available 
from the corresponding author on reasonable request.
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