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ARTICLE INFO ABSTRACT

Keywords: The hippocampus is a core brain region that responds to stress. Previous studies have found a dysconnectivity
Stress between hippocampus and other brain regions under acute and chronic stress. However, whether and how acute

Hippocampus social stress influences the directed connectivity patterns from and to the hippocampus remains unclear. In this
Granger causal analysis study, using a within-subject design and Granger causal analysis (GCA), we investigated the alterations of resting
E?;]l)iain state effective connectivity from and to hippocampal subregions after an acute social stressor (the Trier Social
Thalamus Stress Test). Participants were engaged in stress and control conditions spaced approximately one month apart.

Our findings showed that stress altered the information flows in the thalamus-hippocampus-insula/midbrain
circuit. The changes in this circuit could also predict with high accuracy the stress and control conditions at the
subject level. These hippocampus-related brain networks have been documented to be involved in emotional
information processing and storage, as well as habitual responses. We speculate that alterations of the effective
connectivity between these brain regions may be associated with the registering and encoding of threatening
stimuli under stress. Our investigation of hippocampal functional connectivity at a subregional level may help

elucidate the functional neurobiology of stress-related psychiatric disorders.

1. Introduction

Stress is a ubiquitous feature of fast-changing societies, and em-
pirical studies have shown that stress can have a profound impact on
various facets of emotional and cognitive functions (Sandi, 2013; Vogel
et al., 2016). In extreme circumstances, stress can lead to psychogenic
diseases such as major depressive disorder (MDD) or post-traumatic
stress disorder (PTSD). The hypothalamo-pituitary-adrenal (HPA) axis
plays an important role in response to threatening stimuli (stressors) by
releasing glucocorticoids (cortisol in humans, and corticosterone in
rodents) (J. P. Herman and Cullinan, 1997; Kalsbeek et al., 2012). The
glucocorticoids play an important role in promoting survival by redis-
tributing energy to critical functions in the face of stressors. However,
the glucocorticoids need tight control to protect the individual from the
harm of experiencing long-term alteration of homeostasis (J. Herman,
McKlveen, Solomon, Carvalho-Netto and Myers, 2012; Tasker and
Herman, 2011; Ulrich-Lai and Herman, 2009). The negative feedback
inhibition of glucocorticoid could be mediated by mineralocorticoid
receptors (MR) or glucocorticoid receptors (GR).

The hippocampus has a high density of both MR and GR, and is
documented to be involved in glucocorticoid feedback inhibition (de
Kloet et al., 2005; Sandi, 2013). Previous studies found that stimulating

the hippocampus results in the decrease of glucocorticoid level (J. P.
Herman et al., 2003), while lesion in this brain region causes prolonged
HPA axis responses to stressors (J. Herman, Dolgas and Carlson, 1998).
Using the Montreal Imaging Stress Task (MIST) to induce acute stress,
Pruessner et al. found that the hippocampus volume was negatively
correlated with the cortisol response to the stressor (Pruessner et al.,
2005). It has been shown that acute and chronic stress also reduces
synaptic strength, suppress neuronal propagation, induce morpholo-
gical and functional changes in hippocampus (Diamond et al., 2007; L.
Schwabe and Wolf, 2012).

Besides the effects of stress on the hippocampus itself, the temporal
correlations between the hippocampus and other brain structures are
also disrupted by acute and chronic stressors. For example, after stress
was induced in a serial subtraction task, the connectivity between the
hippocampus and amygdala was increased for up to 2h (Vaisvaser
et al., 2013). In an appetitive conditioning task, it was found that
compared to controls, stressed participants exhibited enhanced func-
tional connectivity between the hippocampus and three other regions,
namely amygdala, ventral anterior cingulate cortex, and orbitofrontal
cortex (Kruse et al., 2017). The functional connectivity (FC) analysis
describes the dependencies between two or more brain regions without
any assumption about the direction of these correlations (Seth et al.,
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2015). In contrast, effective connectivity can be used to explore the
direction of functional interaction among brain regions.

The hippocampal structure is comprised of functionally hetero-
geneous subfields: the cornu ammonis (CA1-CA3), dentate gyrus (DG),
and subicular complex (Subc) (Amunts et al., 2005; Jones and McHugh,
2011). In addition to studies documenting the effects of stress on the
whole hippocampus (L. Schwabe and Wolf, 2012; Vaisvaser et al.,
2013), other animal and human studies have demonstrated the effects
of stress on subfields of the hippocampus. For instance, a recent study
found that the central stress response indicated by c-Fos in male rats
only decreased in the CA1 subfield of the hippocampus after injection of
MR/GR modulator (Nguyen et al., 2017). Another study comparing
MDD patients and controls also found evidence of regional specificity
(Travis et al., 2016). Eight hours after awakening, the salivary cortisol
in MDD patients was higher than in controls and the increases were
negatively correlated with the left CA1-3 and left hippocampal head
volume, while, in healthy controls, the mean cortisol level was nega-
tively correlated with right CA1-3 and right hippocampal head volume.

Although previous studies have found stress-induced structural and
functional alterations in the hippocampus and its subregions, whether
and how stress influences the effective connectivity patterns involving
the hippocampal subfields remains unclear. Compared with exploring
changes in brain region activation or alterations in undirectional
functional connectivity, effective connectivity analysis could provide
more information about how distributed neural systems influence each
other (K. J. Friston, 2011). In the present study, using a within-subject
design and Granger causality analysis (GCA), we investigated how ef-
fective connectivity from and to hippocampal subregions is altered after
acute psychological social stress. Compared with the between-subject
design adopted by previous studies (Kruse et al., 2017; Maier et al.,
2015), a within-subject design reduces error variance associated with
individual differences between groups. GCA is a powerful method to
examine brain information flow between brain regions, relying on a
simple idea that a brain region X Granger causes the other brain region
Y if time courses of X precede and are useful to predict the time series of
Y (Granger, 1969; Guo et al., 2015a,b; Seth et al., 2015; Zhang et al.,
2017). Another widely used method to explore effective connectivity is
dynamic causal modeling (DCM). DCM is a hypothesis-driven approach
and requires prespecified models to decide which one fits the observed
data best using Bayesian frameworks (K. J. Friston, Harrison and Penny,
2003). GCA is a data-driven approach and requires fewer parameters
than the DCM (Seth et al., 2015). GCA has been widely used in patient
and healthy population studies (Bellucci et al., 2017; Guo et al.,
2015a,b; Hamilton et al., 2011). For example, Hamilton et al. adopted
both bivariate and multivariate GCA to identify the brain structures
whose activity had causal connectivity (e.g., following or preceding)
with the activation in ventral anterior cingulate cortex in MDD, thus
providing more information about the neural mechanisms underlying
this disorder (J. P. Hamilton et al., 2011a,b).

Dysregulation of emotions is a common pathophysiological feature
of stress-related disorders (Seligowski et al., 2015; Tobia et al., 2017).
In the present study, we conducted a whole-brain analysis to explore
the stress-induced effective connectivity alteration of hippocampal
subregions with brain areas restricted to the limbic system, including
the bilateral amygdala, anterior cingulate cortex, midbrain, insula and
thalamus. These brain structures are structurally and functionally
connected with the hippocampus, and constitute a neural network as-
sociated with the processing and modulation of emotions, and are all
documented to be vulnerable to acute and chronic stress (Arnold
Anteraper et al., 2014; X. Cao et al., 2012a,b; A. David and Pierre, 2009;
Phillips et al., 2003; Price and Drevets, 2010). We hypothesized that in
comparison with a non-stressful condition, there could be stronger ef-
fective connectivity between the hippocampus and these brain regions
of the limbic system to cope with emotional information induced by a
stress condition.

As the significant differences between “no-stress” and “stress”
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conditions in hippocampal subregions-related effective connectivity
were based on statistical separation (e.g., the paired-t-test), the pre-
dictive power of these neural signatures remains unclear (Deshpande
et al.,, 2010a,b; D Rangaprakash et al., 2017a,b). Hence we further
explored whether this significantly different information flows from
and to hippocampal subregions could be used to distinguish brain states
in stress and control conditions. We employed the support vector ma-
chine (SVM), a machine learning algorithm that can build a model to
optimally categorize data correctly after training (Cortes and Vapnik,
1995). SVM is popular for its high flexibility and accuracy as well as its
capability to deal with numerous features with few training patterns
(Guyon et al., 2002; Liu et al., 2017; Lou et al., 2017).

2. Materials and methods
2.1. Participants

Participants, who were recruited from the local community, in-
cluded 30 healthy right-handed volunteers (15 females) whose ages
ranged from 18 to 25 years old (M = 20.6, SD = 2.0). None reported
previous participation in a stress-related research study. None of them
reported any history of major medical, psychiatric, or neurological
diseases. All participants provided written informed consent according
to protocols approved by the South China Normal University
Institutional Review Board. Before the experiment, participants were
instructed to refrain from intense exercise and caffeine 12 h before the
study.

2.2. Experimental design

As shown in Fig. 1A, after an acclimation period of 20 min following
arrival, baseline saliva samples and affect ratings (see physiological and
psychological measures) were collected (T1). Participants were then in-
structed to complete either the stress or control task (see stress induc-
tion) and given 5 min to prepare, after which affect ratings were again
recorded (T2). Participants then completed the stress or control task,
with saliva samples and affect ratings collected upon task completion
(T3). Next, 8 min of resting-state fMRI data were collected. After the
scan, participants completed three sessions of the stop signal task (SST)
(Hu et al., 2016), the results of which are reported elsewhere. After
each session of SST, saliva samples and affect ratings were collected
(T4, T5, and T6). Participants were exposed to the acute stress and
control conditions in two separate sessions with at least a 30-day in-
terval between the two sessions. Participants were randomly assigned
to two groups based on condition order, such that half completed the
stress condition first and the other half completed the control condition
first. Between-group analysis showed that the two groups did not sig-
nificantly differ in age or gender (ps > 0.5), indicating that the ran-
domly assigned two groups were comparable. Following previous stu-
dies (Qin et al., 2012; L. Schwabe and Wolf, 2012), all sessions were
conducted in the afternoon (i.e., between 1 p.m. and 6 p.m.), as levels
of endogenous cortisol in the afternoon have been reported to be re-
latively stable and low (Deuschle et al., 1997).

2.3. Stress induction

Participants completed the Trier Social Stress Test (TSST), a well-
validated stressor (Kirschbaum et al., 1993). The TSST included a
preparation period (5min) and a formal task period (5-min public
speaking task and 5-min mental arithmetic task). In the stress condition,
participants were instructed to prepare a job application and introduce
themselves in front of a committee and a video camera. To increase task
engagement, participants were asked to write down their dream job
before the preparation period. They were instructed to convince the
committee that they were the most suitable candidate for this position.
The committee members (one woman and one man) were trained to
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Fig. 1. Experimental procedure and manipulation check. (A) The timeline of the experiment. After an acclimation period of 20 min following arrival, participants
were asked to go through the Trier Social Stress Test (TSST) with (stress condition) or without (control condition) social evaluative processes. After the formal tasks,
resting state fMRI data were collected. Saliva samples were collected at T1, T3, T4, T5, and T6. Affective ratings were collected at T1, T2, T3, T4, T5, and T6. (B)

Cortisol and positive/negative emotional responses under control and stress conditions (mean and standard error). *p < 0.05, **p < 0.01,

remain emotionally neutral during the speech. Upon completion of the
speech, participants were asked to subtract the number 13 serially from
1022 and report their calculations in English as quickly and accurately
as possible for 5 min. If they committed any error, they were asked to
restart from 1022. Having participants respond in a foreign language
(i.e., English) was expected to increase the difficulty of the mental ar-
ithmetic task for the participants and possibly further increase their
stress level. Participants used Chinese in all other parts of the experi-
ment.

In the control condition, to ensure a comparable cognitive load,
participants went through the same tasks in an empty room without the
committee and video camera. In other words, there was no social
evaluative stress in the control condition.

2.4. Physiological and psychological measures

To ascertain whether the manipulation of acute stress was effective
in terms of changes in physiological and psychological responses, sali-
vary cortisol and affect ratings were assessed at multiple time points
throughout the experiment (see Fig. 1A). Saliva samples were collected
using Salivettes (Sarstedt, Germany) and were stored at —15 °C until
assayed. Cortisol concentrations in saliva (in ng/mL) were measured by
performing ELISA (catalog No. SLV 4635; DRG, Germany).

Positive and negative affect were measured using the Positive Affect
and Negative Affect Schedule (PANAS), and this measure has shown
high reliability in adults samples (Van Marle, Hermans, Qin and
Fernadndez, 2010; Watson et al., 1988). Positive emotions included
calm, relaxed, peaceful, confident, and energetic; negative emotions
included nervous, anxious, scared, tired, and upset. Participants rated
items on a four-point scale from 1 (“not at all”) to 4 (“extremely”).

2.5. Image data acquisition

Brain images were obtained with a 3-T MRI scanner (Siemens) at the
Brain Imaging Center at South China Normal University. T1-weighted
images were acquired with the following parameters: repetition
time = 1900 ms, echo time = 2.52 ms, field of view = 256 x 256 mm?,
flip angle = 9°, matrix size = 256 x 256, and 1 mm?® isotropic voxel.
T2*-weighted echo-planar images (EPI) were obtained with blood

*p < 0.001.

oxygenation level-dependent (BOLD) contrast. Thirty-two axial slices
covering the whole brain were acquired with TR = 2000 ms,
TE = 25 ms, flip angle = 85°, field of view = 220 x 220 mm, matrix
size = 64 X 64, in-plane voxel size = 3 X 3 mm, and slice thick-
ness = 4 mm with no gap. Slice scanning order was ascending inter-
leaved. A total of 240 images were acquired for the resting state scan.
During the resting state scanning, all participants were requested to
close their eyes.

2.6. Imaging preprocessing

The fMRI data were preprocessed and analyzed using Statistical
Parametric Mapping version 8 (SPM8, Wellcome Department of
Imaging Neuroscience, University College London, U.K.) and Data
Processing & Analysis for (Resting-State) Brain Imaging (DPABI; http://
rfmri.org/DPABI) (Yan et al., 2016). After discarding the first 10 vol,
the remaining 230 fMRI volumes were first slice-time corrected and
later head-motion corrected using a least squares approach and a 24-
parameter autoregressive model (Friston 24-parameter model) (K. J.
Friston, Williams, Howard, Frackowiak and Turner, 1996). The 24
parameters included six head motion parameters, six head motion
parameters one-time point before, and the 12 corresponding squared
items. No participant's head motion exceeded 2.0 mm in translation or
2° in rotation. We further calculated frame-wise displacement (FD),
which indexes volume-to-volume changes in head position (Power
et al., 2014). The mean FD in stress and control groups were
0.11 + 0.03 and 0.12 = 0.03, respectively. One-sample t-test showed
that they were significantly less than 0.2 mm (both p < 0.001). Fur-
thermore, the paired t-test showed no significant differences in FD be-
tween the two conditions (p = 0.43).

Subsequently, T1-weighted and functional images were reoriented
by hand to optimize alignment for co-registration, segmentation, and
normalization (N. Wang et al., 2017). Individual T1-weighted images
were co-registered to the mean motion-corrected functional image. The
resulting aligned images were then segmented into gray matter, white
matter, and cerebrospinal fluid (CSF). To remove the nuisance signal,
the 24 head-motion parameters, CSF, and white matter were regressed
out. Next, the segmented images were transformed into Montreal
Neurological Institute (MNI) space via the Diffeomorphic Anatomical
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Fig. 2. Locations of hippocampal subregions. Green: CA (CA1-CA3 combined); Red: DG (fascia dentata and CA4); Blue: Subc. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

Registration Through Exponentiated Lie Algebra (DARTEL) technique
and used to generate a study-specific template (Ashburner, 2007). The
functional images were normalized into a standardized MNI space using
the specific template, re-sampled to a 3mm X 3mm X 4mm voxel,
spatially smoothed with a 6 mm FWHM Gaussian filter, and temporally
band-pass filtered into 0.01-0.1 Hz to reduce the effect of very low-
frequency drift and high-frequency physiological noise.

2.7. Granger causal analysis (GCA)

2.7.1. Definition of the seed region of interest (ROI)

To be consistent with previous studies (Atienza et al., 2011; Kurth
et al., 2017; Z. Wang et al., 2015), we used the maximum probabilistic
map of three hippocampal subregions in both the left and right hemi-
spheres derived from SPM Anatomy Toolbox v2.2b (Amunts et al.,
2005). These 3 subregions were located in the CA (including CA1, CA2
and CA3), DG and Subc (see Fig. 2). Only voxels with at least a 50%
probability of belonging in one of these subregions were included in an
ROI, and each voxel was assigned to only one subregion. Subregion
maps for the two hemispheres were combined to create bilateral ROIs
for the CA, DG, and Subc subregions.

2.7.2. GCA processing

We calculated the voxel-wise bivariate coefficient GCA by using the
REST-GCA in the REST toolbox (http://www.restfmri.net; (Song et al.,
2011). We estimated the Granger causal effects between the reference
time series of the seed regions (bilateral CA, DG, and Subc) and the time
series of each voxel within the whole brain. Two analyses were con-
ducted to explore voxel-wise GCA: seed-to-whole-brain and whole-
brain-to-seed. The seed-to-whole-brain analysis explored the driving or
inhibitory effects of seeds on other voxels in the brain, whereas the
whole-brain-to-seed analysis explored the excitatory or depressive ef-
fects of other voxels on the seeds (J. P. Hamilton et al., 2011a,b; Ji
et al.,, 2013). Vector autoregressive models were used to estimate
Granger causality to determine whether or not the past value of a time
series could correctly forecast the present value of another. If the
combination of the past values of the time series X and Y could estimate
the current value of Y more accurately than the past value of Y alone,
then the time series X is said to have a causal effect on time series Y
(Zang et al., 2012). This is to say that if the signed path coefficient is
significantly different from zero in the stress or control condition, then
it is said that X shows significant Granger prediction on Y (Chen et al.,
2009; J Paul Hamilton et al., 2011). In particular, positive signed path
coefficients (i.e., those significantly larger than zero) indicate that in-
creases in X could predict the current increases in Y, whereas negative
signed path coefficients (i.e., those significantly smaller than zero) in-
dicate that increases in X in the last time point could predict current
decreases in Y. Further, because signed path coefficients are considered
to be normally distributed, parametric statistical analyses can be used
to make group-level inferences (Zang et al., 2012).

The bivariate voxel-wise GCA maps of each seed ROI for each

condition were fed to a flexible factorial analysis with the following
factors: Subject, Condition (stress vs. control), and Subregion (bilateral
CA/DG/Subc). Within this ANOVA we calculated both main effects
(condition and subregion) as well as the condition X subregion inter-
action. To further visualize significant interaction effects, the average
Granger causality values in significant brain regions were extracted and
subjected to post-hoc tests. For reported flexible factorial analyses, an
uncorrected voxel threshold of p < 0.005 followed by a family-wise
error (FWE) corrected threshold of p < 0.05 using small volume cor-
rection (SVC) was set. The ROIs for SVC included the bilateral amyg-
dala, anterior cingulate cortex, midbrain, insula and thalamus. The
ROIs were defined using the corresponding AAL mask(Tzourio-Mazoyer
et al., 2007). These brain regions are structurally and functionally
connected to the hippocampus and constitute a neural network of
emotion processing and modulation (Xiaohua Cao et al., 2012; A. David
and Pierre, 2009; Price and Drevets, 2010).

2.8. Classification analysis using SVM

2.8.1. SVM processing

To further estimate the accuracy of using GCA values to predict
stress or control state, we adopted the SVM method. The SVM was
conducted using the LIBSVM software package (http://www.csie.ntu.
edu.tw/ ~cjlin/libsvm/) (C.-C. Chang and Lin, 2011). SVM requires a
training dataset to learn differences between different conditions and a
test dataset to evaluate classification performance on unobserved data.
Our data were trained by providing label pairs (x;, ¢;), i=1, ..., L,
where x; € R". x; represents the average Granger causality values from
brain structures that significantly different between stress and control
conditions, and c corresponds to the class label. In our sample, the stress
and control conditions were assigned class labels “c = +1” and
“c = —1”, respectively. These Granger causality values in training
dataset and test dataset were normalized respectively, i.e. converted to
Z scores.

2.8.2. Feature ranking

Before training the classifiers, the SVM-Ranking Feature Extraction
(SVM-RFE) algorithm was used to rank the features (i.e., the sig-
nificantly different Granger causal values between stress and control
conditions (see Fig. 4) according to their potential for discriminating
between stress and control conditions (Guyon et al., 2002; Lou et al.,
2017). SVM-RFE returned a ranking of the classification features (see
Table 1) by training SVM with a linear kernel and removing the feature
with the smallest ranking criterion. The SVM-RFE feature ranking
function was conducted using the LIBSVM software package.

2.8.3. SVM models evaluation and selection

After feature ranking, we firstly used the best feature to train the
classifiers. Then, we performed new tests by including each feature one-
by-one according to its potential for discriminating between two classes
of interest (i.e., its rank). For each combination of features, the classifier
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Table 1

The rank of features.
Ranking Features
1 average Granger causality values from CA to left insula
2 average Granger causality values from CA to left midbrain
3 average Granger causality values from DG to left insula
4 average Granger causality values from right thalamus to DG
5 average Granger causality values from left thalamus to DG
6 average Granger causality values from left thalamus to CA
7 average Granger causality values from left thalamus to Subc

CA,cornu ammonis; DG, dentate gyrus; Subc, subicular complex.

was trained and then applied to classify the validation samples. The
LIBSVM classifier algorithm was applied using leave-one-subject-per-
group-out cross-validation (LOSPGOCV) technique, which is appro-
priate for a within-subject design we used (see Pattern Recognition for
Neuroimaging Toolbox manual 10.5.1) (Schrouff et al., 2013). Speci-
fically, in the present study, two samples, which were the Granger
causality values of the same participant under stress and control con-
ditions, were selected as the testing dataset in each LOSPGOCV pro-
cedure. Then the classification model was constructed in the training
stage with the remaining 58 Granger causality values (i.e., the other 29
participants' data under stress and control condition) provided as fea-
tures and their condition labels as output. After that, this model was
used in the prediction stage to predict the selected testing samples'
condition. By repeatedly leaving each participant's data out as the test
set, we obtained the average classification rate from 30 leave-one-
subject-per-group-out procedures (Fan et al., 2005). To determine
whether the obtained mean accuracy was significantly higher than
chance, we applied permutation test. We permuted the labels (control
or stress) randomly across the entire sample 1,000 times, and reapplied
the entire classification procedure each time (Cui et al., 2016). The P
value was calculated by dividing the number of permutations which
had a higher classification rate than the real dataset by 1000 (i.e., the
total number of permutation).

Three aspects of the SVM models’ performance were evaluated: (1)
mean classification accuracy of 30 LOSPGOCV procedures (i.e., the
mean fraction of correctly classified condition out of two conditions of a
participant in the test set), (2) sensitivity (i.e., the ratio of correctly
classified participants in the stress condition to the total number of
participants in the stress condition in the test set), and (3) specificity
(i.e., the ratio of correctly classified participants in the control condi-
tion to the total number of participants in the control condition in the
test set; (Akay, 2009; Lou et al., 2017).

3. Results
3.1. Physiological responses to acute stress

For all reported analyses, Greenhouse-Geisser correction was ap-
plied when the assumption of sphericity was violated. To check whether
the manipulation of acute stress was effective, we carried out a
Treatment (control vs. stress) X Time Point (T1, T3, T4, T5, and T6)
repeated-measures ANOVA on cortisol level (see Fig. 1B). Three parti-
cipants’ cortisol samples could not be assayed due to insufficient saliva,
leaving data from 27 participants for analysis. Results showed sig-
nificant main effects of treatment (F(1, 26) = 16.258, p < 0.001,
#° = 0.385) and time point (F(4, 104) = 4.159, p = 0.01, 5 = 0.138).
The interaction between treatment and time point was also significant
(F(4, 104) = 4.453, p = 0.006, ;12 = 0.146). Being consistent with
previous studies (Dickerson and Kemeny, 2004; Ginis et al., 2012),
which suggest that the cortisol reactivity reaches its peak between 21
and 40 min following stressor onset, post-hoc t tests showed that the
stress condition induced higher cortisol than the control condition at T3
(t(26) = 2.677, p = 0.013), T4 (t(26) = 4.503, p < 0.001), TS (t
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(26) = 4.112, p < 0.001), and T6 (t(26) = 3.947, p = 0.001).

For positive and negative emotion ratings, we also carried out two
Treatment (control vs. stress) X Time Point (T1, T2, T3, T4, T5, and T6)
repeated-measures ANOVAs on positive emotion ratings and on nega-
tive emotion ratings (see Fig. 1B). For positive emotion ratings, results
showed significant main effects of treatment (F(1, 29) = 4.355,
p = 0.046, ;12 = 0.131) and time point (F(5, 145) = 6.556, p < 0.001,
#° = 0.184). The interaction between treatment and time point was also
significant (F(5, 145) = 7.505, p < 0.001, #° = 0.206). Post-hoc t tests
showed significantly lower positive emotion ratings in the stress con-
dition than in the control condition at T2 (t(29) = —2.801, p = 0.009)
and T3 (t(29) = —4.817, p < 0.001). For negative emotion ratings,
results showed significant main effects of treatment (F(1, 29) = 8.553,
p = 0.007, ;72 = 0.228) and time point (F(5, 145) = 3.354, p = 0.015,
;12 = 0.104). The interaction between treatment and time point was also
significant (F(5, 145) = 7.495,p < 0.001, ;12 = 0.205). Post-hoc t tests
showed significantly higher negative emotion ratings in the stress
condition than in the control condition at T2 (#(29) = 4.413,
p < 0.001) and T3 (t(29) = 4.763, p < 0.001). Taken together, these
findings suggest that acute stress increased cortisol level and modulated
emotional experience.

3.2. GCA results

3.2.1. Seed-to-whole-brain analysis

We first carried out a flexible factorial analysis with the following
factors: Subject, Condition (stress vs. control), and Subregion (bilateral
CA/DG/Subc). Results revealed a significant main effect of condition,
with increased driving effects from the seed regions to the right tha-
lamus ([21-27 4], voxel = 29, p = 0.037, SVC), and left thalamus ([-18
-24 0], voxel = 60, p < 0.001, SVC) in the control minus stress com-
parison. There was a significant effect in the left insula ([-45 15 -12],
voxel = 3, p = 0.025, SVC) for the stress minus control comparison,
showing that the seed regions had increased driving effect to left insula
in the stress condition than in the control condition. Consistent with
previous studies, the main effect of subregion is situated within broader
brain regions such as the bilateral cingulate gyrus, occipital lobe,
parahippocampal gyrus, orbital cortex, prefrontal cortex, cerebellum,
and temporal lobe, which are structurally and functionally connected
with the hippocampus (Blankenship et al., 2017).

The interaction between condition (stress vs. control) and subregion
(bilateral CA/DG/Subc) revealed significant clusters in the left insula
([-45 15 -12], voxel = 10, p = 0.047, SVC), left midbrain ([-6 -36 -24],
voxel = 5, p = 0.005, SVC), and left thalamus ([-15 -21 12], voxel = 8,
p = 0.041, SVC; see Fig. 3A). The average Granger causality values
from these significant clusters were extracted and submitted to a post-
hoc test. The results showed that increased activity in the CA and DG
predicted subsequent increases in activation of the left insula to a
greater extent in the stress condition than in the control condition
(t = 3.846, p = 0.001; t = 3.180, p = 0.003). Further, we found in-
creased activity in the CA to be predictive of higher activity in the left
midbrain in the stress condition (t = 3.105, p = 0.004). Finally, com-
pared with the control condition, the increased activity in the CA and
DG predicted lower subsequent increases in left thalamus activity in the
stress condition (t = —3.362, p = 0.002; t = —2.571, p = 0.016) (see
Table 2). Being consistent with previous studies, we reported the
Granger causality values which were not only significantly different
between the stress and control conditions, but also showed a within-
condition effect in the stress condition (i.e., the signed path coefficients
in the stress condition were significantly different from zero) in Fig. 4
(J. P. Hamilton et al., 2011a,b).

3.2.2. Whole-brain-to-seed analysis

We carried out a flexible factorial analysis with the following fac-
tors: Subject, Condition (stress vs. control), and Subregion (bilateral
CA/DG/Subc). Results showed a significant main effect of condition in
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the left and right thalamus. Specifically, the stress condition minus the
control condition revealed that activity in the left and right thalamus
predicted subsequent increases in the activity of hippocampal sub-
regions to a significantly greater extent in the stress condition than in
the control condition ([-18 -24 4], voxel = 31, p = 0.003; [21-27 4],
voxel = 16, p = 0.036). No significant difference in the brain regions of
interest were found for the control minus stress comparison. Consistent
with the reported results of the seed-to-whole-brain analysis, the whole-
brain-to-seed analysis revealed a main effect of the subregion in bi-
lateral parietooccipital regions, amygdala, putamen, caudate, cingulate
gyrus, parahippocampal gyrus, and other regions (Blankenship et al.,
2017; D. Rangaprakash et al., 2017a,b).

The interaction between condition (stress vs. control) and subregion
(bilateral CA/DG/Subc) revealed significant clusters in the right ante-
rior cingulate cortex (ACC; [12 18 28], voxel = 16, p = 0.01, SVC), left
thalamus ([-18 -27 4], voxel = 20, p = 0.001, SVC), and right thalamus
([15-21 0], voxel =8, p = 0.032, SVC; see Fig. 3B). The average
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Fig. 3. (A) Seed-to-Whole-Brain: brain clusters that
showed  significant  Condition  (stress  vs.
control) x Subregion (bilateral CA/DG/Subc) in-
teraction in flexible factorial analysis; (B) Whole-
Brain-to-Seed: brain clusters that showed significant
Condition (stress vs. control) X Subregion (bilateral
CA/DG/Subc) interaction in flexible factorial ana-
lysis. ACC, anterior cingulate cortex.p < 0.05 (SVC
corrected).

Granger causality values extracted from these significant clusters were
submitted to a post-hoc test. The results of post-hoc t-test showed that
increased activity in the right ACC predicted subsequent increases in
activation of the Subc to a greater extent in the stress condition than in
the control condition (t = 2.427, p = 0.022). Increased activity in the
left thalamus predicted subsequent increases in activation of the CA,
DG, and Subc to a greater extent in the stress condition than in the
control condition (t= 2.824, p = 0.008; t=5.310, p < 0.001;
t =5.896,p < 0.001). Further, we found increased activity in the right
thalamus to be predictive of higher activity in the DG and Subc in the
stress condition (t= 3.195, p = 0.003; t= 3.808, p = 0.001) (see
Table 2). For this whole-brain-to-seed analysis, we also reported the
Granger causality values which were not only significantly different
between the stress and control conditions, but also showed a within-
condition effect in the stress condition in Fig. 4 (Hamilton et al.,
2011a,b).

Fig. 4. A statistical map of a between-condition
comparison of path coefficients from bivariate GCA,
including hippocampal subregions, left midbrain,
left thalamus, left insula, right thalamus and right
anterior cingulate cortex (all p values < 0.05, un-
corrected). CA, cornu ammonis; DG, dentate gyrus;
Subc, subicular complex; L, left; R, right; ACC,
anterior cingulate cortex.

Note: w=@s~ nore activation effect in stress versus control conditions
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Table 2
The mean path coefficients.

Seed-to-whole-brain Whole-brain-to-seed

Linsula L midbrain L_thalamus R_ACC L _thalamus R_thalamus
Stress-control
CA 0.301 0.168 —-0.151 -0.005 0.026 0.015
DG 0.292 0.090 -0.122 0.001 0.053 0.037
Subc 0.101 —0.003 —0.048 0.038 0.080 0.055
Stress
CA 0.167 0.144 0.020 -0.025 0.015 0.001
DG 0.196 0.112 0.036 - 0.021 0.024 0.014
Subc  0.040 0.001 0.074 —0.004 0.024 0.009
Control
CA —-0.133 —0.024 0.171 —-0.020 -—0.011 —-0.013
DG —0.095 0.022 0.158 —-0.022 -0.029 —-0.023
Subc —0.061 0.003 0.122 -0.042 -0.056 —0.046

Note: The mean path coefficients in bold are significantly different from zero.
CA, cornu ammonis; DG, dentate gyrus; Subc, subicular complex; L, left; R,
right; ACC, anterior cingulate cortex.

3.2.3. SVM results

The accuracy of the SVM models varied from 65.0% to 76.7%, de-
pending on the combination of input features (see Table 3). The model
that achieved the highest accuracy with the lowest number of features
included Granger causality values from CA to left insula, from CA to left
midbrain, from DG to left midbrain, and from right thalamus to DG.
This model obtained an accuracy of 76.7%, a sensitivity of 70.0%, and a
specificity of 83.3% (see Table 3). The permutation test showed that the
accuracy was significantly higher that value expected by chance
(p = 0.001), suggesting the model has remarkable predictive power.

4. Discussion

We combined resting-state fMRI with GCA to investigate the effect
of acute social stress on the effective connectivity between the hippo-
campal subregions (bilateral CA, DG, and Subc) and other brain re-
gions. The SVM was adopted to further estimate the accuracy of using
GCA values to predict stress and control state. The results showed that
the effective connectivity between hippocampal subregions and brain
regions related to emotion processing and modulation altered after
acute stress exposure, including the insula, thalamus, and midbrain.
Specifically, increased activity in the CA and DG predicted subsequent
increases in activation of the left insula to a greater extent in the stress
condition than in the control condition. Further, we found that in-
creased activity in the CA predicted higher left midbrain activity in the
stress condition (relative to the control condition). Compared with
control condition, the increases in the left thalamus activity predicted
subsequent increases in activation in all three hippocampal subregions
(CA, DG, and Subc), and increased activity in the right thalamus pre-
dicted higher activity in the DG after stress exposure. Of these, the
combination of four information flows, including from CA to left insula,
from CA to left midbrain, from DG to left midbrain, and from right

Table 3
Accuracy, sensitivity, specificity, and Kappa index for the SVM model with
different combinations of input features.

Number of features  Accuracy %  Sensitivity = Specificity =~ Kappa p

1 65.000 0.767 0.533 0.700  0.009**
2 73.333 0.733 0.733 0.533  0.001%*
3 70.000 0.700 0.700 0.600  0.002**
4 76.667 0.700 0.833 0.467 0.001**
5 76.667 0.733 0.800 0.467  0.001%*
6 75.000 0.700 0.800 0.500  0.001+*
7 73.333 0.733 0.733 0.533 0.001**

permutation test, p < 0.01.
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thalamus to DG, had high discriminative power of stress and control
condition.

The Granger causality values from CA and DG to left insula were
significantly ~different between stress and control conditions.
Specifically, activity in the CA and DG predicted subsequent activation
of the left insula to a greater extent in the stress than in the control
condition. Previous works have shown that the insula is involved in
processing of emotional information, especially aversive stimulations,
such as pain and disgust (Geuter et al., 2017; Pic6-Pérez et al., 2017;
Uddin et al., 2017; Ying et al., 2018). Several lines of researches further
explored the role of insula in stress-related disorders (Chu et al., 2018;
Kandilarova et al., 2018). Using spectral dynamic causal modeling,
Kandilarova et al. found that the main differences between depressed
patients and healthy controls were the alteration of effective con-
nectivity of insula with middle frontal gyrus and amygdala, showing a
critical role of the insula in the mechanism of depression (Kandilarova
et al., 2018). Recently, one study adopting a tractography algorithm
with precise estimation found intense structural connectivity between
insula and hippocampus (Ghaziri et al., 2018). In addition, compared
with trustworthy facial expressions, the untrustworthy expressions in-
duced more activation in insula, and the hippocampus activation was
positively correlated with the insula activation when participants re-
cognized the untrustworthy expressions with high confidence in re-
trieval stage, suggesting that the connectivity between hippocampus
and insula supports negative signal processing and encoding (Tsukiura
et al.,, 2012). In the present study, we adopted TSST in which social
evaluation was used to make participants feel threatened and experi-
ence negative emotions. We speculated that the enhanced effective
connectivity between hippocampal subregions and insula after acute
stress exposure might be involved in the processing of negative social
experience.

The current results show that increased activity in CA under stress
predicts subsequent increase in activation in the left midbrain, in-
cluding periaqueductal gray (PAG, [-6 -33 -20], voxel = 3, p = 0.013,
SVC in a 6 mm sphere centered at MNI [-5, —32, —18]) (D. Mobbs
et al., 2007). Previous studies showed that midbrain PAG triggered
habitual defense responses, for example, flight, fight, or freeze, when
the threat was imminent (Dean Mobbs, Hagan, Dalgleish, Silston and
Prévost, 2015; D. Mobbs et al., 2009; D. Mobbs et al., 2007). For ex-
ample, Dean et al. found that when participants anticipated an im-
minent high shock, the PAG was activated, resulting in panic reactions
(D. Mobbs et al., 2007). These findings were consistent with previous
findings that stress favors a habitual automated system over a cogni-
tively demanding deliberative system (J. Chang and Yu, 2018a; Lars
Schwabe and Wolf, 2013; Yu, 2016). The habitual behavior may im-
prove response efficiency and thus be conductive to coping with current
stress (Lars Schwabe and Wolf, 2011). Furthermore, midbrain PAG also
responds to negative social emotion (Buhle et al., 2012; Linnman et al.,
2012). For instance, a conjunction analysis showed that the midbrain
PAG was activated by both phasic heat and negative emotion pictures,
and these results were confirmed by 8 independent datasets (Buhle
et al., 2012). In the present study, after acute stress exposure (TSST),
participants’ emotion ratings showed that negative emotion sig-
nificantly increased, and positive emotion significantly decreased. Thus
the midbrain PAG might be involved in the negative emotion processing
induced by our experimental manipulation. Further, our findings were
consistent with previous studies showing that the connectivity between
hippocampus and PAG might be related to the transition of temporary
emotional experience to long-term memory (Egorova et al., 2015; Roy
et al., 2014). For example, Egorova et al. found that hippocampus-PAG
connectivity was significantly decreased after repeated verum acu-
puncture relative to sham acupuncture, representing the revaluation of
the aversive pain state and update of nociceptive memory after verum
acupuncture (Egorova et al., 2015). We speculate that the enhanced
interaction of hippocampus and PAG after stress exposure might facil-
itate the transfer of negative emotional experiences into emotion
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memory so that the individual can better cope with future stressful
events (Henckens et al., 2009). In addition, in the present study, we
found that the altered effective connectivity from hippocampal cortex
to other brain regions was focused on CA (including CA1, CA2 and
CA3), which were in line with previous works. CA1 is the main output
structure of the hippocampal cortex, and may serve to transfer in-
formation to cortical and subcortical structures (Jones and McHugh,
2011). As an area between CA3 and CA1l, CA2 has extensive con-
nectivity with intra- and extra- hippocampal cortex, and plays an im-
portant part in cognitive and emotional processes (Chevaleyre and
Piskorowski, 2016; Hitti and Siegelbaum, 2014).

The results of whole brain-to-seeds Granger causality analysis
showed that in comparison to the control condition, left thalamus ac-
tivation preceded increased activation in CA, DG and Subc activation,
and the activation increase in right thalamus predicted subsequent in-
creases in activation of DG after stress exposure. These findings are
consistent with previous studies showing that the thalamus has dense
anatomical connectivity with the hippocampus (Aggleton et al., 2010;
Tsanov et al.,, 2011). The thalamus is believed to be a gateway for
primary sensory output to the cerebral cortex and is involved in various
cognitive functions, such as attention, consciousness and emotion (J.
Chang and Yu, 2018b; Crick and Koch, 2003; Haber and Calzavara,
2009; Shipp, 2004; Ward, 2013). Previous studies found that the tha-
lamus played a part in creating a wide range of emotions, especially
negative emotions, and was involved in emotion memory storage
through its connection with the hippocampus (Lane et al., 1997; Ward,
2013). In the current study, the increased thalamus-hippocampus
coupling under stress might be related to the formation and con-
solidation of emotional memory induced by TSST. In line with this
speculation, previous animal and human studies found that the con-
nectivity between the thalamus and hippocampus was critical for epi-
sodic memory formation, and a lesion of the anterior thalamus could
influence performance on spatial memory tasks (Tsanov, 2015; van
Groen et al., 2002; Wilton et al., 2001).

Importantly, the SVM results showed that the combination of
Granger causality values from CA to left insula, from CA to left mid-
brain, from DG to left midbrain, and from right thalamus to DG pre-
dicted the stress condition with high accuracy of 76.7% (p = 0.001
after the permutation test). These results suggest that the information
flows in the thalamus-hippocampus-insula/midbrain circuit could be
used as reliable biomarkers to distinguish these two psychological
states, further supporting the crucial role of this circuit in the proces-
sing of stress. As far as we have known, this is the first study using a
machine learning method to differentiate between the acute stress state
and the control state. Previous studies have adopted the machine
learning algorithm to find the features (e.g., the functional connectivity
between brain regions) with high discriminative power for group
classification and use them to assist the diagnosis of disease (Anderson
and Cohen, 2013; Li et al., 2018). Our findings may provide biomarkers
in the diagnosis of stress-related disorders and contribute to precise
intervention.

It is worth noting that there are some limitations in our study.
Firstly, because BOLD signal is an indirect reflection of neuronal ac-
tivity, and hemodynamic responses are various in different brain re-
gions, applying GCA to fMRI data has sparked a great deal of con-
troversy (O. David et al., 2008; K. Friston, Moran and Seth, 2013; Wen
et al., 2013). Interestingly, a previous study found that granger pre-
diction is robust to various hemodynamic responses but is vulnerable to
down sampling and data noise (Seth et al., 2013). However, there are
also some stimulation studies showing relatively high robustness of
granger prediction in fMRI data analysis (Deshpande et al., 2010a,b;
Schippers et al., 2011). Thus further studies are needed to understand
this method better. In addition, unlike dynamic causal modeling, GCA
just describes the information flow of fMRI data but cannot explore the
underlying physical-causal mechanisms through statistical models
(Cohen, 2014; Seth et al., 2015). Graph theory is widely used to explore
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the structural and functional brain networks underlying various cog-
nitive functions, with brain regions as nodes and connectivity among
them as edges (Bullmore and Sporns, 2009; Harvy et al., 2019; Li et al.,
2019). Further, the edges could be undirectional (e.g., correlation) or
directional (e.g., Granger causality) (Bullmore and Sporns, 2009).
Compared with GCA, graph theory could provide more macroscopical
information about how the brain is coordinated (Zhan and Yu, 2015).
Future studies may use graph theoretical analysis to delineate the dy-
namic brain network changes under stress holistically. Secondly, pre-
vious studies showed that stress enhances the functional connectivity
between amygdala and hippocampus (Kiem et al., 2013; Vaisvaser
et al., 2013). We did not find a similar significant alteration of the ef-
fective connectivity between hippocampus and amygdala under stress.
This might be due to the fact that the Granger causal analysis we
conducted estimates directional connectivity rather than undirectional
functional connectivity. Further, unlike previous studies which only
studied the hippocampus as a whole, we focused on the effects of stress
on effective connectivity from and to different hippocampal subregions.
Thirdly, due to the low spatial resolution of functional imaging, the
hippocampal ROI may reflect the signal from adjacent regions. Our
exploratory results need to be interpreted without caution. We used
DARTEL to create an average structural brain template from all sub-
jects' T1 images and registered BOLD volumes to a MNI template using
the DARTEL template, which could increase the precision of registra-
tion. High resolution anatomical and functional images collected using
7T MRI scanner may also be used to study hippocampal subregions
(Berron et al., 2017). Fourthly, no autonomic nervous system responses
were recorded in our study. The autonomic nervous system (ANS) and
HPA axis are the main systems to maintain homeostasis under stress
(Ulrich-Lai and Herman, 2009). Previous studies found that the HPA
axis was more sensitive to social stressors (e.g. the TSST), while the ANS
was associated with the rapid alteration of physiological states induced
by physical stressors, such as cold stressor (McRae et al., 2006; Ulrich-
Lai and Herman, 2009). Future studies are needed to explore the re-
lationships between changes in ANS and hippocampus's effective con-
nectivity patterns and how different types of stressors influence them.
Finally, participants in the current study were young Chinese adults in
the age range of 18-25, when brain development is still ongoing. It
remains to be tested whether our findings can be extended to adults
with fully mature brain development. Given the profound cultural dif-
ferences in how people cope with stressor (Palsane and Lam, 1996;
Taylor et al., 2007), individuals from western cultures may respond
differently to the TSST and show distinct neural patterns (Allen et al.,
2014). A culture social neuroscience approach to study stress may shed
lights on the cultural variation in psychological and neural processes
under stress.

The present study is the first study combining Granger causal ana-
lysis and a support vector machine to explore the alterations of effective
connectivity from and to hippocampal subregions after stress, and to
detect the effective connectivity that distinguishes stress and control
brain states. The findings showed that stress altered the effective con-
nectivity in the thalamus-hippocampus-insula/midbrain circuit, and the
changes in this circuit could predict the brain state at subject level with
high accuracy. These brain structures and the interrelations among
them are documented to be involved in emotional information pro-
cessing and storage, and habitual responses (Egorova et al., 2015; D.
Mobbs et al., 2009; D Rangaprakash et al., 2017a,b; Tsukiura et al.,
2012; Ward, 2013). We speculate that the circuit might be related to the
encoding of salient negative information after acute social stress in
order for the healthy individual to better cope with similar future
stressful events. Our study could be further helpful to explain the neural
mechanisms underlying emotion dysregulation symptoms in stress-re-
lated psychiatric disorders, such as MDD and PTSD. Previous studies
have largely focused on the hippocampus as a unitary structure
(Dunkley et al., 2014; Logue et al., 2018). There is accumulating evi-
dence to support the differential roles of the hippocampal subregions in
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PTSD symptoms and associated memory processes (Malivoire et al.,
2018). Given the different structural and functional connectivities of
hippocampal subregions, investigating hippocampal rsFC at a sub-
regional level in the present study may help elucidate the functional
neurobiology of PTSD.
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