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Senescent cell turnover slows with age providing
an explanation for the Gompertz law

Omer Karin'3, Amit Agrawal'3, Ziv Porat® 2, Valery Krizhanovsky® ™ & Uri Alon® ™

A causal factor in mammalian aging is the accumulation of senescent cells (SnCs). SnCs
cause chronic inflammation, and removing SnCs decelerates aging in mice. Despite their
importance, turnover rates of SnCs are unknown, and their connection to aging dynamics is
unclear. Here we use longitudinal SnC measurements and induction experiments to show
that SnCs turn over rapidly in young mice, with a half-life of days, but slow their own removal
rate to a half-life of weeks in old mice. This leads to a critical-slowing-down that generates
persistent SnC fluctuations. We further demonstrate that a mathematical model, in which
death occurs when fluctuating SnCs cross a threshold, quantitatively recapitulates the
Gompertz law of mortality in mice and humans. The model can go beyond SnCs to explain the
effects of lifespan-modulating interventions in Drosophila and C. elegans, including scaling
of survival-curves and rapid effects of dietary shifts on mortality.

"Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel. 2 Department of Biological Services, Weizmann Institute
of Science, 76100 Rehovot, Israel. *These authors contributed equally: Omer Karin, Amit Agrawal. *email: valery.krizhanovsky@weizmann.ac.il; uri.
alon@weizmann.ac.il

| (2019)10:5495 | https://doi.org/10.1038/s41467-019-13192-4 | www.nature.com/naturecommunications 1


http://orcid.org/0000-0003-3059-181X
http://orcid.org/0000-0003-3059-181X
http://orcid.org/0000-0003-3059-181X
http://orcid.org/0000-0003-3059-181X
http://orcid.org/0000-0003-3059-181X
http://orcid.org/0000-0002-3977-5482
http://orcid.org/0000-0002-3977-5482
http://orcid.org/0000-0002-3977-5482
http://orcid.org/0000-0002-3977-5482
http://orcid.org/0000-0002-3977-5482
http://orcid.org/0000-0002-9426-5362
http://orcid.org/0000-0002-9426-5362
http://orcid.org/0000-0002-9426-5362
http://orcid.org/0000-0002-9426-5362
http://orcid.org/0000-0002-9426-5362
mailto:valery.krizhanovsky@weizmann.ac.il
mailto:uri.alon@weizmann.ac.il
mailto:uri.alon@weizmann.ac.il
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

enescent cells (SnCs) accumulate with age in mice and

humans in many tissues'~7, due in part to DNA damage,

damaged telomeres, and oxidative stress>8. These cells,
characterized by high levels of pl6 and SA-B-Gal®, enter per-
manent cell cycle arrest, and secrete a characteristic profile of
molecules including pro-inflammatory signals® and factors that
slow regeneration® (Fig. 1a). They have physiological roles in
development, cancer prevention, and wound healing®~11. How-
ever, as organisms age, accumulating levels of SnC cause chronic
inflammation and increase the risk of many age-related diseases,
including osteoarthritis, neurodegeneration, and athero-
sclerosis! 224,

Accumulation of SnCs is known to be causal for aging in mice:
continuous targeted elimination of whole-body SnCs increases
mean lifespan by 25%, attenuates age-related deterioration of
heart, kidney, and fat, delays cancer development?> and causes
improvement in the above-mentioned diseases.

These studies indicate that SnC abundance is an important
causal variable in the aging process. Despite their importance,
however, the production and removal rates of SnCs are
unknown?26. For example, it is unclear whether SnCs passively
accumulate or if they are turned over rapidly, and if so, whether
their half-life changes with age. Since turnover affects the ability
of a system to respond to fluctuations, information about these
rates is crucial in order to mathematically test ideas about the
possible role of SnCs in the age-dependent variations in mor-
bidity and mortality between individuals.

Here, we address this experimentally and theoretically. To
understand the dynamics of SnCs, we scanned a wide class of
mathematical models of SnC dynamics, and compared these
models to longitudinal SnC trajectories! and direct SnC induction
experiments in mice (Fig. 1b-d). The models all describe SnC
production and removal. They differ from one another in the way
that production and removal rates are affected by age and by SnC
abundance. The models describe all combinations of four possible
mechanisms for accumulation of SnCs (Fig 1b): (i) SnC

production rate increases with age due to accumulation of
mutations?’, telomere damage, and other factors that trigger
cellular senescencell, (ii) SnCs catalyze their own production by
paracrine and bystander effects?8, (iii) SnC removal decreases
with age due to age-related decline in immune surveillance
functions??, and (iv) SnCs reduce their own removal rate, which
can be due to SnC-related signaling, such as SASP, down-
regulation of immune surveillance by SnCs, SnCs saturating
immune surveillance mechanisms (similar to saturation of an
enzyme by its substrate), or to disruption of tissue and extra-
cellular matrix architecture that interferes with removal.

Mechanism (iv) is distinct from mechanism (iii) because the
decline in removal rate in (iv) depends on SnC abundance, rather
than on age directly. Although (iv) can arise from various bio-
logical processes, we denote it for simplicity ‘saturation of
removal’. These four effects lead to 16 different circuits (Fig. 1b)
with all combinations of whether or not each of effects (i-iv)
occur. Additionally, each of the 16 models includes parameters
for basal production and removal. The models have rate constants
that are currently uncharacterized. We also tested models which
incorporate additional non-linearities (Supplementary Note 1,
Supplementary Fig. 1).

Results
SnC dynamics during ageing in mice. To find which of the
model mechanisms best describes SnC dynamics, and with which
rate constants, we compared the models to longitudinal data on
SnC abundance in mice collected by Burd et al. !. SnC abundance
was measured using a luciferase reporter for the expression of
pl6INK4a 3 biomarker for SnCs. Total body luminescence (TBL)
was monitored every 8 weeks for 33 mice, from early age
(8 weeks) to middle-late adulthood (80 weeks) (Fig. 2a).

The luciferase in these mice was introduced into one of the p16
loci, causing the mice to be heterozygous for p16, which may
impair proper activation of the senescence program. We therefore
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Fig. 1 Approach for inferring SnC dynamics throughout adulthood. a Many processes, including DNA damage and developmental and paracrine signals,
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Fig. 2 Saturated-removal (SR) model captures longitudinal SnC trajectories in mice. a Total body luminescence (TBL) of p16-luciferase in mice (n=33).
Gray lines connect data from the same individual mice (green and purple lines are examples of individual trajectories). b SR model equations and their
approximate analytical solutions. The SR model (red line) captures ¢ the mean SnC abundance, d standard deviation of SnC abundance, e skewness, and
f shape of the distributions among equal-aged individuals, and g correlation between subsequent measurements on the same individuals. TBL was
normalized to give a mean abundance of 1 at young ages. Maximum-likelihood parameters for the SR model are: n = 0.15 day~'year~!, f=0.27 day ', k=
1.1, e = 0.14 day~". Pink lines in c: best-fit of all models without saturation mechanism iv, that have an age-related increase in SnCs, best-fit parameters are
in Supplementary Note 1. Mean and standard error (shaded red, pink regions) are from bootstrapping. Source data are provided as a Source Data file.

also tested longitudinal measurements of SnCs based on another
method. For this we obtained longitudinal data from Yamakoshi
et al. 30, who measured SnC abundance by creating a transgenic
mouse model with a human pl6 gene tagged with luciferase,
retaining the native pl6 loci. Although this dataset has much
fewer mice, it shows similar dynamics to the dataset of Burd
et al.! (Supplementary Note 1, Supplementary Fig. 2), suggesting
a similar underlying dynamical process.

We tested how well each model describes the longitudinal
SnC trajectories of Burd et al.! by finding the maximum-
likelihood parameters for each of the 16 models, adjusting for
number of parameters (Supplementary Notes 1 and 2, Supple-
mentary Tables 1-4). A principle emerges from this compar-
ison: in order to capture the longitudinal dynamics, the
mechanism must have rapid turnover of SnCs on the timescale
of a few days in young mice, and it also must include
mechanism (iv), which represents a decline in removal
that depends on SnC abundance rather than directly on age.
The simplest model that describes the data thus has only two

interactions (Fig. 1c): SnC production rate increases linearly
with age (mechanism i), and SnCs slow down their own
removal rate (mechanism iv). We call this model the saturating
removal model (SR model), whose equation is given in Fig. 2b.

The SR model captures the accelerating rise of mean SnC
abundance with age in the longitudinal data (Fig. 2c and
Supplementary Figs. 3, 4): as SnCs accumulate, they slow their
own removal, leading to even higher SnC levels. The SR model
also explains the SnC variability between individuals which
accelerates with age (Fig. 2d), and the SnC distributions among
equal-aged individuals (Fig. 2e), which are skewed to the right
(Fig. 2f).

Importantly, the SR model captures the fact that SnC
fluctuations become more persistent with age, as evidenced by
an increasing correlation between subsequent measurements
(Fig. 2g, F-test for linear regression, p-value 0.0047; F-statistic
16.5): individuals with higher (or lower) than average SnC levels
stay higher (or lower) for longer periods with age. This increased
persistence is due to the effect of SnCs on their own removal rate.
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Fig. 3 SnC half-life measurements in mice support SR model predictions. a Bleomycin or PBS was introduced by intratracheal installation to mice on day O.
Lungs were analyzed on the indicated days thereafter. Representative images of lung cells analyzed by imaging flow cytometry show how senescent
epithelial cells were identified, using SA-B-Gal, Pan-Cytokeratin (pCK), and DAPI staining. SnC removal rate was estimated by log-linear fit. b The SR model
predicts that SnCs rapidly return to baseline in young mice and that removal is slower in old mice. ¢ Fraction of SnCs in mouse lungs after treatment with
bleomycin (1.5 U/kg). In young mice, SnC levels return to baseline with a half-life of about 5 days. In old mice, baseline SnC levels are about five-fold higher,
and SnC removal rate is slower than in young mice . d SnC removal rates (half-life=1) for young and old mice (mean and standard error from bootstrapping,
black) agree with the SR model predictions (red, mean and SE were calculated by bootstrapping, see the “Methods” section). The best-fit model without
mechanism (iv), the USR model (mechanisms i + iii), shows a poor prediction (pink). For both ages, the USR prediction is different from the observed half-
life with p<0.01 from bootstrapping. Source data are provided as a Source Data file.

Models without mechanism iv (saturation of removal) show a
poor overall fit (pink lines in Fig. 2¢c, ABIC > 44.3).

SnC lifetime is days in young mice and weeks in old mice. The
maximum-likelihood parameters of the SR model (listed in the
caption of Fig. 2) provide quantitative predictions for SnC half-
lives: SnC turnover is rapid in young mice, with a half-life of
about 5+ 1 days at 3 months of age; Turnover slows with age, so
that SnC half-life is about 25 + 6 days at 22 months.

We tested these predictions using experiments in mice by
inducing SnCs and analyzing their dynamics. To induce
senescence in mice lungs we used intra-tracheal bleomycin
administration (Fig. 3a), a DNA-damaging agent that induces
cellular senescence in the lung epithelium a few days after
treatment™31.

We quantified the fraction of senescent lung epithelial cells at
different time points following bleomycin administration (Fig. 3a)
using imaging flow cytometry. Epithelial SnCs were defined as
cells positive for a senescent cell marker (SA-P-Gal) and an
epithelial marker (pan-Cytokeratin, pCK). This cell population
was also HMGBI nuclear negative, as expected in SnCs>32, and
previously shown® to correspond to non-proliferative cells
(negative Ki67 assay, see Supplementary Note 3, Supplementary
Fig. 6).

In 3-month-old mice, SnC levels decayed with a half-life of 7=
4.7 days (171 =0.21 +/— 0.07 days—!) and reached their baseline
level within less than a month (Fig. 3b, ), as predicted. SnC levels
in young mice lungs are thus in a rapid dynamic balance of
production and removal.

To test the prediction that removal slows with age (Fig. 3b), we
performed the bleomycin treatment in old mice (22-month old). In
these mice, the baseline level of SnCs was about five-fold higher
than in young mice (Fig. 3d). SnCs decayed with a half-life of

=18 days, 771 =0.055 +/— 0.035days~!), slower than that of
young mice as predicted (p = 0.038 from bootstrapping, Fig. 3b).

These turnover measurements quantitatively agreed with the
predictions of the SR model (Fig. 3d, Supplementary Note 4,
Supplementary Fig. 7) with no additional fit. This agreement
occurred despite the use of distinct SnC markers in the two data
sets (SA-B-Gal in the bleomycin experiment vs. pl6INK4A.
luciferase in the longitudinal experiment), suggesting consistency
between the measurement methods.

Our results suggest a core mechanism in which SnC
production rate rises linearly with age, and SnCs slow their
own removal (Supplementary Note 5, Supplementary Fig. 8).
This slowdown of removal accelerates SnC accumulation with
age. Slowdown of removal also amplifies fluctuations in SnC
levels at old ages. This amplification, known as critical slowing
down33:34, results in long-lasting differences among individuals
at old ages. In other words, young mice have large spare
removal capacity of SnC; old mice have much smaller spare
removal capacity. This smaller removal capacity means that any
addition of SnCs takes longer to remove, causing larger and
more persistent variation in SnC levels among individuals
(Fig. 2g).

The SR model quantitatively recapitulates the Gompertz law.
In the remainder of the paper, we use mathematical analysis to
explore the implications of these findings for the question of
variability in mortality. Mortality times vary even in inbred
organisms raised in the same conditions, demonstrating a non-
genetic component to mortality>>3. In many species, including
mice and humans, risk of death rises exponentially with age, a
relation known as the Gompertz law37-3%, and decelerates at very
old ages. The Gompertz law has no known explanation at the
cellular level.
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To connect SnC dynamics and mortality, we need to know the
relationship between SnC abundance and risk of death!. The
precise relationship is currently unknown. Clearly, SnC abun-
dance is not the only cause for morbidity and mortality. It seems
to be an important causal factor because removing SnCs from
mice increases mean lifespan?®, and adding SnCs to mice
increases risk of death and causes age-related phenotypes23. We
therefore explored the simple possibility that death can be
modeled to occur when SnC abundance exceeds a threshold level
X, representing a collapse of an organ system or a tipping point
such as sepsis (Fig. 4a). Thus, death is modeled as a first-passage
time process, when SnC cross Xc. We use this assumption to
illustrate our approach, because it provides analytically solvable
results. We also show that other dependencies between risk of
death and SnC abundance, such as sigmoidal functions with
various degrees of steepness, provide similar conclusions.

The SR model analytically reproduces the Gompertz law,
including the observed deceleration of mortality rates at old ages
(Fig. 4b-d, Supplementary Note 2, Supplementary Fig. 5,
Supplementary Table 5). Notably, most models without both
rapid turnover and slowdown of removal do not provide the
Gompertz law (Supplementary Note 2). The deceleration of
mortality rates at very old ages occurs in the model due to the
increased persistence of SnC at old age. Those with high SnC have
already died, whereas those with low SnC retain low SnC levels
for long periods of time and avoid death. The SR model gives a
good fit to the observed mouse mortality curve (Fig. 4b, c,
Supplementary Note 1) using parameters that agree with the
present experimental half-life measurements and longitudinal
SnC data (Supplementary Note 1). Thus, turnover of days in the
young and weeks in the old provides SnC variation such that
individuals cross the death threshold at different times, providing
the observed mortality curves.

The SR model can describe the observed increase in mean
lifespan of mice in experiments in which a fraction of SnCs are
continually removed (Supplementary Note 6). More generally, the
SR model can address the use of drugs that eliminate SnCs,
known as senolytics?0. To reduce toxicity concerns, it is
important to establish regimes of low dose and large inter-dose
spacing?!. The model provides a rational basis for scheduling
senolytic drug administrations. Specifically, treatment should
start at old age, and can be as infrequent as the SnC turnover time
(~month in old mice) and still be effective (Supplementary
Note 6).

We also adapted our results from the mouse data to study
human mortality curves. In humans, mortality has a large non-
heritable component*243. A good description of human mortality
data, corrected for extrinsic mortality, is provided by the same
parameters as in mice, except for a 60-fold slower increase in SnC
production rate with age in the human parameter set (Fig. 4d,
Supplementary Note 7, Supplementary Table 6). This slower
increase in SnC production rate can be due to improved DNA
maintenance in humans compared to mice4. We conclude that
the critical slowing-down described by the SR model provides a
possible cellular mechanism for the variation in mortality
between individuals.

SR-type dynamics and ageing of Drosophila and C. elegans. The
generality of the SR model suggests that it might also apply
to organisms where ageing may be driven by factors other than
SnCs, such as Drosophila melanogaster and C. elegans, in which
lifespan variation is well-studied3>45. In these organisms, the
present approach can be extended by considering X as a causal
factor for aging, that accumulates with age and has SR-type
dynamics*®, namely turnover that is much more rapid than

the lifetime, increasing production and self-slowing removal.
One clue for the identity of such factors may be gene-
expression variations in young organisms that correlate with
individual lifespan?’-4%, and the actions of genes that modulate
lifespan39-20-33,

Work in C. elegans and Drosophila provides constraints to test
the SR model. For example, Drosophila shows rapid switches
between hazard curves when transitioned between normal and
lifespan-extending diets (Fig. 4e, inset). These switches are well-
described by the SR model, due to its rapid turnover property
(Fig. 4e and Supplementary Note 8, Supplementary Fig. 9). The
rapid turnover property entails that the level of X can adjust after
a change in any of the parameters of the model. A model without
rapid turnover could not explain these results.

We further tested whether the SR model can explain the
survival curves of C. elegans under different life-extending
genetic, environmental, and dietary perturbations®>. These
perturbations change mean lifespan by up to an order of
magnitude. The survival curves show a remarkable feature called
temporal scaling: the survival curves collapse onto approximately
the same curve when age is scaled by mean lifespan (Fig. 4f
insets). That is, the entire distribution of death times, including its
mean and standard deviation, is determined by a single
parameter, which depends on the perturbation. We find that
the SR model provides the shape of the survival curves, as well as
their temporal scaling feature. Temporal scaling is found in the
SR model by assuming that the perturbations affect the
accumulation rate # (Fig. 4f, Supplementary Note 9 and
Supplementary Fig. 10A).

Temporal scaling cannot be explained by models without rapid
turnover (Supplementary Fig. 10B), or by varying any other
parameter except 7 in the SR model. Thus, we predict loss of
temporal-scaling of survival curves when a perturbation affects
other SR-model parameters, such as removal rate 8 or noise €
(Supplementary Fig. 10C, D). This prediction may apply to
exceptional perturbations in which temporal scaling is not found,
such as the eat-2 and nuo-6 mutations (Supplementary Fig. 10E,
F). We conclude that the SR model of rapid turnover with critical-
slowing down is a candidate explanation for the temporal scaling
of survival curves in C. elegans.

Discussion

In this study, we propose a framework for the dynamics of SnCs
based on rapid turnover that slows with age. Bleomycin-induced
SnC half-life is days in young mice and weeks in old mice, causing
critical slowing down, which greatly amplifies the differences
between individual SnC levels at old age. We theoretically explore
the implications of this slowdown in a model in which SnCs cause
death when they exceed a threshold. The widening variation in
SnC levels with age causes a mortality distribution that follows
the Gompertz law of exponentially increasing risk of death. The
mortality distribution of mice and humans is well-described by
the SR model with the SnC half-lives measured here. Future work
may test this proposed connection between SnC dynamics and
mortality by experimentally measuring risk of death as a function
of SnC abundance.

The rapid removal of SnCs that we observe following
bleomycin-induced DNA damage is in line with studies that
showed efficient removal of SnCs in vivo following liver fibrosis
or induction by senescence by mutant Ras*-6, On the other
hand, when senescence was induced in the skin by directly acti-
vating the cell-cycle inhibitor pI14ARF, which was not associated
with an increase in tissue cytokine expression or inflammation,
the induced SnCs persisted in the tissue for several weeks>’.
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Fig. 4 SR model can explain the variability in mortality between individuals. a To model the relation between risk of death and SnC levels, we assumed a
simple threshold model where death occurs when SnC abundance exceeds a critical threshold Xc. b Mouse mortality (C57BL/6J mice obtained from the
Mouse Phenome Database®®, black line) is well fit by the SR model (red line) with parameters consistent with the data of Figs. 1, 2, with death defined
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magnitude, but survival curves collapse on a single curve when time is scaled by mean lifespan (inset: data from Stroustrup et al. 3°). The SR model
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Clearance may thus depend on the tissue, on the method of
senescence induction, and on the presence of SASP.

The present analysis of longitudinal p16 trajectories suggests
that SnC slow down their own removal rate. This effect may be
due to several mechanisms, including SASP, disruption of tissue
architecture, or SnC abundance exceeding immune capacity. For
the latter effect, SnC abundance at old age needs to be comparable
to the abundance of the immune cells that remove them, which
make up on the order of 0.1% of the body’s cells”®. Further
research is needed to characterize these effects.

Our results suggest that treatments that remove SnCs can
therefore have a double benefit: an immediate benefit from a
reduced SnC load, and a longer-term benefit from increased SnC
removal. Similarly, interventions that increase removal capacity,
for example by augmenting the immune surveillance of SnC, are
predicted to be an effective approach to reduce SnC levels. More
generally, the present combination of experiment and theory can
be extended to explore further stochastic processes in aging, in
order to bridge between the population-level and molecular-level
understanding of aging.

Methods

Stochastic model simulation. Simulations of the stochastic models were per-
formed by using the ItoProcess function of Mathematica (V11.3), with a step size
of 1 day. Negative X values were avoided using a reflecting boundary condition at
X = 0. In simulations that included mortality, time of death was the first time-point
where X exceeded Xc.

Model comparison to p16INK-luciferase measurements. We sought for each
model the parameters that maximize the log-likelihood of the measured trajectories
(Fig. 1a). We calculated the log-likelihood of a model m with parameters 0 as
follows. Let X;; be the measured SnC level (SnC = TBL/9.63 to give SnC =1 for
young mice) of mouse j at time point i (with X, ; = 0). We denote by Prob,, ,{(a|b)
the probability of reaching SnC level a at time point i given SnC level b at time
point i—1. We call such a step from i—1 to i a sub-trajectory. We estimated this
probability from simulations (4000 simulations for every such sub-trajectory). The
log-likelihood is LL(m, 0) = >, >, log(Prob,, o ,(X;;1X;_y ;)), n =294 sub-
trajectories. For each model, we sought the parameter set that maximizes the log-
likelihood (see Supplementary Note 1 for more details). Confidence intervals for
the best-fit parameters, as well as for estimates for SnC half-life, were calculated by
bootstrapping (selecting mice at random with replacements). Modeling experi-
mental noise (multiplicative noise with amplitude up to 30%) did not affect the
best-fit parameters (Supplementary Note 1). To find parameters for the model that
describe both the longitudinal trajectories as well as mouse mortality statistics, we
scanned the subset of parameters that fit the mortality distribution of mice.
Mortality statistics of WT (C57BL/6]) mice were obtained from the Mouse Phe-
nome Database®. Because mortality in young mice appears to be unassociated with
the accumulation of SnCs!, we only considered deaths that occurred after age one
year (which make up 97% of the total deaths in the dataset). We performed a
comprehensive scan of values of 8, and x, and constrained #,€ to values that give a
mean and standard deviation of the simulated mortality distributions that is within
2% of the empirical values for WT mice. The critical SnC level X was set at Xc =
17, which is the maximal SnC level in the Burd et al. dataset!. We then calculated
maximum-likelihood parameters and confidence intervals as described above.

Population-level measures. The mean and variance at time-point i are the mean
and variance of {X; J}jz\il, where N is the number of mice. Autocorrelation is the

Pearson correlation of the two vectors {Xi_j}jil. {Xin J}}\;r The measures were
calculated in the same manner from model simulations. Typical SnC removal rate
(half-life~!) for the model at a given age i was estimated by %log@)*l, where X;

is the mean SnC level at age i (see Supplementary Note 4 for discussion of alter-
native ways to estimate SnC half-life). For the USR model, typical SnC removal rate
at age i is (Bo—p1i) log(2)~ L.

Quantification of SnCs in mouse lung epithelium. We subjected 3-month-old
(young) and 22-month-old (aged) C57BL6 mice to intra-tracheal installation of 1.5
U/kg bleomycin (Sigma) solution in PBS (or PBS as a control treatment). We
euthanized the mice at 14, 18, 24, and 28 days for the young mice and day 14 and
day 38 for the aged mice. The quantification of senescent epithelial cells was
performed as previously described® with modification. Lung tissue was chopped
into 2-5 mm pieces in HBSS (14025050, Gibco) on ice and incubated in the 5ml
dissociation buffer (1 mg/ml Collagenase Type IV (C9263, Sigma), 0.1 mg/ml
DNase I (10104159001, Roche) in HBSS) at 37 °C for 50 min. Cells were washed

with HBBS and then fixed with 4% PFA for 5 min. Post fixation, cells were washed
and incubated with X-Gal-staining solution for 16 h at 37 °C. The X-Gal-staining
solution consisted of 5 mM K;Fe(CN)g, 5 mM K,Fe(CN)g x 3H,0 and 2.5 mM X-
Gal (Inalco) in PBS at pH 5.5 containing 1 mM MgCl,. Post X-Gal staining the cells
were fixed with fixation buffer for 30 min at 4 °C and washed with permeabilization
buffer (00-5223-56, eBioscience, San Diego, CA). The cells were then incubated
with PE-conjugated pan-cytokeratin (ab52460, Abcam) and HMGBI1 (ab18256,
Abcam) antibodies for an hour at 4 °C. For visualization of HMGBI antibody, we
used Qdot605-labeled Goat Anti-Rabbit antibody (Q11402MP, ThermoFisher).
Antibodies were diluted in the permeabilization buffer with the dilution of 1:100 of
PE-conjugated pan-cytokeratin and primary HMGBI, and 1:50 of Qdot605. Before
visualization, the cells were stained with DAPI and filtered through a 100 um
membrane. The resulting cells were analyzed by imaging flow-cytometry using
ImageStreamX mark II (Amnis, Part of EMD milipore—Merck, Seattle, WA, USA,
see Supplementary Note 3 for gating strategy summary). PE staining was collected
at channel 3, the DAPI at channel 7 and the Qdot605 at channel 10, in addition to
the bright-field images collected at channels 1 and 9. Analysis of the image data was
performed using IDEAS 6.2 software. Cells were first gated according to their area
(in pm?) and aspect ratio (ratio between width and length) of the bright field
images, to eliminate debris and aggregates. Then, we gated on focused cells using
the gradient RMS (which measures the sharpness quality of an image by using the
average gradient of a pixel normalized for variations in intensity levels) and con-
trast (measures the sharpness quality of an image by detecting large changes of
pixel values). Cropped cells were excluded by using the centroid X feature (the
number of pixels in the horizontal axis from the upper, left corner of the image to
the center of the image mask). To verify that only single cells were analyzed, cells
were further gated for single nuclei using the area and aspect ratio of the nuclear
image of the DAPI staining. SA-beta-Gal staining was quantified using the Mean
pixel (the mean of the background-subtracted pixels) contained in the bright-field
image®. Staining of pCK was quantified using the Intensity (the sum of the
background subtracted pixel values within the image) and the Max pixel (the
largest value of the background-subtracted pixels contained in the image) features
of the corresponding channels. To quantify staining of HMGBI specifically, its
intensity was calculated. We first gated for pCK-positive cells then for HMGB1
negative, SA-fB-Gal-positive cells to quantitate the SnCs in lung epithelium. Fol-
lowing the method, establishment of pCK positive, SA-B-Gal-positive cells were
considered senescent in further experiments. In total, the mice analyzed were 3-
month-olds treated with 1.5 U/kg (n = 17), 3-month-olds treated with PBS (n =
13), 22-month-olds treated with 1.5 U/kg (n = 13), and 22-month-olds treated with
PBS (n=6). We complied with all relevant ethical regulations for animal testing
and research. The experiments were approved by the Weizmann IACUC
committee.

Analysis of the bleomycin treatment time series. We estimated the turnover of
SnCs by calculating the removal time after a perturbation with bleomycin. The
removal rate is the slope of the log-linear regression model, which we fit for each
experiment (with confidence intervals calculated by bootstrapping). We obtained
the response time predicted by the model by bootstrapping and simulating the
model after perturbation (see Supplementary Note 4 for details). Statistical sig-
nificance tests were computed by bootstrapping.

Estimation of hazard and survival functions. We fit hazard and survival func-
tions from mortality data by interpolation using the Mathematica (V11.3) function
SmoothKernelDistribution and then applying the Mathematica functions
HazardFunction and SurvivalFunction. For the mice survival data, the Smooth-
KernelDistribution was computed with a bandwidth of 80 days.

Simulation of Drosophila and C. elegans survival curves. We simulated the
mortality trajectories of Drosophila and C. elegans using the SR model, by assuming
a rapid turnover and saturation f=1h~1, x= 1[au], and also set e=1 [au]?h~!
where [au] is the mean level of X in young organisms. These parameters correspond
to a turnover of X on the order of hours. For C. elegans, to fit the survival curve
obtained by Stroustrup et al.3>, we set 7 =0.07[au] h—! day~! and assumed that
death occurs when X > X for X¢ = 20[au]. Similarly, to fit the Mair et al.#> data, we
set the following parameters for the Drosophila simulations: 7 = 0.03[au] h—! day~!
and Xc = 15[au], and assumed a baseline mortality of In hazard = —7 day~1.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The source data underlying Figs. 2a, ¢, d-g, 3¢, 4b-d, and Supplementary Fig. 2A is
available as a Source File. All other data are available from the corresponding author
upon request.

Code availability
Custom code was written in Mathematica 11.3 (Wolfram) and can be found in the
following link: https://github.com/omerka-weizmann/sncdynamics. The analysis file
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contains functions for simulating circuit topologies, obtaining mortality statistics and
survival-curve scaling, computing log-likelihood of stochastic trajectories, and computing
various summary statistics of stochastic trajectory data.
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