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Genomewide Gene-by-Sex 
Interaction Scans Identify ADGRV1 
for Sex Differences in Opioid 
Dependent African Americans
Bao-Zhu Yang1,2, Hang Zhou1,2,6, Zhongshan Cheng1,2,6, Henry R. Kranzler   3,4 & 
Joel Gelernter   1,2,5*

Sex differences in opioid dependence (OD) are genetically influenced. We conducted genomewide 
gene-by-sex interaction scans for the DSM-IV diagnosis of OD in 8,387 African-American (AA) or 
European-American subjects (43.6% women; 4,715 OD subjects). Among AAs, 9 SNPs were genome-
wide significant at ADGRV1 (adhesion G-protein-coupled receptor V1, lead-SNP rs2366929*(C/T), 
p = 1.5 × 10−9) for sex-different risk of OD, with the rs2366929*C-allele increasing OD risk only for men. 
The top co-expressions in brain were between ADGRV1 and GRIK2 in substantia nigra and medullary 
inferior olivary nucleus, and between ADGRV1 and EFHC2 in frontal cortex and putamen. Significant 
sex-differential ADGRV1 expression from GTEx was detected in breast (Bonferroni-corrected-p < 0.002) 
and in heart (p < 0.0125), with nominal significance identified in brain, thyroid, lung, and stomach 
(p < 0.05). ADGRV1 co-expression and disease-enrichment analysis identifying the top 10 diseases 
showed strikingly sexually dimorphic risks. The enrichment and transcriptome analyses provided 
convergent support that ADGRV1 exerts a sex-different effect on OD risk. This is the first study to 
identify genetic variants contributing to sex differences in OD. It shows that ADGRV1 contributes to OD 
risk only in AA men, a finding that warrants further study.

Sex differences in opioid dependence (OD) have a strong biological basis1 with a genetic component2,3. 
Heritability estimates of heroin use are around 0.52. Although there is no report for sex-specific heritability esti-
mates of OD specifically, heritability estimates of drug dependence are higher in men than women4. In animal 
models, genetic effects related to OD have differed by sex5–7. For example, a mouse model of the human OPRM1 
(A118G) polymorphism found genotype-by-sex-specific reductions in the rewarding properties of morphine5. 
This variant does not, however, appear to affect OD risk in humans8. To our knowledge, the only systematic 
genome-wide search for the genes responsible for sex differences in human OD was a linkage study3.

Systematic search for the OD genetic risk variants (regardless of sex differences) using the genome-wide asso-
ciation study (GWAS) design has been reported. We published the first GWAS with genomewide significant 
findings9. The most compelling results in that study were the identification of genes involved in potassium sign-
aling pathways (i.e., KCNC1 (Potassium Voltage-Gated Channel Subfamily C Member 1) and KCNG2 (Potassium 
Voltage-Gated Channel Modifier Subfamily G Member 2)) in the African American (AA) population, and genes 
involved in calcium signaling and long-term potentiation. Another GWAS was conducted in an Australian 
cohort, in which genetic data from opioid-dependent daily injectors were compared with that from opioid mis-
users who never progressed to daily injection, and identified several genomewide significant variants in CNIH3 
(Cornichon Family AMPA Receptor Auxiliary Protein 3)10. In a recent study, we found that a variant on chromo-
some 15, rs12442183, near RGMA (Repulsive Guidance Molecule A), was genome-wide significantly associated 
with OD in the European American (EA) population11. RGMA encodes a central nervous system axon guidance 
protein called repulsive guidance molecule A. Risk allele rs12442183*T was related with higher expression of a 
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specific RGMA transcript variant in frontal cortex. After chronic morphine injection, the homologous mouse 
gene, Rgma, was upregulated in the striatum of C57BL/6 J mice11.

We aimed to identify genetic variants exerting a sex difference in susceptibility to OD in a GWAS framework 
using the cohort of substance use disorder we have collected; characterize and annotate the identified genetic 
variants using publicly available databases of co-expressed genes and enrichment analysis; and use transcrip-
tome analysis to identify biological mechanisms consistent with sex-specific effects on OD risk for the variants 
identified.

Materials and Methods
Subjects and the semi-structured assessment.  This study analyzed data obtained from African-
American (AA) and European-American (EA) participants in the Yale-Penn genetics of substance dependence 
cohort (total N = 8,387). The 4,944 AA and 3,443 EA samples were recruited from 2000 to 2013, as previously 
described9,12. These subjects represent two phases of collection: Yale-Penn-1 (N = 4,970) and Yale-Penn-2 
(N = 3,417), which differed in their period of recruitment and the genotyping platforms used. The demographic 
characteristics of the study cohort are presented in Table 1. We assessed all subjects using the Semi-Structured 
Assessment for Drug Dependence and Alcoholism (SSADDA)13 and obtained certificates of confidentiality for 
all subjects from the National Institute on Drug Abuse (NIDA) and the National Institute on Alcohol Abuse and 
Alcoholism (NIAAA). The study protocol was approved by the Yale Institutional Review Board and the study was 
performed in accordance with the relevant guidelines and regulations. All subjects provided written informed 
consent

Genotype quality control, population stratification, and imputation.  We genotyped the 
Yale-Penn-1 sample with the Illumina HumanOmni1-Quad array of approximately 988,000 single nucleotide 
polymorphisms (SNPs), and the Yale-Penn-2 sample with the Illumina HumanCore Exome array of approxi-
mately 266,000 exonic SNPs and 240,000 tagging SNPs. We excluded SNPs with a genotype call rate <98% or 
minor allele frequency (MAF) <1%.

We used the following measures to differentiate AA or EA subjects and control for population stratification. 
First, we conducted principal component (PC) analysis14 for the SNPs common among the genetic data for the 
Yale-Penn-1, Yale-Penn-2, and the 1000 Genomes phase 3 reference panel, which contains African, admixed 
American, European, East Asian and South Asian populations15. We then trimmed SNPs in LD (r2 > 0.2) using 
PLINK16. Using the remaining SNPs, we clustered the Yale-Penn subjects into different groups compared to the 
reference populations by the first three PCs in Euclidean space. Subjects were removed from the subsequent anal-
yses if they were not clustered with African or European populations. Finally, we conducted a second PC analysis 
within each group to remove outliers greater than three standard deviations from the mean Euclidean distances. 
The resultant first 10 PCs were covariates in all subsequent association analyses to adjust for residual population 
stratification.

We imputed GWAS data to the 1000 Genomes phase 3 reference panel15, using Minimac3 implemented in the 
Michigan Imputation Server17. Post-imputation SNP exclusion metrics included: Hardy-Weinberg equilibrium 
p < 10−6, imputation accuracy < 0.8, or MAF < 5%. The final SNP counts for the subsequent association analyses 
were: Yale-Penn-1 sample, 8,775,706 SNPs in AAs and 6,417,418 in EAs; Yale-Penn-2 sample, 6,702,161 SNPs in 
AAs and 5,205,763 in EAs.

Genomewide gene-by-sex interaction scan for sex differences in OD.  We performed genetic asso-
ciation tests for the DSM-IV diagnosis OD using a linear mixed model implemented in the program GEMMA18. 
A standard linear mixed-effect model was chosen to control for the relatedness among participants as our cohort 
contained a mixture of individuals ascertained using both an unrelated case-control design and a family design 
(11.9% of AAs and 7.9% of EAs came from the family design). We chose the standard linear mixed effect model 
implemented in GEMMA, where the effect estimates asymptotically converge to estimates of logistic regression 
for a binary outcome (such as OD affected versus OD unaffected here) when the sample size is large. We tested 
the gene-by-sex interaction effect and included the main effects of sex and SNP in addition to controlling for age, 

Characteristic

African American European American

TotalYale-Penn 1 Yale-Penn 2 Subtotal Yale-Penn 1 Yale-Penn 2 Subtotal

N
      Male, N
      Female, N
      Female %

3,227
      1,707
      1,520
      47.10%

1,717
      1,001
      716
      41.70%

4,944
      2,709
      2,235
      45.20%

1,743
      1,011
      732
      42%

1,700
      1,013
      687
      40.40%

3,443
      2,024
      1,419
      41.20%

8,387
      4,730
      3,657
      43.60%

Age (SD) 41.1 (9.0) 40.8 (10.9) 41.0 (9.7) 38.0 (10.9) 39.4 (13.0) 38.7 (12.0) 40.1 (10.7)

OD affected, N
      Male, N
      Female, N
      Female %

1,684
      994
      690
      41%

919
      643
      276
      30%

2,603
      1,637
      966
      37.10%

1,086
      682
      404
      37.20%

1,026
      683
      343
      33.40%

2,112
      1,364
      748
      35.40%

4,715
      2,999
      1,716
      36.40%

OD unaffected, N
      Male, N
      Female, N
      Female %

1,543
      713
      830
      53.80%

798
      358
      440
      55.10%

2,341
      1,070
      1,271
      54.30%

657
      329
      328
      49.90%

674
      330
      344
      51%

1,331
      659
      672
      50.50%

3,672
      1,730
      1,942
      52.90%

Table 1.  Demographic characteristics of the study samples.
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four other substance dependence diagnoses (alcohol, cocaine, nicotine, cannabis) and the first 10 PCs, to examine 
sex differences in genetic risk for OD. This model was examined separately for each of four datasets, i.e., both AA 
and EA subjects in the Yale-Penn-1 and Yale-Penn-2 samples. We then meta-analyzed the interactive effects of 
SNP-by-sex from Yale-Penn-1 and Yale-Penn-2 within each population using the inverse variance method that 
converted all the effects into a signed Z-score and tested for association using the Z-test, which was implemented 
in the program METAL19.

Co-expression, sex differences in gene expression, disease enrichment, and functional anno-
tation.  For the enrichment analysis, we first queried the target gene, i.e., the gene harboring the genomew-
ide significant variants detected, to identify co-expressed genes using COXPRESdb20, a coexpression database 
of DNA-microarray and RNAseq-based expression data. After obtaining the top 100 co-expressed genes of the 
targeted gene (or genes) identified from the association analyses, we assessed functional enrichment using the 
WEB-based GEne SeT AnaLysis Toolkit (WebGestalt)21, a functional enrichment analysis web tool (see sup-
plementary material for the setting of parameters). WebGestalt 2017 supports 12 organisms and 150,937 func-
tional categories from public databases and computational analyses21. The enrichment analysis method ‘Disease 
Association Analysis’ of WebGestalt was used to test for enrichment of disease-associated genes among the top 
co-expressed genes with the targeted gene.

We studied sex differences in the expression of the targeted gene, i.e., ADGRV1, to investigate the functional 
roles of the top variants and the disease-enriched genes to provide insight into the molecular mechanism of sex 
differences in OD. To do this, we used the Genotype-Tissue Expression (GTEx) data and the tissue-specific gene 
expression database, the Brain eQTL Almanac, Braineac22. The RNA-Seq data of GTEx Analysis V7 (phs000424.
v7.p2), included in the file, ‘GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_tpm.gct.gz’, were down-
loaded from the GTEx Portal datasets23, and information about tissues and sex was retrieved from the files, 
‘GTEx_v7_Annotations_SampleAttributesDS.txt’ and ‘GTEx_v7_Annotations_SubjectPhenotypesDS.txt’, 
respectively. We downloaded the gene expression (RNA-seq) data and the related phenotypes and analyzed the 
data using the general linear model, implemented in the SAS procedure “ proc glm,” where sex was modeled as 
the main effect in association with the levels of gene expression.

Results
Genomewide gene-by-sex interaction scan.  We summarized the result for each dataset and the 
meta-analysis within each population in the Manhattan plots (Supplementary Figure S1). The QQ plots show no 
systematic bias (Figure S1). A peak with the lead SNP rs2366929 and another eight SNPs in strong LD (r2 > 0.9) 
with the lead SNP (r2 > 0.8) reached genomewide significance (all p’s < 5 × 10−8) in the gene-by-sex interaction 
scans for OD in the meta-analyzed AA samples (Fig. 1a). For lead SNP rs2366929, each subsample also showed 
dose-response effects of nominal significance with p = 2.19 × 10−5 and p = 1.23 × 10−5 for Yale-Penn 1 and Yale-
Penn 2, respectively. This peak of genomewide significance is located at ADGRV1 (Adhesion G protein-coupled 
receptor V1) on chromosome 5q14.3. The gene-by-sex interaction effects exhibit a gene dose-response relation-
ship for the OD risk in AA men but not women (Fig. 1b). That is, the proportions of OD-affected to the total sub-
jects (OD affected plus controls), within each of the three genotypes consistently show a gene dose-response trend 
relationship in men but not women (for lead SNP rs2366929*(C/T), chi-square test for trend in proportions, 
p = 1.1 × 10−14 in men and p = 0.15 in women). Figure 1b displays the increasing trend of the OD-affected pro-
portions for men (CC > CT > TT) compared with women for the lead SNP rs2366929. This increasing trend in 
men versus women was observed for all nine SNPs identified in the association analyses (Supplementary Table S1 
shows the trend tests for all nine SNPs). The MAF for the lead SNP increased 10.5% for the OD-affected versus 
the OD-unaffected men (0.353 vs. 0.248; comparison of two proportions, p < 0.0001); however, this increase was 
not present in women (0.241 vs. 0.265; p = 0.15). Table 2 displays the characteristics of the nine genome-wide 
significant SNPs.

We identified no genomewide significant signals in the EA sample (Supplementary Figure S2) and the 
trans-ethnic meta-analysis of the AA and EA samples (Supplementary Figure S3).

Sex difference in ADGRV1 gene expression.  We used GTEx data to identify tissues with differen-
tial ADGRV1 gene expression by sex for further annotating ADGRV1. We detected significant sex-differential 
ADGRV1 gene expression in breast (Bonferroni correction p < 0.002) and in heart (p < 0.0125) based on GTEx 
transcriptome data (dbGaP Accession phs000424.v7.p2) (Table 3). The ADGRV1 expression in heart supports a 
previous study of sexually dimorphic ADGRV1 expression in patients with non-ischemic human heart failure 
(Supplementary Table S2), in which ADGRV1 expression was lower in men than women, the same effect direction 
to what we found in the GTEx transcriptome. We identified four additional tissues with sex-differential ADGRV1 
gene expression that were nominally significant, including brain (p = 0.018), thyroid (p = 0.021), lung (p = 0.038), 
and stomach (p = 0.045) (Table 3).

ADGRV1 co-expression and disease enrichment analysis.  The top 100 genes co-expressed with 
ADGRV1 (Supplementary Table S3) identified by COEXPRESdb were subject to disease enrichment analysis. 
We found that ADGRV1 and 13 ADGRV1 co-expressed genes were significantly enriched within 10 diseases 
(all raw p’s < 0.01 and adjusted p’s < 0.05, Supplementary Table S4). The 13 genes are ABCC12, CFTR, CTAGE1, 
DAOA-AS1, EFHC2, FHL5, GRIK2, NAV3, SPO11, SYCP2, TAAR9, TPH2, and ZNF157. Among the 10 diseases, 
two are male-specific (male infertility and non-syndromic oligospermia), four affect males more than females 
(X-linked mental retardation, generalized epilepsy, Sezary syndrome, cutaneous T-cell lymphoma), three affect 
females more than males (chronic fatigue syndrome, panic disorder, and pseudoxanthoma elasticum), and one 
displays distinct disease characteristics between males and females (personality disorders).
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We also correlated the expression of ADGRV1 with the expression of the 12 co-expressed disease risk genes 
(DAOA-AS1 expression was not available) across the 10 human brain tissues in the Braineac database. The cor-
relation pattern of gene expression across the 10 brain tissues is displayed in Fig. 2. Robust correlations of gene 
expression between ADGRV1 and two genes, GRIK2 (Glutamate ionotropic receptor kainate type subunit 2) and 
EFHC2 (EF-hand domain containing 2), are ubiquitous across various human brain tissues. The highest corre-
lations between the gene expressions of ADGRV1 and GRIK2 are in the substantia nigra and medulla inferior 
olivary nucleus and between ADGRV1 and EFHC2 in the frontal cortex and putamen (Fig. 2).

Discussion
To our knowledge, this is the first systematic search for genetic variants contributing to sex differences in OD risk 
using GWAS. We identified a male-specific effect of ADGRV1 on risk of OD in the AA sample using genome-wide 
gene-by-sex interaction scans. Co-expressed genes, the enrichment analysis, and the transcriptome analysis pro-
vided mechanistic support for the finding that ADGRV1 exerts a sex-specific effect on OD risk.

ADGRV1 spans approximately 605.5 kb on chromosome 5q14.3 and encodes a member of the G-protein cou-
pled receptor superfamily. In addition to the N- and C-terminal domains of ADGRV1, the encoded protein con-
tains 7 putative Na( + )/Ca(2 + ) exchangers (defining the cation binding domain) and 21 N-linked glycosylation 
sites24. Its extracellular repeat domains bind Ca(2 + ) and are involved in signal transduction24. Members of the 
ADGR family play key roles in regulating cortical patterning, dendrite and synapse formation, and myelination25. 
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Figure 1.  Genomewide gene-by-sex interaction scans on opioid dependence (OD). (a) Regional association 
plot at the ADGRV1 (aka. GPR98) locus for the meta-analysis of the two phases of the African American (AA) 
sample. (b) Proportions of the OD affected for the AA sample for each genotype for the lead SNP rs2366929.
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Using GTEx transcriptome data and the Human Protein Atlas26, we found that ADGRV1 is also highly expressed 
in three endocrine glands (adrenal gland, thyroid, pituitary), lung, and multiple brain regions (Supplementary 
Figure S4). Opioid use disrupts hypothalamic-pituitary-adrenal (HPA) dynamics at the level of the pituitary or 
adrenal27. Chronic opioid use can cause pervasive endocrine dysfunction, which leads to hypogonadism, infertil-
ity, fatigue, anxiety, depression, menstrual irregularities, and so on28,29. Many of these disorders are among what 
we have identified for this study in the top ten diseases significantly enriched by the ADGRV1 co-expressed genes, 
such as fatigue, infertility, anxiety or panic disorder (Supplemental Table S4).

SNP SNP rsID

Position 
on Chr5/
GRCh37

LD 
(r2)

Distance 
from the 
lead SNP 
(bp) Alleles

Male Female

Beta*
Standard 
error*

Meta p-
value

MAF OD 
Affected 
N = 1637

MAF OD 
Unaffected 
N = 1070

MAF OD 
Affected 
N = 966

MAF OD 
Unaffected 
N = 1271

1 rs2030272 90025842 0.75 −792 C/G 0.31 0.213 0.209 0.222 0.10 0.019 4.55e−08

2 rs2366929 90026634 0 C/T 0.353 0.248 0.241 0.265 0.11 0.018 1.51e−09

3 rs2222243 90033697 0.75 7063 A/C 0.31 0.213 0.209 0.223 0.10 0.019 4.96e−08

4 rs2443067 90034302 0.75 7668 A/G 0.31 0.213 0.209 0.223 0.10 0.019 4.96e−08

5 rs2443066 90034784 0.73 8150 A/G 0.31 0.213 0.209 0.223 0.10 0.019 4.49e−08

6 rs2460186 90036980 0.75 10346 A/G 0.311 0.213 0.209 0.224 0.10 0.019 4.21e−08

7 rs2460187 90038450 0.72 11816 G/T 0.311 0.213 0.209 0.224 0.10 0.019 4.21e−08

8 rs2443065 90053056 0.70 26422 A/G 0.313 0.216 0.211 0.227 0.10 0.019 4.04e−08

9 rs2443064 90053280 0.70 26646 T/C 0.313 0.216 0.211 0.227 0.10 0.019 4.04e−08

Table 2.  Genomewide significant SNPs located at the ADGRV1 locus with differential effects on susceptibility 
to opioid dependence between male and female for the African American sample. Note: MAF, Minor Allele 
Frequency; OD, Opioid Dependence (DSM-IV diagnosis); SNP, Single Nucleotide Polymorphism. *Beta 
(Standard error) was derived for the SNP-by-sex interaction effect from the METAL which pulled together the 
results from the GEMMA software program implementing the linear mixed effect model for Yale-Penn-1 and 
Yale-Penn-2 (as described in the method section).

Tissue

Average Gene Expressiona (N)

df F Value Pr > FMale Female

Adipose Tissue 0.031 (526) 0.025 (271) (1, 795) 1.46 0.227

Adrenal Gland 62.92 (108) 53.50 (82) (1, 188) 2.67 0.104

Bladder 1.31 (6) 0.76 (5) (1, 9) 0.66 0.439

Blood 0.089 (349) 0.070 (188) (1, 535) 0.36 0.546

Blood Vessel 0.042 (593) 0.036 (320) (1, 911) 0.13 0.722

Brain 6.06 (1162) 6.81 (509) (1, 1669) 5.6 0.0181*
Breast 0.65 (175) 1.33 (115) (1, 288) 35.27 <0.0001**
Colon 0.10 (306) 0.11 (201) (1, 505) 1.87 0.173

Esophagus 0.12 (647) 0.12 (374) (1, 1019) 0.21 0.644

Heart 0.018 (402) 0.025 (198) (1, 598) 6.28 0.0125*
Kidney 0.50 (36) 0.37 (9) (1, 43) 0.38 0.542

Liver 0.59 (120) 0.58 (55) (1, 173) 0 0.962

Lung 1.42 (286) 1.61 (141) (1, 425) 4.33 0.038*
Muscle 0.043 (371) 0.039 (193) (1, 562) 0.17 0.684

Nerve 0.10 (274) 0.10 (140) (1, 412) 0.11 0.738

Pancreas 0.43 (150) 0.45 (98) (1, 246) 0.75 0.386

Pituitary 9.96 (129) 9.95 (54) (1, 181) 0 0.995

Salivary Gland 0.62 (71) 0.53 (26) (1, 95) 1.64 0.203

Skin 0.17 (790) 0.17 (413) (1, 1201) 0.01 0.909

Small Intestine 0.070 (86) 0.059 (51) (1, 135) 1.24 0.268

Spleen 0.03 (98) 0.02 (64) (1, 160) 0.61 0.436

Stomach 0.16 (160) 0.20 (102) (1, 260) 4.08 0.0445*
Thyroid 6.91 (293) 8.42 (153) (1, 444) 5.36 0.0211*

Table 3.  ADGRV1 gene expression: Tests of sexually dimorphic expression using Genotype-Tissue Expression 
(GTEx) project data. Note: aThe gene expression unit is transcripts per million (TPM); df, degrees of freedom; 
N, sample size; Pr, probability; **p < 0.002 (Bonferroni correction for 23 tests); *p < 0.05.
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In the co-expressed genes and enrichment analyses, all of the top 10 diseases identified demonstrate sexually 
dimorphic risks or manifestations. We identified ADGRV1 as a male-specific risk factor in OD. The top 10 dis-
eases also include two that are male-specific (i.e., male infertility and non-syndromic oligospermia) or four that 
predominantly affect males more than females (i.e., X-linked mental retardation, generalized epilepsy, Sezary 
syndrome, or cutaneous T-cell lymphoma). On the other hand, three of the 10 diseases affect more females than 
males (chronic fatigue syndrome, panic disorder, and pseudoxanthoma elasticum)30,31. Collectively, the top 10 
diseases for ADGRV1 co-expressed genes are strikingly sexually dimorphic.

In disease-association studies, ADGRV1 has been well examined. Mutations in ADGRV1 are associated with 
familial febrile seizures32, and also contribute to focal and generalized epilepsy33,34, and epilepsy with myoclonic 
seizures35. Besides, ADGRV1 is associated with cardiac conduction disorder33 and ADGRV1 variants segregated in 
families with epilepsy co-occurring sudden death (due to cardiac conduction disorder), showing shared ADGRV1 
risk variants between epilepsy and cardiac conduction disorder33. ADGRV1 expression in the heart has been 
reported for patients with non-ischemic heart failure (Supplementary Table S2), where expression was lower in 
men than women36. This sex difference in ADGRV1 expression in the heart was replicated in the GTEx transcrip-
tome data (Table 3), although disease status was not controlled in this analysis because of the disease heteroge-
neity of GTEx donors. ADGRV1 has also been implicated in adverse metabolic effects of antipsychotic drugs37. 
Taken together, our novel discovery of ADGRV1 for contributing to OD risk in men add into this scientific liter-
ature on the disease-gene association of the strong candidate gene ADGRV1.

In the GTEx data, individual-level data do not include the diagnosis of OD. Thus our investigation into the 
association between sex differences in ADGRV1 expression and those in OD is not possible in that dataset. 
However, ADGRV1 is highly expressed in endocrine tissues (Supplementary Figure S4); opioid use could act on 
the tissues in which ADGRV1 is highly expressed (i.e., endocrine and brain), disrupting the normal G-protein 
coupled receptor signaling and hormone production and causing pathogenic cellular processes. The differences 
in ADGRV1 expression could affect stress responses or produce hormonal or behavioral effects that differ by sex 
in opioid users.

Regarding the co-expression patterns for the enriched genes expressed in brain, the identified brain regions 
show supportive evidence for neuropathology. The robust correlations in gene expression between ADGRV1 
and GRIK2 and EFHC2 are ubiquitous in human brain. The top correlations in gene expressions between 
ADGRV1 and GRIK2 are in the substantia nigra and medulla inferior olivary nucleus (Fig. 2). The substantia 
nigra is enriched in dopaminergic neurons and plays an important role in reward38, while the medulla inferior 
olivary nucleus is implicated in motor learning and control39. Another set of top correlations in the expression 
are between ADGRV1 and EFHC2 in frontal cortex and putamen (Fig. 2). The frontal cortex contains most of 
the dopamine-sensitive neurons in the cerebrum and is associated with reward, attention, short-term memory, 
planning, and motivation40. The putamen is involved in reinforcement learning and various movements41. These 
results support a role for ADGRV1 in networks of co-expressed genes that regulate the neural activities involved 
in addiction-related functions, including reward, memory, and learning.

As for the other co-expressed genes involved in the top correlated brain regions, TPH2 encodes tryptophan 
hydroxylase 2, which catalyzes the rate-limiting step in the synthesis of serotonin. Chronic morphine and cocaine 
exert common effects on tyrosine hydroxylase in dopaminergic brain reward regions42. Mutations in TPH2 
were associated with quality of life of patients in methadone maintenance treatment for heroin use disorder43, 
responses to cocaine treatment44, and a spectrum of psychiatric disorders (cf. a review and meta-analysis45). 
GRIK2 encodes a member of the kainate family of glutamate receptor subunits. In a mouse model, Grik2 mRNA 
levels were decreased after prolonged morphine treatment46. These results again support a role for ADGRV1 in 
networks of co-expressed genes that regulate the neural activities involved in opioid or drug addiction.

The variants at ADGRV1 reaching genomewide significance for a sex-difference in OD risk were identified 
in AAs, but not EAs. The minor allele “C” of lead SNP rs2366929 in the International Genome Sample Resource 
(IGSR)15 has MAF = 0.47 for Europeans, and MAF = 0.22 for Africans, consistent with the MAFs (0.248 male; 
0.265 female) we observed in our admixed AA population (Table 2). Local or population-specific variation is 
important in mapping disease risk47,48. Although the current information is not enough to determine why the 

Figure 2.  The mRNA expression of ADGRV1 was associated with 12 co-expressed genes across 10 human brain 
tissues in the Braineac database (Ramasamy et al.22). Pairwise Pearson correlation coefficients (r) for ADGRV1 
and the 12 genes are labeled in each square of the heatmap. The color bar indicates the extent of significance, 
− −log p values10( ), for the correlation coefficients.
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genetic effects in ADGRV1 were not seen in EAs, there are several plausible explanations. For example, effect sizes 
might be smaller in EA ancestries such that larger sample size may be necessary for discovery. Further studies 
with larger sample sizes and more power are warranted to investigate sex-differences in OD risk.

The GEMMA model we used for the current study includes 17 main effects (i.e., age, sex, SNP, and four other 
substance dependence on alcohol, cocaine, marijuana, and nicotine, and ten PCs) and one two-way interaction 
(i.e., SNP-by-sex). In theory, a saturated model that incorporates all of the two-way interaction effects would be 
ideal but would involve a total of 153 terms in the model, comprised of the 17 main effects and 136 pairwise inter-
action effects. We chose not to apply the saturated model because in previous simulations (unpublished data) we 
obtained effect estimates for the targeted interactions that were generally close to those estimated by the saturated 
model. However, the power was greatly reduced by the inclusion of a large number of interaction terms. We opted 
to use the more limited model.

The strengths of the present study include a moderately large cohort of substance dependence subjects who 
were carefully phenotyped and whose data were rigorously analyzed. However, the study findings are limited 
by the absence of a suitable cohort of AAs with OD in which to replicate the findings after we made extensive 
efforts to locate an existing dataset sufficiently powered for replication. Despite this limitation, we believe that the 
findings from this first study of sex- differences in genetic risk for OD can aid in understanding the underlying 
differences and facilitate better sex-specific prevention and treatment efforts for OD.

In summary, we identified ADGRV1 as a risk locus contributing to increased risk of OD in AA men by exam-
ining genetic variants systematically on a genome-wide scale. Functional annotation of this finding corroborated 
a substantial role for ADGRV1 in increasing OD risk, especially the potential pathogenic effects of variation in 
AGDRV1 on cardio-cerebral mechanisms, which could contribute to the risk of fatal opioid overdose or respira-
tory depression that has been observed following high-dose opioid exposure. Further study of this finding is 
warranted.

Data availability
The datasets analyzed for the current study are not all publicly available. The Yale-Penn-1 subsample can be 
requested from the NCBI dbGaP repository: A Genome-Wide Association Study of Heroin Dependence (dbGaP 
Study Accession: phs000277.v1.p1). The Yale-Penn-2 subsample has not deposited to the dbGaP, but will be 
available from the corresponding author on reasonable request.
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