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Prognostic classification of 
endometrial cancer using a 
molecular approach based on a 
twelve-gene NGS panel
Raquel López-Reig1,6, Antonio Fernández-Serra1,6, Ignacio Romero2, Cristina Zorrero3, 
Carmen Illueca4, Zaida García-Casado1, Andrés Poveda5 & José Antonio López-Guerrero   1*

Endometrial Cancer (EC) is one of the most common malignancies in women in developed countries. 
Molecular characterization of different biotypes may improve clinical management of EC. The Cancer 
Genome Atlas (TCGA) project has revealed four prognostic EC subgroups: POLE, MSI; Copy Number Low 
(CNL) and Copy Number High (CNH). The goal of this study was to develop a method to classify tumors 
in any of the four EC prognostic groups using affordable molecular techniques. Ninety-six Formalin-
Fixed Paraffin-embedded (FFPE) samples were sequenced following a NGS TruSeq Custom Amplicon 
low input (Illumina) protocol interrogating a multi-gene panel. MSI analysis was performed by fragment 
analysis using eight specific microsatellite markers. A Random Forest classification algorithm (RFA), 
considering NGS results, was developed to stratify EC patients into different prognostic groups. Our 
approach correctly classifies the EC patients into the four TCGA prognostic biotypes. The RFA assigned 
the samples to the CNH and CNL groups with an accuracy of 0.9753 (p < 0.001). The prognostic value of 
these groups was prospectively reproduced on our series both for Disease-Free Survival (p = 0.004) and 
Overall Survival (p = 0.030).Hence, with the molecular approach herein described, a precise and suitable 
tool that mimics the prognostic EC subtypes has been solved and validated. Procedure that might be 
introduced into routine diagnostic practices.

Endometrial Cancer (EC) is the most common gynecological neoplasm and the fourth most frequent can-
cer in women in developed countries, with 280000 cases per year worldwide1. This cancer principally affects 
post-menopausal women, with the peak incidence between 55 and 65 years1. Clinically, the presence of metror-
rhagia in 80% of patients allows both early diagnosis and treatment, resulting in an improved five-year survival2. 
Among newly-diagnosed women, 68% will present localized disease in the uterine cavity, 20% will show disease 
in pelvic organs and lymph nodes, and about 8% will suffer distant metastasis at diagnosis3. Prognosis varies dra-
matically according to the stage of the disease. Stage I has an 80–90% five-year survival rate, whereas for Stage IV 
this rate decreases up to 20%4,5.

Considering the biology and clinical parameters, EC is classified into two groups: type I carcinomas comprise 
80% of newly-diagnosed EC and are characterized by alterations in PTEN, KRAS, and CTNNB1 and by microsat-
ellite instability (MSI). These tumors are associated with better prognosis6,7. Type II tumors are defined by TP53 
mutations, high Ki-67 score, p16 inactivation and CDH1 and HER2 amplification8,9.

Integration of clinicopathological information and genetic data provides more accurate classification of EC 
into different prognostic groups, facilitating the use of specific therapeutic interventions. The integrated genomic 
characterization of EC performed by the Cancer Genome Atlas (TCGA) consortium10 defined four prognostic 
EC subgroups, with a prognosis from the best to the worst as follows: POLE group, comprising tumors with POLE 
exonuclease domain mutations; MSI group, composed of EC with MSI; Copy Number Low (CNL) and Copy 
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Number High (CNH) groups. CN groups are defined by a differential profile of CN alterations (CNA), CNH 
group particularly presenting an elevated incidence of TP53 alterations10.

The aim of this study was to develop a molecular prognostic classifier for EC that mimics the four TGCA 
prognostic groups, by using only a small multi-gene NGS panel and MSI determination.

Results
Selection of the multigene-NGS panel and mutational analysis.  The EC data set from TCGA10 
defines 48 genes with differential mutation frequencies across the four prognostic groups. A subset of 13 genes, 
corresponding to those with the highest differences in terms of frequencies between groups, was selected: POLE, 
PTEN, TP53, ARID1A, KRAS, ARID5B, FBXW7, PPP2R1A, CTCF, CTNNB1, RPL22, PIK3CA, PIK3R1. Two 
separate sequencing runs, containing 48 dual-pool libraries each were performed. The coverage, quality param-
eters and statistics were comparable between both runs, hence it was possible to merge the data for analysis. 
Sequencing metrics for analyzed samples are summarized in Supplementary File 1.

A median of 40 genetic alterations per case (range: 13–171) were found (Supplementary File 2). Variants 
were classified as mutated if they were already reported in ClinVar or if appeared as predicted pathogenic, likely 
pathogenic or VUS by PolyPhen and SIFT predictors. Benign and likely benign variants were not considered 
for the analysis. The presence of mutation was treated as categorical dichotomous variable (presence/absence of 
mutation).

The most frequently affected genes in our series was PTEN (55.2%), followed by ARID1A (49.0%) and 
ARID5B (43.8%), whereas KRAS mutations (9.4%) represent the lowest frequency (Fig. 1). The median number 
of mutations per patient was 9.5 (range: 2–64). Univariate analysis at gene level showed a correlation between 
POLE mutation and early stage EC (p = 0.040), PTEN mutations were enriched in EC with endometrioid his-
tology (p < 0.001) and low-grade tumors (p < 0.001). EC with serous histology harbored more TP53 muta-
tions (p = 0.021). Finally, RPL22 mutation showed higher frequency in endometrioid histology (p = 0.005) and 
low-grade tumors (p = 0.004). KRAS (p = 0.035) and CTCF (p = 0.05) mutations were also related with low-grade 
tumors (Table 1A).

Regarding the prognostic value of individual gene mutations in our series, mutations in POLE, PTEN PIK3R1, 
ARID5B and PPP2R1A are correlated with better patient outcome as seen in Supplementary File 3.

Distribution of microsatellite instability in paired blood and FFPE samples.  MSI was observed 
in 15 of 96 patients (15.6%): 14 of 15 with endometrioid histology (93.3%), and in just 1 of 13 serous cases 
(7.7%) (p = N.S). MSI was more frequent in early stages: 11/15 (73.3%) stages I-II vs. 4/14 (26.7%) stages III-IV 
(p = N.S). This parameter lacked prognostic value both for PFS and OS (Supplementary File 3). The status of 
Mismatch repair (MMR) proteins was also evaluated by immunochemistry (IHC, Supplementary Information) 
obtaining a concordance with MSI results of 96%.

Building a predictive multi gene model using a Random Forest approach.  A random forest (RF) 
predictive model for a dichotomous variable (CNL or CNH) was trained using the mutational profile of the 13 
selected genes from 148 patients analyzed by the EC TCGA project10. To correctly adjust the RF model, the TCGA 
dataset was randomly split in two cohorts (training and validation), based on the distribution of the dichotomous 
response variable; hence, the groups consisted of 62 patients for the training set and 86 for the validation set.

Figure 1.  Frequency of gene mutations in EC patient’ series determined by NGS 13 genes panel. *Hotspot 
POLE (p.P286R and p.V411L) 5.2% (5.6% in TCGA population).
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To train the model, genotyping of 12 genes was included as categorical dichotomous variables (the so called 
12g-model) (Tables 2 and 3). Prior to the adjustment of the RFA model, the number of variables per level on each 
split was optimized to pre-train the model. The model was validated with 5-fold cross-validation and bagging11.

The POLE and MSI groups were directly defined by the presence of POLE mutations and MSI respectively.

Impact of 12 genes RF model in the clinical stratification of the disease.  Our series of 96 EC 
patients was stratified into the four TCGA prognostic groups based on the genotyping data of the 12-gene NGS 
panel, MSI status, grade, stage and histology: PO LE, 16/96 (16.7%); MSI-H, 12/96 (12.5%); CNH, 20/96 (20.8%); 
and CNL, 48/96 (50.0%). As mentioned above, CNH and CNL groups were classified with our RF adjusted model.

The POLE group was characterized by a POLE exonuclease domain mutation in all 16 cases and by the pres-
ence of MSI in 3 of the 16 cases (18.7%). This group presented the highest mutational ratio with a median of 94 
variants/case (range: 31–171) compared with the other groups (p < 0.001) (Fig. 2). MSI group was characterized 
by the presence of microsatellite instability in 100% of the cases and had no POLE mutations. This group pre-
sented a lower median of alterations than POLE with 40 variants per case (range: 19–93). Among these alter-
ations, the most affected genes were PTEN (75.0%), ARID1A (58.3%) and RPL22 (83.3%). CNH presented a 
median of 32 variants per case (range: 19–96) and was characterized by mutations in TP53 (75%), low frequency 
of PTEN mutations (5%) and alterations in PPP2R1A (45%). Finally, CNL showed a median of 37 variants per 
case (range: 13–138) (Table 4 and Supplementary Fig. S1). Gene by gene analysis of these alterations revealed that: 
PTEN (60.4%) and TP53 (14.6%) presented the highest and the lowest mutation rate respectively, with alterations 
in other genes as follows: PIK3R1 (35.4%), ARID5B (41.7%), CTCF (31.3%) and RPL22 (39.6%). The distribution 
of mutations across groups in EC dataset is depicted in Fig. 3 (Supplementary Table S1).

The Log-Rank test was used to evaluate the prognostic capacity of our molecular classification. This test 
confirmed that the molecular stratification of our patients revealed differences in both PFS (p = 0.004) and OS 
(p = 0.030), suggesting that the POLE and CNH biotypes constituted the best and the worst prognostic groups 
respectively, mirroring the groups defined by the TCGA (Fig. 4). In addition, a multivariate analysis was per-
formed, being statistically significant only for histology (Table 1B).

Histology Stage Grade

Endometrioid Serous p-value Early-stage Advanced-stage p-value I II III p-value

(A)

POLE
mutated 15 1

N.S.
16 0

0.040
10 5 1

N.S.
non-mutated 68 12 63 17 35 23 22

PTEN
mutated 53 0

<0.001
44 9

N.S.
30 20 3

<0.001
non-mutated 30 13 35 8 15 8 20

TP53
mutated 24 8

0.021
24 8

N.S.
12 8 12

0.050
non-mutated 59 5 55 9 33 20 11

KRAS
mutated 8 1

N.S.
9 0

N.S.
8 0 1

0.035
non-mutated 75 12 70 17 37 28 22

CTCF
mutated 25 1

N.S.
22 4

N.S.
16 7 3

0.050
non-mutated 58 12 57 13 29 21 20

RPL22
mutated 40 1

0.005
34 7

N.S.
17 19 5

0.004
non-mutated 43 12 45 10 28 9 18

DFS OS

Univariate Multivariate Univariate Multivariate

(B)

Stage
Early 37.40 (2.067–91.2)

0.006 N.S.
42.57 (2.067–91.20)

0.004 N.S.
Advanced 15.37 (4.87–91.00) 34.47 (6.30–91.00)

Grade

I 50,33 (2.07–91.02)

0.003 N.S.

52.83 (2.067–91.20)

<0.001
8.26 
(62.50–1.10
9

0.040II 30.28 (9.70–79.57) 33.10 (9.70–79.57)

III 26.38 (4.87–67.60) 32.50 (6.30–67.60)

Histology
Endometrioid 43.63 (5.47–37.40)

<0.001 8.90 (29.90–2.71) <0.001
44.23 (2.067–91.20)

<0.001 N.S.
Serous 21.47 (2.067–91.20) 29.53 (6.30–38.6)

TCGA groups

POLE 55.40 (24.27–77.43)

0.004 N.S.

55.40 (24.27–77.43)

0.030 N.S.
MSI 38.33 (11.9–74.93) 38.6 (11.9–74.93)

CNL 34.43 (2.067–91.00) 42.57 (2.067–91.00)

CNH 27.70 (4.87–91.2) 30.53 (6.30–91.2)

Table 1.  Correlation between mutational status of analyzed genes and (A) Main clinical and pathological 
parameters in EC using Chi-square test (B) PFS and OS measured by log-rank test.
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Discussion
One of the main problems in the management of EC patients is inter-observer agreement when assigning histol-
ogy and tumor grade by microscopic techniques. These classifications are associated with different natural histo-
ries, treatment scheme and patient outcomes, all of which will influence clinical decision making. Thus, accurate 
pathological assessment of histology and grade is essential in prognosis assessment and patient management12. 
However, this scenario is frequently idealistic. For instance, a misclassification in grade assignment, especially in 
high-grade EC tumors, has already been reported12. In addition, there is a poor correlation of histology and grade 

Parameter 12 g-model

TP53 12.4658

PTEN 6.094

CTNNB1 3.4884

ARID1A 1.8658

PPPR1A 1.5958

CTCF 1.1435

PIK3CA 0.5644

KRAS 0.3994

FBXW7 0.4852

PIK3R1 0.4506

ARID5B 0.2425

RPL22 0

Table 2.  Contribution of evaluated parameters to 12 g-model measured as mean decrease of Gini index of the 
variables in the models.

12 g-model RFA

Accuracy (95% CI) 0.9753 (0.9136–0.997)

No Information Rate 0.6049

Kappa 0.9483

McNemar’s test p-value 1

Sensitivity 0.9688

Specificity 0.9796

Positive Predictive Value 0.9688

Negative Predictive Value 0.9796

Prevalence 0.3951

Detection Rate 0.3827

Detection prevalence 0.3951

Balanced accuracy 0.9742

Table 3.  Performance parameters of 12 g model.

Figure 2.  Mutational load across four EC prognostic subtypes. CNH group shows the lowest mutational rate 
(*p < 0.05), whereas POLE mutational rate is the highest (**p < 0.001).
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between diagnostic and final tissue samples13,14. Moreover, inter-observer grade agreement has also shown only 
moderate consistency having a kappa index of 0.41–0.6815.

In the post-genomic era, multiomic information is redefining tumor classification. In this context, the EC 
TCGA project was developed and now constitutes an excellent source of data to mine prognostic models10. EC 
TCGA described four prognostic groups based on multiomics data. However, this approach is unaffordable 
in clinical scenarios due to the lack of availability of omic techniques in standard clinical laboratories. Several 
research groups have made great efforts to overcome these limitations. With this aim, different approaches have 
been applied to reproduce prognostic classification simplifying the methodology. Stello et al. used IHC for p53 
and MMR protein assessment and Sanger sequencing for POLE hotspots genotyping as surrogate of the EC 
TCGA subgroups16–18. Similarly, the ProMisE/Vancouver group provided a molecular classification based on p53 
IHC as a surrogate of the CNH/CNL TCGA groups19,20. However, the aforementioned inter-observer variability 

Molecular group (variants/group)

POLE MSI CNL CNH

Regulator 11.0 5.7 6.9 4.8

Frameshift 6.4 3.3 2.5 2.0

In frame 3.3 2.9 2.8 2.0

Splicing events 9.3 5.1 4.6 3.8

Synonymous 24.5 13.1 14.5 9.5

Intron Variant 13.5 8.7 10.0 6.9

Nonsense 3.9 0.8 0.8 0.5

Missense 35.2 11.4 10.5 9.0

Table 4.  Occurrence of mutations sorted by functional annotation among EC prognostic subtypes (Median 
number of alteration/group).

Figure 3.  Distribution of genetic alteration across the four EC prognostic subtypes.

Figure 4.  Kaplan-Meier plots assessed by log-rank test to evaluate. (a) Disease free survival and (b) Overall 
Survival according to 12 g stratification. Both parameters reach the statistical signification.
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implicit in IHC makes standardization difficult between labs (Supplementary Fig. S2). This is underlined by the 
discrete (70%) concordance found in our global series, which is significantly improved in the CNH subgroup 
(84%), between the determination of TP53 mutational status using IHC and NGS approach. For these reasons our 
objective was to develop a method based on the genotyping of only 12 genes with the definition and implementa-
tion of a reproducible RF model (12g-algorithm) to classify EC into the four prognostic groups.

We designed a small NGS gene panel with data from the EC TCGA dataset consisting of 13 of the most dis-
criminant genes which presented the highest absolute and differential mutational frequency among the groups. 
The POLE ultramutated group was defined by mutations in the exonuclease domain of this gene. This group 
presents the highest mutational load and the best prognosis, as previously described by EC TCGA10. It should be 
highlighted that our cohort was significantly high in POLE mutations (16.7%) compared with the TCGA dataset 
(7%)10. This mismatch is presumably due to different NGS technical approaches implemented in the two projects. 
Whole Exome Sequencing (WES), used in the analysis of EC TCGA samples, achieved a lower coverage (20X) 
than the targeted panel which was implemented in our work (600X). Therefore, mutations with lower variant 
allelic frequency could not be detected in WES. However, the percentage of mutations found in POLE hotspots 
(p.P286R and p.V411L) defined by the EC TCGA10 was concordant between both datasets; 5.3% (our series) and 
5.2% (TCGA series). Additionally, the MSI Group was obtained by the determination of MSI status using the 
eight microsatellite markers (NR27, NR21, NR24, BAT26, BAT25, D5S346, D2S123 and D17S250) by fragment 
analysis. The IHC for MMR proteins was also performed, obtaining a 96% of concordance between IHC and MSI 
results. This group was characterized by high mutational ratio, although lower than the POLE group (94 vs 40 
median of mutations per case respectively).

The most challenging task was to define a surrogate to classify CNH and CNL groups, which currently requires 
sophisticated technology as well as technical and analytical training. To achieve this, we adjusted a RF model 
(12g-algorithm) by using the EC TCGA dataset. This 12 g model accurately defines CNH and CNL groups (97%) 
and considers the contribution of each gene to discriminate between groups. Finally, we validated the model with 
our prospective and independent EC patients series resulting in a total of 20 cases classified as CNH (21%) and 
48 as CNL (50%). These frequencies were similar to those reported by the TCGA (26% and 39% respectively)10. 
As expected, these groups had lower mutational load than the POLE group and were characterized by mutations 
in TP53 and PTEN. As a whole, this approach showed a good correlation with the TCGA groups and matched its 
prognostic value. In addition, our prognostic model classified the patients independently of IHC, thus avoiding 
the intrinsic inter-observer subjectivity.

Besides sequencing and adjusting the 12 g-RF model, we trained another model including clinicopathological 
features (histology, grade and stage) to study the influence of these parameters, the so-called CPP model.

Although there was a slight improvement in the performance parameters of the RFA (Supplementary 
Tables S2 and S3), it is important to take into account that our series came from a monographic oncology hospi-
tal. Additionally, pathological assessment was performed by a single gynecological pathologist highly trained in 
the diagnosis of EC, possibly masking the subjective effect.

Our approach overcomes subjectivity and technical difficulties related to the definition of CNH and CNL 
groups. The assessment of the mutational status by NGS technology constitutes a highly objective methodology, 
drastically simplifying the approach. Furthermore, the common availability of NGS and trained staff in clinical 
labs will facilitate the implementation of the proposed workflow in the diagnostic routine.

In conclusion, we have defined a prognostic model to classify EC prognostic biotypes based on the analysis of 
a multi-gene NGS panel; which could be easily implemented as a molecular diagnostic tool.

Material and Methods
Patients.  This study includes 96 EC patients prospectively collected from 2010 to 2019 within the context 
of the institutional projects ACOG0901 and ACOG1602. Experimental protocols were approved by Instituto 
Valenciano de Oncología (IVO) Institutional Review Board in 2009 and 2016 respectively. All methods used 
during the study were performed in accordance with the relevant guidelines and regulations.

At the time of the study, our prospective institutional EC database contained a total of 187 patients. Criteria 
for inclusion in this study was: age over 18 years; tumors with serous or endometrioid histology; grade I to III and 
stage I, II and III. A total of 149 fulfilled these criteria, from which 96 were selected according to the best ranked 
DNA quality and concentration.

All analyzed samples were formalin-fixed paraffin-embedded (FFPE) tumor tissue retrieved from the IVO 
Biobank. Informed consent of patients was obtained in accordance with our institution’s ethical and legal 
regulations.

Clinical and pathological information for the whole series was integrated into a prospective database, median 
age at diagnosis being 62 years (range: 36.4–87) and median follow-up of 35.02 months (range: 2.1–91.2 months). 
During follow-up, 15.2% of the patients recurred, and 10.7% died as consequence of the disease; the median 
progression-free survival (PFS) being 33.65 months (range: 2.1–91.2) and the median overall survival (OS) 35 
months (range: 2.1–91.2 months) (Table 5).

Multi-gene next generation sequencing.  DNA extraction was performed using the QIAmp DNA FFPE 
Tissue kit (Qiagen, Valencia, CA) following the manufacturer’s instructions. Three FFPE blocks sections of 20 
µm-thin with tumor content higher than 50% were used. The final DNA concentration was measured fluoromet-
rically using PicoGreen™ reagent in a Quantifluor instrument (Promega, Fitchburg, Wisconsin). DNA sample 
quality for NGS selection was estimated using a qPCR-based approach (QC illumina kit) (Illumina, San Diego, 
CA). In addition, quality and related size of genomic DNA were assessed by the microfluidics-based platform 
Agilent 4200 Tapestation with Genomic D1000 Kit (Agilent, Santa Clara, CA). Electropherograms were visualized 

https://doi.org/10.1038/s41598-019-54624-x


7Scientific Reports |         (2019) 9:18093  | https://doi.org/10.1038/s41598-019-54624-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

with the TapeStation Software Analysis A.02.01 SR1 including data collection, peak detection, and interpretation 
of the different profiles.

For NGS, the median starting DNA concentration was 49.91 ng/μl (8.77–189.538 ng/μl). According to the 
manufacturer’s protocol, the initial amount of DNA required to construct the library is between 10 and 100 ng. In 
some cases, recommended DNA quantity was not achieved, so maximum available quantity was assigned to these 
samples. Library preparation was conducted using TruSeq Custom Amplicon Low Input Kit (Illumina, San Diego, 
CA) in combination with a custom-designed panel (DesignStudio, Illumina, San Diego, California), interrogating 
the whole coding regions of the following 13 genes: POLE, PTEN, TP53, ARID1A, ARID5B, FBXW7, PPP2R1A, 
CTCF, CTNNB1, RPL22, KRAS, PIK3CA, PIK3R1. These genes were selected based on the sequencing results of 
the TCGA. By selecting the 13 genes that best discriminate between the 4 groups, based on relative and absolute 
frequency of each gene among the groups, it is possible to improve the feasibility of the model. Samples were 
subjected to dual-pool amplicon-based PCR library preparation according to the manufacturer’s instructions. 
Subsequent sequencing of pooled libraries was performed in a NextSeq. 550 sequencing platform (Illumina, San 
Diego, California).

Data analysis, including alignment to the hg19 human reference genome and variant calling, was done 
using CASAVA pipeline (Illumina, San Diego, CA). These variants were then annotated using the Illumina 
VariantStudio v3.0 data analysis software (Illumina, San Diego, CA). Integrative Genomic Viewer (Broad 
Institute) was used to visualize the sequence and check for the presence of mutations21,22. Variants were selected 
based on a minimum coverage of 600X, minimum frequency of mutated allele of 5% and previously describe or 
in silico as pathogenic, likely pathogenic or variant of unknown significance (VUS).

Microsatellite instability.  MSI was performed on 2–3 ng of DNA from paired FFPE and blood samples 
using the Type-it Mutation Detect PCR Kit (Qiagen) in a Veriti thermocycler (Applied Biosystem, Foster City, 
CA) and specific primers labelled with the fluorophores FAM, HEX or NED for the following STR regions: NR27, 
NR21, NR24, BAT26, BAT25, D5S346, D2S123 and D17S25023. PCR conditions were: 5′ initial denaturing at 
95 °C followed by 35 cycles at 95 °C of 30″, 1′30″ at 60 °C and 30″ at 72 °C with a final 10′ extension at 68 °C. PCR 
products were denatured with formamide for 5′ at 95 °C and visualized, after capillary electrophoresis in the 
ABI3130xl Genetic Analyzer (Applied Biosystem, Foster City, CA), using the GeneMapper v4.0 software (Applied 
Biosystem, Foster City, CA). MSI-High (MSI-H) was considered when at least 30% of STR regions presented an 
MSI pattern.

Stage

Endometrioid Serous

Grade 1 Grade 2 Grade 3 All Total

(A)

I 78 (23) 83 (24) 70 (21) 17 (5) 248 (73)

II 3 (1) 9 (3) 6 (2) 5 (1) 23 (7)

III 7 (2) 12 (4) 26 (8) 25 (7) 70 (21)

Adjuvant therapy

RT 12 (3) 28 (8) 22 (6) 7 (2) 69 (19)

Chemo 2 (1) 6 (2) 14 (4) 13 (4) 35 (10)

ChemoRT 2 (1) 9 (3) 18 (5) 17 (5) 46 (13)

Unknown 70 (20) 61 (17) 57 (16) 16 (5) 204 (58)

Total 86 (24) 104 (29) 111 (31) 53 (15) 354 (100)

(B)

I 40 (42) 24 (25) 6 (6) 7 (7) 77 (80)

II 0 (0) 1 (1) 0 (0) 1 (1) 2 (2)

III 5 (5) 3 (3) 4 (4) 5 (5) 17 (18)

Adjuvant therapy

RT 21 (22) 8 (8) 2 (2) 1 (1) 32 (33)

Chemo 2 (2) 1 (1) 2 (2) 7 (7) 12 (13)

ChemoRT 3 (3) 3 (3) 6 (6) 3 (3) 15 (16)

Unknown 2 (2) 1 (1) 0 (0) 2 (2) 5 (5)

Total 28 (29) 13 (13) 10 (10) 13 (13) 64 (67)

32 (33) patients did not receive any treatment

Median follow-up (months) 34.45 (1.8–91.2)

Median PFS (months) 33.1 (1.87–91.2)

Median OS (months) 34.45 (1.87–91.2)

Relapse (%) 14.6

Exitus (%) 11.4

Table 5.  Distribution of patients based on most relevant clinical and pathological parameters in (A) TCGA 
series, (B) Our series.
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Random forest algorithm (RFA).  The EC dataset from TCGA10 was used to train a Random Forest algo-
rithm (RFA) to define a prognostic model. Dichotomous and categorical variables including mutational status of 
the studied genes and clinical and pathological parameters such as histology, stage and grade were implemented 
in the model. Furthermore, a standard bagging approach is applied. Briefly, the dataset is internally split in three 
sets in order to internally cross-validate the predictor’s performance. The number of trees was empirically esti-
mated to 1000. R v3.4.3 patched was used in all the predictive models built and tested.

Survival analysis.  Statistical analysis was performed to define the correlations between clinicopathological 
and molecular parameters for time-to-event variables [i.e., PFS and OS]. Log-rank test with Kaplan–Meier esti-
mations were performed to compare groups. SPSS v20.0 software was used for statistics.

For categorical variables frequency inference a chi-square test was employed. For median comparison between 
continuous variables non-parametric tests (Kruskal-Wallis and Wilcoxon) were used.

For RFA classification validation, survival analysis of the four established groups was performed using 
log-rank test.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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