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ABSTRACT

Objective: Phosphatidylethanolamine methyltransferase (PEMT) generates phosphatidylcholine (PC), the most abundant phospholipid in the
mitochondria and an important acyl chain donor for cardiolipin (CL) biosynthesis. Mice lacking PEMT (PEMTKO) are cold-intolerant when fed a
high-fat diet (HFD) due to unclear mechanisms. The purpose of this study was to determine whether PEMT-derived phospholipids are important
for the function of uncoupling protein 1 (UCP1) and thus for maintenance of core temperature.

Methods: To test whether PEMT-derived phospholipids are important for UCP1 function, we examined cold-tolerance and brown adipose (BAT)
mitochondria from PEMTKO mice with or without HFD feeding. We complemented these studies with experiments on mice lacking functional CL
due to tafazzin knockdown (TAZKD). We generated several conditional mouse models to study the tissue-specific roles of PEMT, including mice
with BAT-specific knockout of PEMT (PEMT-BKO).

Results: Chow- and HFD-fed PEMTKO mice completely lacked UCP1 protein in BAT, despite a lack of difference in mRNA levels, and the mice
were accordingly cold-intolerant. While HFD-fed PEMTKO mice exhibited reduced mitochondrial CL content, this was not observed in chow-fed
PEMTKO mice or TAZKD mice, indicating that the lack of UCP1 was not attributable to CL deficiency. Surprisingly, the PEMT-BKO mice exhibited
normal UCP1 protein levels. Knockout of PEMT in the adipose tissue (PEMT-AKOQ), liver (PEMT-LKO), or skeletal muscle (PEMT-MKO) also did not
affect UCP1 protein levels, suggesting that lack of PEMT in other non-UCP1-expressing cells communicates to BAT to suppress UCP1. Instead, we
identified an untranslated UCP1 splice variant that was triggered during the perinatal period in the PEMTKO mice.

Conclusions: PEMT is required for UCP1 splicing that yields functional protein. This effect is derived by PEMT in nonadipocytes that com-
municates to BAT during embryonic development. Future research will focus on identifying the non-cell-autonomous PEMT-dependent mech-

anism of UCP1 splicing.
© 2019 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION transcriptional control of UCP1, little is known about how the IMM lipid

composition affects the activity of UCP1 to facilitate uncoupled

Brown adipose tissue (BAT) generates heat as a result of the inefficient
coupling of mitochondrial oxidative phosphorylation [1]. Mitochondrial
thermogenesis in adipose tissue is largely driven by uncoupling protein
1 (UCP1), which resides in the inner mitochondrial membrane (IMM)
[2]. UCP1 dissipates the proton gradient across the IMM, independent
of complex V, thereby uncoupling 0, consumption from adenosine
triphosphate (ATP) synthesis [3—6]. UCP1-dependent thermogenesis
represents a potential mechanism to increase energy expenditure and
protect from obesity through the futile cycling of substrates derived
from carbohydrates and lipids [7—9]. While much is known about the

respiration.

Phosphatidylcholine (PC) is the most abundant phospholipid in the
mitochondria and is generated in part by phosphatidylethanolamine
methyltransferase (PEMT) [10—12]. PEMT resides in the endo-
plasmic reticulum and mitochondrial-associated membranes (MAM)
and synthesizes PC by tri-methylation of phosphatidylethanolamine
(PE) [13,14]. Mitochondria do not possess an enzyme for the
autonomous synthesis of PC and rely on PC import through the MAM
[15]. Additionally, PC is an important acyl-chain donor for cardiolipin
(CL), a phospholipid unique to mitochondrial membranes that is
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Abbreviations

ADP adenosine diphosphate

ATP adenosine triphosphate

BAT brown adipose tissue

Cl complex |

Cll complex Il

ch complex Ill

Clv complex IV

CL cardiolipin

CS citrate synthase

cv complex V

EM electron microscopy

ER endoplasmic reticulum

ETS electron transport system

GDP guanosine diphosphate

HFD high-fat diet

IL-33 interleukin-33

IMM inner mitochondrial membrane
MAM mitochondrial-associated membrane

MIM mitochondrial isolation medium

NADP nicotinamide adenine dinucleotide phosphate

NADPH nicotinamide adenine dinucleotide phosphate reduced
Nt nucleotide

PC phosphatidylcholine

PE phosphatidylethanolamine

PEMT phosphatidylethanolamine methyltransferase

PEMT +/— PEMT heterozygous knockout
PEMT-AKO PEMT adipose-specific knockout
PEMT-BKO PEMT brown adipose-specific knockout
PEMTcKO PEMT conditional knockout

PEMTKO  PEMT knockout

PEMT-LKO PEMT liver-specific knockout
PEMT-MKOQ PEMT muscle-specific knockout

ST2 interleukin 1 receptor-like 1
TAZ tafazzin

TAZKD tafazzin knockdown

TLC thin-layer chromatography
UCP1 uncoupling protein 1

WT wild-type

required for thermogenic respiration [16—18]. This study was driven
by a previous observation that mice with a whole-body deletion of
PEMT (PEMTKO) become cold-intolerant when fed a high-fat diet
(HFD) [19], which was attributed to insufficient glucose supply.
Based on findings that PEMT provides mitochondrial PC in the liver
[12], we investigated the possibility that PEMT intrinsically alters
cellular bioenergetics and UCP1-dependent thermogenesis by
altering mitochondrial phospholipids.

2. MATERIALS AND METHODS

2.1. Animals

All mice used in this study were of the C57BL/6 J background. The
PEMTKO mice were a generous gift from Dr. Dennis Vance at the
University of Alberta [20]. We generated PEMT conditional knockout
mice (PEMTcKO, with exon 3 of the Pemt gene flanked with loxP sites)
[21] that were crossed to UCP1-Cre mice (Jackson Laboratory, stock #:
024670), albumin-Cre mice (Jackson Laboratory, stock #: 003574),
HSA-MerCreMer mice (a gift from Dr. Karyn Esser, University of Flor-
ida), or adiponectin-Cre mice (Jackson Laboratory, stock #: 028020) to
obtain tissue-specific knockout mice. The tafazzin knockdown (TAZKD)
mice were obtained from Jackson Laboratory (stock #: 014648). The
mice were either fed a standard chow diet (Teklad 2020X) or a 42%
HFD (Teklad 88137). At 2—4 months of age, the PEMT-deficient mice
were studied for a chow-fed condition or placed on a HFD for 10
weeks. The TAZKD mice were fed a 625 mg/kg doxycycline chow diet
(Teklad 09628) to induce TAZ knockdown as previously described [
22,23]. The TAZKD mice were given doxycycline containing chow at 2
months of age for 4 months. No sex-dependent differences were
observed in the experimental mice used in this study. All the mice were
fasted for 4 h prior to euthanasia and tissue collection. Unless other-
wise noted, the data presented are from mice housed at an ambient
temperature of 22 °C. All the animal experiments were performed with
the approval of the Institutional Animal Care and Use Committee at East
Carolina University and the University of Utah.

2.2. Cell culture

SV40T preadipocytes were a gift from Dr. Kai Ge from the NIDDK.
SV40T preadipocytes were differentiated to brown adipocytes as
previously described [24]. Briefly, preadipocytes were grown to con-
fluency in growth media (10% fetal bovine serum and high-glucose
Dulbecco’s modified Eagle medium containing glutamine). Induction
media (growth media with 20 nM insulin, 1 nM T3, 0.5 mM 3-isobutyl-
1-methl-xanthine, 2 pg/ml dexamethasone, and 0.125 mM indo-
methacin) was added to confluent cells for 48 h and then replaced with
differentiation media (growth media with 20 nM insulin and 1 nM T3).
Differentiation media were refreshed every 48 h for 6 days. The
lentivirus system was used to infect the preadipocytes with plasmids
coding for shRNAs against PEMT and TAZ. Infected preadipocytes were
then differentiated to brown adipocytes after puromycin selection to
ensure the death of noninfected cells.

2.3. Metabolic phenotyping

Body composition was measured using a Bruker MiniSpec NMR.
Whole-body VO,, RER, and activity levels were measured using a
CLAMS system (Columbus Instruments). Cold-tolerance testing was
carried out in a 4 °C cold room. Prior to cold-tolerance testing, the mice
were injected with a temperature-sensitive transponder (Bio Medic
Data Systems, IPTT 300). One week after the injections, the mice were
transferred to a 4 °C cold room for 6—8 h, and their core temperature
was assessed using a Reader-Programmer (Bio Medic Data Systems,
DAS 8007). The mice were single-housed in cages containing bedding
with access to food and water throughout the cold-tolerance test. For
long-term cold-exposure experiments, the mice were acclimated to the
cold following a protocol used to acclimate UCP1 null mice to the cold
[25]. Briefly, the mice were housed in a rodent incubator at 18°C for 2
weeks, after which the temperature was lowered to 6.5°C for 7 days.
The mice were euthanized after a 4 h fast and their tissues were
harvested. For glucose-tolerance testing, their blood glucose levels
were measured following an IP injection of 20% glucose (5 pL/g body
mass) at time points 0, 15, 30, 60, and 120 min.
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2.4. Mitochondrial assays

BAT tissue was finely minced in mitochondrial isolation medium
(MIM, 300 mM sucrose, 10 mM HEPES, and 1 mM EGTA) and
homogenized in MIM with 1 mg/ml BSA. Homogenates were
centrifuged at 10,000x g, and the supernatant was discarded. The
pellet was resolubilized in MIM and spun at 200x g, and the su-
pernatant was transferred to a new tube leaving behind the pellet.
The supernatant was then centrifuged again at 200x g and trans-
ferred to a new tube. The supernatant was then centrifuged at
10,000x g and discarded. The mitochondrial pellet was resolubi-
lized in MIM and used for the mitochondrial assays. Mitochondrial
0, consumption was measured using Oroboros oxygraphs https://
advances.sciencemag.org/content/5/9/eaax8352. UCP1-dependent
respiration was stimulated with 0.5 mM malate and 5 mM pyru-
vate. UCP1 was then inhibited using 4 mM guanosine diphosphate
(GDP) [26]. ATP production was measured using a FluoroMax-4
(Horiba Scientific). ATP production was coupled enzymatically to
reduced nicotinamide adenine dinucleotide phosphate (NADPH)
production as previously described [27]. Briefly, ATP synthesis was
stimulated using 0.5 mM malate, 5 mM pyruvate, 5 mM glutamate,
and 5 mM succinate in the presence of 20 uM, 200 puM, or
2000 pM adenosine diphosphate (ADP). NADPH fluorescence was
measured every 2 s (excitation 340 and emission 460). The ATP/0
ratio was determined by dividing ATP production by 0, consumption
using the same conditions for ATP production.

2.5. Mass spectrometry and thin-layer chromatography (TLC)
Lipids were extracted from mitochondria using a modified Matyash
lipid extraction [28]. Briefly, a mixture of cold methyl-tert-butyl ether,
methanol, and internal standards (SPLASH Mix Avanti Polar Lipids
330707 and Cardiolipin Mix | Avanti Polar Lipids LM6003) was added
to 150 pg of mitochondrial protein. The samples were vortexed and
then sonicated for 1 min. The samples were then incubated on ice for
15 min and vortexed every 5 min. Phase separation was induced by
adding 300 pL of H,0 and centrifuging at 15,000 x g, and the organic
phase was then dried using a SpeedVac. The dried lipids were
reconstituted in a 9:1 methanol:toluene mixture. Liquid
chromatography-mass spectrometry (LC-MS) was then performed on
the reconstituted lipids using an Agilent 6490 UPLC-QQQ mass
spectrometer (PC species) and an Agilent 6530 UPLC-QTOF mass
spectrometer (CL species). For TLC, the lipids were extracted from
isolated mitochondria using a Bligh-Dyer extraction. TLC plates were
developed with a chloroform:glacial acetic acid:methanol:water
mobile phase (85:25:5:2, all values in mL). The plates were then
dried and sprayed with a charring reagent (4% phosphoric acid and
5% copper sulfate) and heated at 190 °C for approximately 15 min.
The intensity of the lipid spots was measured using an Odyssey
Infrared Imager.

2.6. Electron microscopy (EM)

BAT was minced in an ice-cold fixative (2.5% glutaraldehyde and 1%
paraformaldehyde) and subsequently incubated in fixative for 48 h at
4 °C. After fixation, the minced tissues were washed 3 x 10 min in
cold 0.1 M phosphate buffer. The tissues were then post-fixed in 1%
osmium tetroxide in 0.1 M phosphate buffer at 4 °C for 1 h, after which
the tissues were washed 3 x 10 min in 0.1 M phosphate buffer. The
tissues were then dehydrated in 25%, 50%, 75%, and 100% EtOH and
embedded in Spurr’s resin. The tissues were then sectioned and
stained with uranyl acetate and imaged using a JEOL 1200EX trans-
mission electron microscope with a Soft Imaging Systems MegaView lll
CCD camera.
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2.7. Histology
A small piece of BAT was fixed in 4% paraformaldehyde in PBS for 48 h
and subsequently placed in 70% ETOH for 48 h. The tissue was then
paraffin embedded, cut into 5 um sections, and stained with hema-
toxylin and eosin. The sectioned tissues were imaged using an Axio
Scan.Z1 (Zeiss).

2.8. Western blotting

Frozen BAT was homogenized in lysis buffer and centrifuged at
12,000 x g. The supernatant was taken, and the protein concentration
was quantified using the Pierce BCA protein assay kit. Equal amounts
of protein were mixed with Laemmli sample buffer and loaded onto a
gradient gel (Bio-Rad). The proteins were then transferred onto
nitrocellulose membranes and blocked with 5% BSA in TBST. The
membranes were treated with primary antibodies overnight (Table S1).
The membranes were then washed 5 times with TBST and incubated
in secondary antibody with 5% milk. The membranes were then again
washed 5 times in TBST and 2 times in TBS before being treated with
ECL (PerkinElmer) and imaged with a FluorChem E imager
(ProteinSimple).

2.9. Quantitative PCR and DNA sequencing

BAT was homogenized in 1 ml of TRIzol, treated with 200 pL of
chloroform, and mixed by several inversions. The mixture was then
centrifuged at 12,000 x g, and the aqueous layer was transferred to a
new Eppendorf tube containing 500 pL of 100% isopropanol and
centrifuged at 12,000x g. The resulting pellet was washed with 80%
ETOH, which was then aspirated. The RNA pellet was then solubilized
in Tris—EDTA buffer. The RNA was then reverse transcribed to the
cDNA using the iScript cDNA Synthesis Kit (Bio-Rad). cDNA was added
to a mixture of SYBR Green (Thermo Fisher Scientific) and primers
(Table S2). The sample mixtures were pipetted onto a 384 plate and
analyzed with QuantStudio 12K Flex (Life Technologies). For DNA
sequencing, the RNA was reverse transcribed to the cDNA, and UCP1
c¢DNA was amplified via PCR. The resulting PCR product was purified
using ExoSAP-IT reagent according to the manufacturer’s instructions
(Thermo Fisher Scientific). The sequence of the PCR product was
determined using Sanger sequencing by the University of Utah DNA
Sequencing Core.

2.10. Statistical analyses

All data presented herein are expressed as mean &+ SEM. The level of
significance was set at p < 0.05. Student’s t-tests were used to
determine the significance between the experimental groups and two-
way ANOVAs were used where appropriate. The sample size (n) for
each experiment is shown in the figure legends and corresponds to the
sample derived from the individual mice or for cell culture experiments
on an individual batch of cells. Statistical analyses were performed
using GraphPad Prism software.

3. RESULTS

3.1. PEMTKO mice lack UCP1 protein in BAT

Whole-body deletion of PEMT results in diet-induced cold-intolerance
[19], despite reports of increased metabolic rate [21 ,29]. Consistent
with previous reports, following 10 weeks of high-fat feeding, the
PEMTKO mice had lower body mass and fat mass than the wild-type
controls (WT) (Figure 1A, B) [21,29]. Nevertheless, the PEMTKO mice
were more prone to hypothermia during an acute cold challenge
(Figure 1C). The absence of PEMT in BAT was confirmed by qPCR
(Figure 1D). BAT from the PEMTKO mice was similarly engorged with
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Figure 1: PEMTKO mice fed HFD lack UCP1 protein concomitant with decreased CL. (A) Body mass in the WT or PEMTKO mice fed HFD for 10 weeks, n = 8. (B) Fat mass,
n = 8. (C) Cold-tolerance test in the PEMTKO mice. The mice were single-housed and placed in a temperature-controlled room at 4 °C for 6 h, n = 3—5. (D) mRNA levels of PEMT
in BAT, n = 7—8. (E) Images of BAT sections stained with hematoxylin and eosin. (F) Protein levels of UCP1 and citrate synthase (CS). (G) mRNA levels of UCP1, n = 4. (H) UCP1-
dependent respiration in mitochondria isolated from BAT. Respiration was stimulated with 0.2 mM malate and 5 mM pyruvate. UCP1 was inhibited using 4 mM GDP, n = 6. ()
Protein levels of ETS complexes in whole tissue lysates. (J) ATP production in isolated BAT mitochondria. ATP production was measured in the presence of 0.2 mM malate, 5 mM
glutamate, 5 mM pyruvate, and 5 mM succinate at increasing concentrations of ADP, n = 3—4. (K) 0, consumption using the same conditions described for ATP production,
n = 3—4. (L) ATP/O ratio calculated from the ATP produced per oxygen consumed, n = 3—4. (M) EM images of BAT mitochondria. (N) Detection of phospholipids extracted from
the BAT mitochondria by TLC. (0) Analysis of CL species via LC-MS, n = 9. (P) Analysis of PC species via LC-MS, n = 4—5. Data are expressed as mean + SEM, *p < 0.05.
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lipids compared with the WT mice despite the differences in body and
fat mass (Figure 1E). Strikingly, Western blotting of BAT revealed a
complete loss of UCP1 protein in the PEMTKO mice (Figure 1F), which
would promote cold-intolerance [30]. Remarkably, the loss of UCP1
protein occurred despite the apparently normal UCP1 mRNA levels
(Figure 1G), suggesting mechanisms independent of transcription. In
agreement with the loss of UCP1 protein, mitochondria from PEMTKO
BAT completely lacked UCP1-dependent respiration (Figure 1H). Lack
of PEMT also promoted substantial decreases in complexes |, lll, and IV
of the electron transport system (ETS), an increase in complex V, and
no change in complex Il (Figure 1l), very similar to what is found in
UCP1 knockout mice [31,32]. The altered levels of ETS complexes did
not affect ATP production (Figure 1J); however, ATP was produced at a
much lower O, cost (Figure 1K), resulting in the highly efficient
coupling of oxidative phosphorylation (Figure 1L).

3.2. The role of CL in BAT UCP1 deficiency

Mitochondria from PEMTKO BAT had abnormal morphology and lacked
distinct cristae (Figure 1M), suggesting alterations of the lipid mem-
branes. Analysis of mitochondrial phospholipids revealed a substantial
decrease in mitochondrial CL in PEMTKO BAT without a change in
mitochondrial PC (Figure 1N—P). PCs are the preferred acyl-chain
donors for CL remodeling via the enzyme tafazzin (TAZ) [16,18], the
final step of CL biosynthesis. Recent research has demonstrated that
CL is necessary for both the stability and function of UCP1 [17,33]. We
therefore hypothesized that the loss of CL was responsible for the lack
of UCP1 protein in the PEMTKO mice.

To determine whether the loss of TAZ function would phenocopy
PEMT deletion, we used immortalized brown adipocytes [24]. Both
PEMT and TAZ mRNA were induced during differentiation
(Figure 2A), and silencing PEMT or TAZ dramatically decreased UCP1
protein (Figure 2B, C). However, this was likely a secondary
consequence due to impaired brown adipogenesis, as the mRNA
levels of UCP1 and genes involved in adipogenesis were substantially
decreased (Figure 2D). This was different from our findings in vivo,
as BAT from the PEMTKO mice exhibited normal UCP1 mRNA levels
(Figure 1G). While these in vitro data are informative, we further
investigated the effect of CL on UCP1 protein in fully differentiated
BAT in vivo. Doxycycline-inducible TAZKD mice have been used
extensively to study the role of TAZ in heart tissue, and we used this
mouse model to examine the function of TAZ in BAT. Upon doxy-
cycline treatment, the TAZKD mice express an shRNA against TAZ to
silence its expression presumably in all tissues. Doxycycline treat-
ment reduced the TAZ mRNA levels by 71% in BAT (Figure 2E). As
previously reported, WT mice gained more weight on doxycycline
chow than TAZKD littermates (Figure 2F) [ 22,23,34]. Similar to the
PEMTKO mice, the TAZKD mice exhibited decreased tolerance to
cold exposure (Figure 2G). However, BAT from the TAZKD mice had
normal UCP1 and ETS protein or activity compared to the WT con-
trols (Figure 2H&I, S1A-D), suggesting that different mechanisms
drive cold sensitivity in TAZKD mice. These observations may be
interpreted to mean that CL is dispensable for UCP1 protein. How-
ever, the BAT mitochondrial CL content in was not lower in the
TAZKD mice compared to the WT mice (Figure 2J), suggesting that
the TAZKD mouse model is an imperfect model for CL deficiency in
BAT. This was somewhat surprising due to a robust decrease in CL
in heart mitochondria from these mice (Figure 2K). A previous study
showed that lack of TAZ in the liver triggers activation of compen-
satory CL acylation pathways, but this was not the case in BAT [34]
(Figure 2L). Rather, the lack of changes in BAT CL may be attrib-
utable to an imperfect knockdown of TAZ in BAT compared to heart
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(Figure 2M), despite our use of high-dose doxycycline (625 mg/kg),
which has precedence for effectively inducing doxycycline-
dependent expression [22 ,35].

To gain further insights into the relationship between mitochondrial CL
and UCP1 protein, we studied PEMTKO mice fed a standard chow diet,
which have previously been reported have normal cold tolerance [19].
We reasoned that if the loss of mitochondrial CL was promoting the
loss of UCP1 and cold-intolerance, then the chow-fed PEMTKO mice
that were not cold-sensitive may have undisturbed mitochondrial CL
levels. To our surprise, these mice also exhibited cold-intolerance and
loss of UCP1 protein in BAT, despite elevated UCP1 mRNA (Figure 3A—
C). The PEMTKO mice fed a chow diet also had decreased levels of ETS
complexes I, II, lll, and IV, but not V (Figure 3D), essentially mirroring
the mitochondrial phenotype observed in the HFD-fed animals
(Figs. STE—H). BAT from the WT mice was devoid of large lipid
droplets, but BAT from the PEMTKO mice was engorged with more and
larger lipid droplets (Figure 3E, F), consistent with the loss of UCP1 and
reduced thermogenic capacity. From these observations, we expected
that the BAT mitochondria from the standard chow diet-fed PEMTKO
mice would appear similarly abnormal as in the HFD-fed condition.
However, the mitochondrial morphology demonstrated by EM revealed
strikingly normal-appearing cristae (Figure 3G). Surprisingly, the BAT
mitochondrial CL and PC content was largely unchanged between the
WT and PEMTKO mice (Figure 3H—J). Together, these observations
indicate that a lack of CL is not the mechanism that mediates the loss
of UCP1 protein in BAT from the PEMTKO mice.

3.3. UCP1-cre-dependent deletion of PEMT does not ablate UCP1
We also studied the tissue-specific effect of PEMT on UCP1 protein in
BAT. This was accomplished by crossing our newly generated
PEMTcKO mice [21] with UCP1-Cre mice (PEMT-BKO) (Figure 4A, B).
This strategy successfully yielded mice with PEMT deficient BAT, but
not white adipose tissue, liver, or muscle (Figure 4C). The PEMT-BKO
mice were not different from the loxP flanked controls in terms of body
weight (Figure 4D). We first studied these mice with standard chow
feeding, as the effect of whole-body PEMT knockout on the loss of BAT
UCP1 protein was present under this condition. Surprisingly, the PEMT-
BKO mice maintained core temperature in response to cold exposure
(Figure 4E) and displayed normal gross morphology (Figure 4F), unlike
the PEMTKO mice. Furthermore, BAT from the PEMT-BKO mice had
unchanged protein levels of UCP1 and ETS complexes (Figure 4G, H).
These data provide striking evidence that the effect of PEMT on
regulating UCP1 protein does not occur in a cell-autonomous manner.
We also crossed the PEMTcKO mice with adiponectin-Cre mice,
albumin-Cre mice, and HSA-MerCreMer mice, but the loss of PEMT in
these tissue-specific models did not promote the loss of UCP1 protein
in BAT (Figure 4l).

The PEMT-BKO mice were studied in greater detail. The BAT mito-
chondrial PC or CL content was not different between the control and
PEMT-BKO mice (Figure 4J, K). These findings are analogous to those
in the whole-body PEMTKO mice, suggesting that PEMT in BAT does
not contribute to mitochondrial phospholipids under standard chow
diet-fed conditions. We then placed the control and PEMT-BKO mice on
a HFD for 10 weeks to determine whether the lack of PEMT
compromised BAT’s role in adaptations to obesity. However, the
PEMT-BKO mice gained weight similarly to the control mice and were
metabolically similar in all aspects except for a small but significant
decrease in their core temperature during cold exposure (Fig. S2A—P).
Thus, PEMT plays only a marginal role in BAT homeostasis. Similar to
the HFD-fed whole-body PEMTKO mice, mitochondrial CL was lower in
the HFD-fed PEMT-BKO mice compared to the HFD-fed control mice
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are expressed as mean + SEM, *p < 0.05.

(Fig. S2Q), suggesting that PEMT contributes to BAT mitochondrial CL
under HFD-fed (but not standard chow diet-fed) conditions. Similar to
the HFD-fed whole-body PEMTKO mice, the mitochondrial PC content
was not different between the HFD-fed control and PEMT-BKO mice
(Fig. S2R). Overall, the cell-autonomous effect of PEMT on BAT was
marginal. Rather, PEMT in another cell type regulates BAT UCP1
substantially. To explore these mechanisms, we returned to the
PEMTKO mouse model.

60

3.4. PEMT-dependent alternative splicing of UCP1

What is the mechanism by which UCP1 protein is absent in BAT from
the PEMTKO mice? The mitochondrial content of BAT was largely
unchanged (Figure 5A), and together with the lack of changes in the
mitochondrial matrix protein citrate synthase (Figure 1F), it is highly
unlikely that the loss of PEMT targets entire populations of mito-
chondria for lysosomal degradation. UCP1 protein may be ubiquitinated
and targeted for proteolysis [36], but UCP1 showed no sign of ubiquitin
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conjugation (Figure 5B). A lack of PEMT is known to induce ER stress in
the liver [37], which, if true in BAT, could impair the translation of
UCP1. However, we found no evidence of ER stress in BAT from the
PEMTKO mice (Figure 5C). Odegaard et al. recently demonstrated that
UCP1 mRNA contains alternative 3’ acceptor sites in exon 5, which
results in a loss of UCP1 protein [32]. Similar to the present study, the
loss of UCP1 protein observed by Odegaard et al. also appears to occur
in a non-cell-autonomous fashion. To test this possibility, we reverse
transcribed UCP1 mRNA from BAT and PCR-amplified a region that
includes exon 5 splice sites. The size of the PCR products was lower in
the transcripts from the PEMTKO mice compared to the WT mice,
suggesting potential splicing (Figure 5D). Sanger sequencing of BAT
UCP1 cDNA revealed a 39 nucleotide (Nt) excision (Nt 864—903) at the
5" end of exon 5 (Figure 5E) in the PEMTKO mice, a region coding for
amino acids 210—222. We similarly PCR-amplified exon 5 of UCP1
from genomic DNA using primers overlapping with the excised region
in the mRNA and found no difference in the PCR products (Figure 5F),
excluding the possibility of a genomic mutation. These data demon-
strate that the loss of PEMT promotes the utilization of an alternative 3
splice acceptor site in exon 5 of UCP1 instead of the normal splice
junction at Nt 864.

Odegaard et al. previously reported the presence of two alternatively
spliced forms of UCP1 mRNA resulting from alternate 3’ acceptor sites
in exon 5 [32]. The authors designated the WT variant of UCP1 mRNA
as variant A (splice junction at Nt 864), and their newly discovered
variants as variants B and C (splice junctions at Nt 891 and Nt 972,
respectively). Our splice variant was different from these other two
variants, which we designated as variant D (splice junction at Nt 903)
(Figure 5G). Using variant-specific primers, we verified that PEMT
deletion promotes a near complete loss of WT variant A (Figure 4H).
Variants B and C were similarly barely detectable in BAT from the
PEMTKO mice, although there was a small but significant increase in
variant C compared to the WT mice. Variant D was not detectable in
BAT from the WT mice, but the transcript level in the PEMTKO mice
was similar to the content of variant A in BAT from the WT mice
(Figure 5H). This explains the lack of differences in the mRNA quan-
tified in Figure 1G, which utilized PCR primers that would detect all four
variants.

To determine whether splice variant D UCP1 mRNA produces a
functional protein, we used four commercially available UCP1 anti-
bodies whose epitopes did not overlap with the missing 13 amino acids
of variant D. None of these antibodies detected a protein product for
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Data are expressed as mean + SEM, *p < 0.05.

splice variant D, which would be predicted to produce a band ~1.5
kDa lower than WT UCP1 (Figure 5I), suggesting that a functional
protein was not produced from splice variant D. Indeed, UCP1 protein
for variant A appeared in BAT from the PEMTKO mice despite its
transcript being over 1000-fold lower compared to variant D. We also
examined these mice under prolonged cold exposure to determine
whether UCP1 protein could be induced under this condition. After an
acclimation protocol previously described for UCP1 null mice [ 25 ], we
successfully performed 7-day cold exposure on the WT and PEMTKO
mice. As expected, prolonged cold exposure increased BAT UCP1
protein content in the WT mice compared to those housed at room
temperature (Fig. S3A). In contrast, prolonged cold exposure had no
effect on BAT UCP1 protein content in the PEMTKO mice (Fig. S3AFig.
S3A). Similarly, cold exposure induced higher UCP1 protein content in
inguinal white adipose tissue (iWAT) in the WT mice compared with
room temperature controls (Fig. S3B), but not in iWAT from the
PEMTKO mice. Taken together, our data demonstrate that PEMT is

required for UCP1 protein expression via splicing of UCP1 transcripts to
produce variant A. The important caveat is that this mechanism does
not operate in a cell-autonomous manner, as demonstrated by our
findings in the PEMT-BKO mice.

Odegaard et al. reported that a lack of IL-33 or its receptor, ST2,
promoted the expression of UCP1 splice variants B and C during the
perinatal period, thus abrogating UCP1 protein from birth [32]. Simi-
larly, the PEMTKO mice lacked UCP1 from birth (Figure 5J), suggesting
that PEMT is required during perinatal activation of the normal UCP1 3’
splice acceptor site for exon 5. Although the UCP1 splice variants
reported in the IL-33/ST2-deficient models were different from those
we found in the PEMTKO mice, we examined how this system may
have been affected in our mouse model. Surprisingly, circulating IL-33
was higher, not lower, in the PEMTKO mice compared to the WT mice
(Fig. S3C), suggesting that UCP1 splicing in the PEMTKO mice was not
due to the lack of IL-33. Our observations on circulating ST2 were
more complex. ST2 is expressed as a membrane-bound receptor for
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IL-33. When IL-33 levels rise (as observed), a soluble form of ST2
(sST2) becomes expressed and released into circulation, intercepting
IL-33 and preventing an excessive immune response [38]. Compared
to the WT mice, blood from the PEMTKO mice contained lower levels of
ST2, while the sST2 levels were greater. Lower levels of ST2 likely
indicate reduced ST2 signaling, and thus this could have potentially
contributed to UCP1 splicing in the PEMTKO mice. However, PEMT
knockout also coincided with the increased sST2 content, which is
usually a signature of upregulated IL-33/ST2 signaling. It is also
noteworthy that the membrane-bound, active form of ST2 was present
(~30% of WT) in the PEMTKO mice. Thus, it is highly likely that ST2
signaling was intact in the PEMTKO mice, unlike the ST2 knockout
mice. We also could not detect IL-33 or ST2 in BAT in the WT or
PEMTKO mice (Fig. S3D).

Given that a lack of PEMT promotes alternative splicing in UCP1 during
development in a non-cell-autonomous manner, PEMT in the embryo
or the mother could be required to appropriately express UCP1. To
determine if a lack of PEMT in the mother alone was sufficient to
induce alternative splicing in UCP1, we crossed female PEMTKO mice
with male WT mice and male PEMTKO mice with female WT mice.
PEMT heterozygous knockouts (PEMT-+/-) born to either set of parents
had normal UCP1 levels (Figure 5K), indicating that the loss of PEMT in
the mother or the partial loss of PEMT in the offspring was not suffi-
cient to induce splicing. We further pursued a possibility that the loss of
UCP1 protein may have been induced by a lack of PEMT in both the
mother and offspring and tested this by crossing either PEMTKO males
with PEMT+-/- females or PEMTKO females with PEMT+/- males.
Regardless of the combination, the only factor that produced the UCP1-
deficient phenotype was when the offspring were PEMTKO (Figure 5L).
Together, these data indicate that the loss of PEMT in the offspring
mediates UCP1 splicing during perinatal development regardless of the
parents’ genotype.

4. DISCUSSION

We initially sought to determine the cellular mechanism by which mice
with whole-body PEMT deletion are cold-intolerant. We found that BAT
from the PEMTKO mice completely lacked UCP1 protein. Furthermore,
this effect was not mediated by PEMT in BAT, as the mice with UCP1-
Cre or adiponectin-Cre driven deletions of PEMT had normal UCP1
protein levels. Rather, the lack of PEMT in other tissue induced
alternative splicing of UCP1, resulting in a truncated mRNA that did not
yield UCP1 protein.

A previous study that documented cold sensitivity in PEMTKO mice
attributed insufficient glucose supply as the mechanism for reduced
thermogenesis [19]. We report that this phenotype is also the result of
their lack of intrinsic ability for UCP1-dependent thermogenesis.
Curiously, the prior study reported normal UCP1 protein content in
PEMTKO mice. Hence, we utilized four different UCP1 antibodies,
including the one used by Gao et al. [19](Abcam #ab10983) to verify
that BAT from the PEMTKO mice did not contain detectable UCP1
protein. The root of this discrepancy is unclear. We acquired the
PEMTKO mice from Gao et al. less than a year after their study was
published, making it unlikely that these mice were different. While
there were some minor experimental differences between the present
study and that of Gao et al. (length of fasting, cold-tolerance duration,
etc.), these are unlikely to account for the discrepancy in the UCP1
phenotype. One possible explanation is that the Abcam UCP1 antibody
utilized in their study was a different batch than the one used in our
study (GR3188478-13). Polyclonal antibodies generated from different
rabbits are not identical, so it is possible that the batch used by Gao

et al. produced a non-specific band that was mistaken for UCP1. Gao
et al. also reported normal cold sensitivity in standard chow diet-fed
PEMTKO mice. We note that the cold sensitivity in our chow-fed
PEMTKO mice was modestly delayed compared to our HFD-fed
PEMTKO mice, such that they began to display low temperatures af-
ter the 3 h mark, which was the duration of the cold exposure ex-
periments employed by Gao et al. One important finding by Gao et al.
was that cold sensitivity in PEMTKO mice was rescuable by dietary
choline supplementation. Circulating choline is reduced in PEMTKO
mice, and its dietary supplementation is known to rescue other phe-
notypes found in PEMTKO mice [ 29 ]. Reduced circulating choline is
thought to be due to the lack of PEMT in the liver, as PC generated by
this enzyme is cleaved to produce choline that is secreted into cir-
culation. However, BAT from our PEMT-LKO mice exhibited normal
UCP1 protein content, suggesting that choline’s effect to rescue cold
sensitivity was likely due to an effect of choline in other tissues.
Intracellular choline can supply headgroup for PC, thus potentially
rescuing the lack of PEMT through this mechanism.

We initially hypothesized that the loss of UCP1 was due to the loss of
mitochondrial CL in the HFD-fed PEMTKO mice, as CL is known to be
required for thermogenic respiration. Indeed, the PEMTKO mice fed a
HFD exhibited a robust decrease in CL, suggesting a potential
connection between CL and the loss of UCP1. However, the loss of
UCP1 protein was not due to a lack of CL, as the standard chow diet-
fed PEMTKO mice had no UCP1 protein despite normal CL levels.
Although previous work indicated that PEMT supplies mitochondria
with PC in the liver [12], our data in the PEMTKO and PEMT-BKO mice
indicate that PEMT was dispensable for maintaining mitochondrial PC
or CL in BAT with a standard chow diet. Meanwhile, PEMT in BAT
appeared to modestly contribute to the CL levels in a diet-dependent
manner, although this had no robust effects on BAT function.

Our results are strikingly similar to the findings of Odegaard et al. who
discovered two alternatively spliced UCP1 mRNAs arising from alter-
native 3’ acceptor sites in exon 5 of IL-33 and ST2 null mice during the
perinatal period [32]. Similarly, we demonstrated that the loss of PEMT
resulted in alternative splicing of UCP1 mRNA during development.
Nevertheless, PEMT-dependent UCP1 splicing occurred at a third unique
splice site, producing a 39 Nt deletion that we called variant D. Variant
D, similar to variants B and C reported by Odegaard et al. does not
produce functional protein, leading to a loss of UCP1-dependent ther-
mogenic respiration and compromised whole-body thermoregulation.
What is the mechanism by which PEMT promotes UCP1 splicing? In
our present study, we were unable to identify the cell type whose lack
of PEMT prompted this process. Neither UCP1-Cre nor adiponectin-Cre
mediated deletion of PEMT phenocopied whole-body PEMTKO mice,
indicating that PEMT acts non-cell-autonomously and is independent
of PEMT in white adipose tissues. We also tested albumin-Cre mice, as
liver PEMT is known to robustly alter circulating cytokines and lipid
milieu [29], and HSA-MerCreMer mice, as myokines can regulate
adipose thermogenic programming [39—41] However, neither of these
interventions promoted the loss of UCP1 protein in BAT. Odegaard et al.
were similarly unable to identify the cell type that mediated splicing in
their study; however, they were able to rule out IL-5-expressing cells,
adaptive immune cells, and canonical IL-33/ST2 signaling through
MyD88. Given the difference in the splice variants between our studies,
the mechanism that produces UCP1 variant D is likely different than the
one that produced variant C. Nevertheless, it is important to note that
ST2 found in circulation was lower (~ 30% of WT), but not absent, in
the PEMTKO mice compared to the WT mice. The change coincided
with greater IL-33 and sST2, likely suggesting that the IL-33/ST2 axis
was intact in the PEMTKO mice. While it remains possible that the IL-
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33/ST2 axis may be involved in PEMT-dependent mechanisms, it is
difficult to assess the exact nature of this interaction without under-
standing the non-canonical signaling of ST2 that regulates UCP1
splicing. It also remains possible that PEMT-dependent splicing of
UCP1 is mediated by some population of immune cells. Investigation of
these possibilities are currently ongoing but is beyond the scope of the
current study.

Regardless of the identity of the cell type whose lack of PEMT promotes
loss of UCP1 protein in BAT, these cells likely communicate with brown
adipocytes either through direct cell-to-cell interactions or via the
secretion of cytokines. There are plausible scenarios on how PEMT
may robustly affect these cell behaviors. For example, as a consumer
of S-adenosylmethionine, PEMT may affect histone methylation to
induce changes in transcription. Indeed, deletion of PEMT can alter S-
adenosylmethionine utilization, leading to hypermethylation of histones
and robust effects on gene transcription [42]. Another possible
mechanism arises from PEMT’s role in maintaining ER homeostasis.
PEMT ablation is known to cause ER stress [37], which may alter
protein translation and other cellular processes in cells that mediate
changes in BAT via signaling events.

5. CONCLUSION

In summary, PEMT plays a vital role in thermogenesis by regulating
UCP1 protein expression via alternative splicing. Surprisingly, PEMT
within BAT does not mediate this effect, nor does it substantially affect
BAT function. Rather, PEMT’s action occurs in a non-cell-autonomous
manner, suggesting that a lack of PEMT prevents cell-to-cell
communication required to induce properly spliced UCP1 transcripts.
While the precise mechanisms remain enigmatic, our work helps
reveal an exciting avenue of UCP1 regulation that may have profound
implications for whole-body metabolism.
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