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Abstract

The electrical signals produced by the heart can be used to assess cardiac health and diagnose 

adverse pathologies. Experiments on large mammals provide essential sources of these signals 

through measurements of up to 1000 simultaneous, distributed locations throughout the heart and 

torso. To perform accurate spatial analysis of the resulting electrical recordings, researchers must 

register the locations of each electrode, typically by defining correspondence points from post-

experiment, three-dimensional imaging, and directly measured surface electrodes. Often, due to 

the practical limitations of the experimental situation, only a subset of the electrode locations can 

be measured, from which the rest must be estimated. We have developed a pipeline, GRÖMeR, 

that can perform registration of cardiac surface electrode arrays given a limited correspondence 

point set. This pipeline accounts for global deformations and uses a modified iterative closest 

points algorithm followed by a geodesically constrained radial basis deformation to calculate a 

smooth, correspondence-driven registration. To assess the performance of this pipeline, we 

generated a series of target geometries and limited correspondence patterns based on experimental 

scenarios. We found that the best performing correspondence pattern required only 20, 

approximately uniformly distributed points over the epicardial surface of the heart. This study 

demonstrated the GRÖMeR pipeline to be an accurate and effective way to register cardiac sock 

electrode arrays from limited correspondence points.
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1 Introduction

The detection and diagnosis of electrical abnormalities of the heart continues to be a topic of 

active research despite over a century of study [5]. The electrical signals produced by the 

heart are used extensively to assess cardiac health and diagnose adverse pathologies [11]. 
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However, many clinical applications are limited by a lack of mechanistic understanding. To 

better understand these mechanisms, i.e., how electrical signals relate to specific 

pathologies, researchers use in situ experiments with high-density electrode arrays to 

measure up to 1000 individual signals directly from the hearts and torsos of large mammals 

[2,3]. One example of these high-density arrays is the Utah High Density Epicardial Sock 

(UHDES), a flexible mesh that is stitched with 240–490 evenly spaced electrodes and 

stretched over the ventricles of the heart [1,3,8]. The signals are then analyzed in space and 

time to visualize electrical changes occurring during experimental manipulation of the heart 

[3,6]. To include space in this analysis, researchers must know the locations of each 

electrode on the epicardial surface. However, in practical experimental conditions, often only 

a subset of the electrode locations can be measured directly due to limitations of the in situ 
preparations, e.g., physical access to the electrodes, heart motion, and limited range of 

motion of mechanical digitizers. This limited subset of electrodes must then be used to 

estimate the locations of the entire array using surface registration of a preexisting 

geometrical model or one derived from subsequent imaging. The resulting registration 

problem is challenging because of the limited subset of electrode locations recorded, the 

non-rigid nature of the sock placement, and variations in cardiac anatomy between the 

experiment and any subsequent imaging.

Many examples of similar surface-to-surface registration problems exist, in which one must 

align a template model to a sub-sampled and distorted specific shape. Various registration 

approaches have been employed to address such problems, such as rigid or affine iterative 

closest points (ICP), thin plate splines, model based, Procrustes, and combinations of these 

methods [3,4,7,9,10]. Each approach and the resulting software pipelines have limitations, 

often with small numbers of correspondence points and the ambiguities of non-rigid 

deformation [2,3]. We developed a registration pipeline, GRÖMeR, that performs global 

deformations of an epicardial sock electrode array, calculates a rigid registration informed 

by the correspondence points, and then non-rigidly deforms the points into their final 

locations according to the known positions of correspondence-point electrodes. The result is 

a smooth, non-rigid deformation of the sock dictated by the correspondence points that 

results in an accurately registered electrode array.

The results of this study showed the GRÖMeR pipeline was able to register subject-specific 

and template UHDES arrays using a limited number of correspondence points. Among the 

correspondence point patterns considered, we found the most accurate registration across all 

target geometry scenarios with a relatively small number of measured correspondence points 

(20) distributed approximately uniformly over the heart. Similarly, we found that 

correspondence patterns that included both anterior and posterior coverage showed improved 

registration accuracy over posterior or anterior coverage alone.

2 Methods

Registration Pipeline

The GRÖMeR pipeline registers a template geometry to a target geometry using three 

inputs: (1) a template geometry, (2) correspondence points from the target geometry 

measured in the experiment coordinate system, and (3) a constraining surface derived from 
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post-experiment imaging. We assume that the target geometry exists on the surface of the 

constraining surface. The first step in GRÖMeR uses the positioning of the correspondence 

points to calculate a deformation along the long axis of the template geometry. This 

deformation is then applied to the template geometry to estimate the longitudinal stretch of 

the sock, which varies greatly across experiments. The longitudinally deformed template 

geometry is then rigidly registered to the constraining surface using a modified iterative 

closest points (ICP) algorithm [10]. This modified algorithm ensures that known 

correspondence points are included in registration calculations. The rigidly registered 

template is then snapped to the constraining surface by a nearest-node proximity. This 

snapped template geometry is deformed along the constraining surface as follows. For each 

correspondence pair, a Euclidean vector is constructed to move each correspondence point 

on the template geometry to the target geometry. This Euclidean vector is projected onto the 

constraining surface to calculate a geodesic path. An effect weighting (v) is then calculated 

using a radial basis function (Eq. 1) for each correspondence point and applied to each non-

correspondence point on the template geometry, where d is the Euclidean distance between 

the correspondence point and a non-correspondence point, and r is the radial basis factor that 

determines the area of effect for a correspondence point. For this study, we selected r = 50 

based on empirical assessment. Each non-correspondence point is then assigned a movement 

vector based on the sums of all correspondence point movement vectors and the applied 

radial basis effect. If the non-correspondence movement vector is normal to the local tangent 

space, that point remains static. Otherwise, the movement vector is projected onto the 

constraining surface to calculate a geodesic path for each non-correspondence point. Finally, 

the non-correspondence points are relaxed to maintain nearly average edge lengths across 

the registered geometry. The final result is a registered geometry, dictated by correspondence 

points and the constraining surface.

v = e
− d

r
3

(1)

Generation of Geometries

An essential goal of this study was to test the GRÖMeR pipeline under realistic conditions. 

To do so we evaluated it using a phantom 3D-printed heart, from which we generated target 

geometries to which we tried to register a template geometry. The template geometry was 

created by fitting the Utah High Density Epicardial Sock (UHDES) onto a plastic mold 

constructed from a heart harvested from a past experiment. All 247 electrode locations for 

this particular UHDES were measured using a mechanical digitizer (MicroScribe), and these 

electrode positions formed an open, cup-shaped surface, which was triangulated manually. 

For the constraining surface, a heart surface geometry was created according to Burton et al. 
[3] using a heart from an in situ preparation. Briefly, post-experiment the heart was excised 

and imaged with a seven Tesla MRI (Bruker BIOSPEC 70/30, Billerica, MA) using FISP 

(fast imaging with steady-state precession) and FLASH (fast low angle shot) imaging 

sequences. Utilizing images from both sequences, the heart volume was segmented using 

Seg3D open-source software (www.seg3d.org), and a heart surface mesh was extracted using 

the SCIRun problem solving environment (www.sci.utah.edu/cibc-software/scirun). To 
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simulate an experimental placement of the UHDES, we 3D printed the constraining surface 

as a phantom heart in PLA filament (Lulzbot Taz 3D printer) and then placed the UHDES on 

the 3D printed heart as in an in situ preparation. The locations of each electrode was again 

digitized (Fig. 1) and used as one target geometry. We then generated five additional target 

geometries by perturbing the phantom sock geometry as follows: uneven placement, in 

which posterior nodes were moved uniformly 20mm toward the apex (Fig. 1b); the Dilated 

or Contracted cases, in which all nodes (and the constraining surface) were dilated from or 

eroded toward, respectively, the center of the sock by 10 mm (Fig. 1c); and the Rotated 

cases, in which nodes were rotated about the long axis of the sock by 30° clockwise or 

counterclockwise (Fig. 1d). These target geometries were used as ground truths that we 

sought to recreate based on a limited sampling (Fig. 1).

Exploration of Correspondence Selection

A key parameter of any correspondence-based registration scheme is the choice and 

availability of correspondence points. We selected four patterns of correspondence points 

that mimicked realistic scenarios in our experiments: an Anterior group, Posterior group, 

evenly spaced Vertical Strips, and a Uniformly Distributed group over the entire target 

geometry. For each pattern, we selected either 8 or 20 correspondence points. The Anterior 

group simulated the limited access situation common during in situ experimental 

preparations. The posterior group simulated similarly limited access on the back of the heart. 

The vertical strips and distributed points were selected to explore the improvements possible 

through larger regions of correspondence points. Each correspondence point pattern was 

tested for each target geometry.

Analysis

The accuracy of the resulting registration was based on statistics of the Euclidean distances 

between each electrode of the registered and target geometries measured in millimeters 

(localization error). We also computed the percent of electrodes for which the localization 

error was below a threshold of 5 mm, termed the “percent of nodes below threshold” 

(PNBT). The mean, median, and standard deviation of the localization error and the PNBT 

were compared across the various target geometries and correspondence patterns.

3 Results

Registration Results

The accuracy achieved using the GRÖMeR pipeline depended on the locations and the 

number of correspondence points. The results summarized in Table 1 for sets of 8 

correspondence points and Table 2 for sets of 20 correspondence points show the statistical 

results for each correspondence pattern and target geometry scenario.

The best performing correspondence pattern across many of the target geometries was the 

Uniformly Distributed correspondence pattern, closely followed by the Vertical Strips 

pattern. Within the target geometry perturbations, the dilated and uneven target geometries 

produced the highest localization error. The Distributed Correspondence pattern was the 

most robust to the target geometry variations according to all three metrics shown for both 
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numbers of correspondence points. The Distributed pattern with only 8 points was able to 

outperform 20 correspondence points in both Anterior and Posterior groupings. Figure 2 

shows an example, comparing the Distributed-8 correspondence to the Anterior-20 for the 

uneven target geometry. Figure 2b shows the per node localization error mapped onto each 

node of the registered sock geometry, with higher error in red and lower error in blue. The 

maximum localization error was 8.56mm for the Distributed-8 correspondence set, and 

20.15mm for the Anterior-20 set. Figure 2c shows the nodes above the 5 mm threshold in 

red and the nodes below the threshold in blue.

4 Discussion and Conclusions

In this study, we sought to develop a pipeline that could perform surface-to-surface 

registration based on a limited and often asymmetrically distributed set of correspondence 

points. In order to perform such a registration, we leveraged the availability of a high-

resolution heart surface derived from MRI imaging over which the target sock geometry was 

stretched and over which our registration was constrained. We applied this novel registration 

approach to a cardiac sock electrode array, and tested it with a phantom heart model that we 

used to generate target geometries, which we then perturbed in realistic ways. We were able 

to achieve a high degree of fidelity using as few as 8 well-placed correspondence points. By 

selecting different correspondence point patterns, we were able to explore the robustness of 

the GRÖMeR pipeline under realistic sampling scenarios.

For all correspondence point patterns, contracting the target geometry and constraining mesh 

resulted in the most accurate registrations (highest PNBT and lowest localization errors), 

whereas dilating has the opposite effect. We consider that the localization error is a metric of 

the average electrode distance from the target geometry, whereas the PNBT is a metric of 

how well the registration performed overall compared to a predefined threshold. Therefore 

these results were expected, given that when the target geometry was dilated, the overall 

spacing of electrodes had to increase. Thus, error was magnified on this larger surface, and 

with the same threshold fewer nodes fell below the error threshold. The opposite is seen on 

the contracted target geometry. In these cases, the localization error provides a better 

interpretation for how the different correspondence patterns performed when compared to 

other target geometries in which the average electrode spacing is not eroded or dilated.

When examining the other target geometry perturbations, the uneven target geometry also 

showed high localization error and low PNBT. The local deformations were different on the 

anterior and the posterior sides and the non-uniform nature of the uneven perturbation likely 

contributed to the difficulty in registration. Correspondence patterns that did not cover 

locally deformed regions struggled to reconstruct these deformations. However, 

correspondence patterns that covered at least some part of these local deformation resulted 

in improved registrations. Tables 1 and 2 document these findings as does Fig. 2, which 

shows how a correspondence pattern that provides sampling closer to these local 

deformations resulted in better registration, as is expected.

Of the correspondence point patterns, the Posterior performed poorly in all cases. A possible 

explanation is that the posterior surface of the heart and therefore the target geometry is, 
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generally, smooth and flat. The anterior surface by contrast, particularly along the junction 

between the left and right ventricles, has a more complex shape, which is captured by the 

sock geometry. Thus, correspondence patterns that had at least some sampling in the anterior 

performed better than those that did not, because without anterior sampling it was difficult to 

accurately reconstruct the anterior geometry. Correspondence patterns with sampling over 

both the anterior and posterior were superior, because these patterns could capture local 

deformations across the majority of the sock geometry.

We also compared the performance of correspondence points spread evenly over the entire 

sock geometry rather than unevenly constrained to one side. An evenly distributed, or four 

strips of correspondence points across the target geometry, resulted in improved registration 

results compared to the Anterior and Posterior patterns. This result is particularly apparent in 

Fig. 2, in which the Distributed-8 correspondence pattern resulted in a superior registration 

accuracy than did the Anterior-20 correspondence pattern. The increase in PNBT of 44.77% 

and decrease in mean localization error of 4.16mm demonstrates the benefit of even a 

modest number of correspondence points distributed across the target geometry and 

highlights that simply increasing the number of correspondence point measurements on the 

anterior does not prove superior to a more even coverage. The Vertical strips pattern behaved 

similarly to the distributed, resulting in superior registration as compared to the anterior and 

posterior patterns, likely due to the increased correspondence coverage of the Distributed 

and Vertical strips patterns. In some cases, the Vertical strips 20 pattern resulted in a slightly 

higher PNBT than even the Distributed 20 pattern. However, at the 8 correspondence points 

level, these two patterns perform similarly. The results of this analysis highlight the 

motivation to collect more distributed correspondence points to get accurate registration of 

the complete sock electrode array. In the future we plan to address these technical limitations 

of our experimental preparation to achieve a correspondence distributions with errors that 

approache those of the ideal distributed pattern.

This study has demonstrated the novel GRÖMeR pipeline to be an accurate and effective 

way to register surface electrode arrays from limited correspondence points. Using the 

GRÖMeR pipeline, we were also able to suggest ways to improve the registration process by 

evenly distributing and perhaps increasing the number of recorded correspondence points. In 

the future, we will use this tool to register our cardiac sock electrodes and test ideal 

correspondence points to register the UHDES array.
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Fig.1. 
Generation of target geometries. Digitized target geometry (black) on the constraining heart 

surface (gray) (a). Deformations used to generate the other target geometries are 

demonstrated on the top ring of nodes (red). Each node is an electrode. Uneven sock 

placement, in which the anterior electrodes are set and posterior electrodes are moved 

toward the apex by 20 mm (b). View from the base of the heart: electrodes and the heart 

mesh are either eroded (blue) or dilated (green) by 10 mm (c). Nodes are rotated by 30 

degrees clockwise or counterclockwise. Counterclockwise shown in (d). (Color figure 

online)
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Fig.2. 
Registration comparison between the Anterior 20 points (top) and the Distributed-8 points 

(bottom). The anterior surface of the constraining heart surface was oriented to the left and 

the posterior to the right. The correspondence points used are shown in black (a). 

Localization error (in millimeters) was mapped onto the registered electrodes (b) with high 

error in red and low error in blue. Electrodes with localization error below 5 mm were 

colored blue and with localization error at or above the same threshold were colored red (c). 

(Color figure online)

Bergquist et al. Page 9

Funct Imaging Model Heart. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bergquist et al. Page 10

Table 1.

Numerical results from registration scenarios given 8 correspondence points. For each registration scenarios, 

the mean and median localization error (mm) are shown as well as the percent of nodes below the threshold 

localization error of 5 mm. All errors are listed as ± one standard deviation.

Target Anterior Posterior Distributed Vertical strips

Basal Mean 6.52 ± 3.3 13.87 ± 9.09 4.13 ± 2.08 4.45 ± 2.18

Median 6.55 ± 3.3 12.92 ± 9.09 4.03 ± 2.08 4.49 ± 2.18

PNBT 33.6% 21.05% 66.8% 59.51%

Dilated Mean 10.92 ± 5.3 19.02 ± 12.26 6.36 ± 2.97 7.15 ± 3.16

Median 10.73 ± 5.3 17.49 ± 12.26 6.51 ± 2.97 7.15 ± 3.16

PNBT 13.77% 14.98% 32.79% 23.48%

Contracted Mean 3.46 ± 1.94 7.28 ± 4.26 2.8 ± 1.52 3.14 ± 1.56

Median 3.25 ± 1.94 7.07 ± 4.26 2.7 ± 1.52 3.22 ± 1.56

PNBT 76.92% 36.44% 91.5% 88.26%

Uneven Mean 9.05 ± 5.28 15.62 ± 9.18 3.87 ± 2.16 5.32 ± 3.03

Median 8.34 ± 5.28 15.58 ± 9.18 3.78 ± 2.16 5.1 ± 3.03

PNBT 21.86% 16.19% 74.49% 47.77%

Rotated +30° Mean 6.19 ± 3.24 10.49 ± 6.32 3.51 ± 1.95 4.02 ± 1.88

Median 6.01 ± 3.24 9.87 ± 6.32 3.45 ± 1.95 4.14 ± 1.88

PNBT 34.82% 24.29% 79.76% 67.21%

Rotated −30° Mean 6.99 ± 4.74 12.71 ± 8.3 4.18 ± 2.24 4.49 ± 2.16

Median 6.2 ± 4.74 11.41 ± 8.3 4.09 ± 2.24 4.5 ± 2.16

PNBT 44.13% 21.46% 63.56% 58.3%
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Table 2.

Numerical results from registration scenarios given 20 correspondence points. Otherwise identical layout as 

Table 1

Target Anterior Posterior Distributed Vertical strips

Basal Mean 6.12 ± 3.42 13.53 ± 9.95 3.25 ± 1.93 3.26 ± 1.93

Median 6.06 ± 3.42 11.96 ± 9.95 3.1 ± 1.93 3.19 ± 1.93

PNBT 38.87% 24.29% 80.57% 82.59%

Dilated Mean 9.95 ± 5.66 18.77 ± 13.9 4.79 ± 2.71 4.8 ± 2.87

Median 10.06 ± 5.66 16.75 ± 13.9 4.9 ± 2.71 4.86 ± 2.87

PNBT 19.84% 18.62% 50.61% 53.44%

Contracted Mean 3.17 ± 1.94 7.82 ± 5.38 2.33 ± 1.43 2.51 ± 1.52

Median 3.13 ± 1.94 7.18 ± 5.38 2.2 ± 1.43 2.52 ± 1.52

PNBT 81.38% 34.41% 95.55% 93.52%

Uneven Mean 8.03 ± 5.27 16.37 ± 12.24 3.39 ± 2.43 3.26 ± 2.34

Median 7.12 ± 5.27 14.18 ± 12.24 3.14 ± 2.43 2.94 ± 2.34

PNBT 26.72% 21.05% 77.33% 80.97%

Rotated +30° Mean 6.89 ± 4.77 10.37 ± 7.04 2.94 ± 1.79 3.15 ± 1.85

Median 6.17 ± 4.77 9.22 ± 7.04 2.84 ± 1.79 3.02 ± 1.85

PNBT 36.84% 27.94% 85.02% 85.02%

Rotated —30° Mean 6.42 ± 4.49 13.29 ± 9.91 3.42 ± 1.97 3.15 ± 1.85

Median 6.14 ± 4.49 11.07 ± 9.91 3.41 ± 1.97 3.03 ± 1.85

PNBT 42.91% 24.29% 78.95% 82.59%
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