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SUMMARY

The neural substrates and pathophysiological mechanisms underlying the onset of cognitive and 

motor deficits in autism spectrum disorders (ASDs) remain unclear. Mutations in ASD-associated 

SHANK3 in mice (Shank3B−/−) result in the accelerated maturation of corticostriatal circuits 

during the second and third postnatal weeks. Here, we show that during this period, there is 

extensive remodeling of the striatal synaptic proteome and a developmental switch in 

glutamatergic synaptic plasticity induced by cortical hyperactivity in striatal spiny projection 

neurons (SPNs). Behavioral abnormalities in Shank3B−/− mice emerge during this stage and are 

ameliorated by normalizing excitatory synapse connectivity in medial striatal regions by the 

downregulation of PKA activity. These results suggest that the abnormal postnatal development of 

striatal circuits is implicated in the onset of behavioral deficits in Shank3B−/− mice and that 

modulation of postsynaptic PKA activity can be used to regulate corticostriatal drive in developing 

SPNs of mouse models of ASDs and other neurodevelopmental disorders.
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Peixoto et al. show that the onset of behavioral deficits in Shank3B−/− mice occurs during early 

postnatal development and that these can be ameliorated by reducing the glutamatergic synaptic 

drive in medial regions of the striatum by the downregulation of PKA activity.

Graphical Abstract

INTRODUCTION

Autism spectrum disorders (ASDs) are characterized by several cognitive and behavioral 

deficits that typically emerge during the second year of life (Lord et al., 2000; Watts, 2008). 

This distinctive developmental trajectory and selective degradation of particular motor and 

cognitive abilities suggest that ASDs arise from impaired developmental processes affecting 

the maturation of specific neural circuits. Recent evidence points to corticostriatal 

dysfunction as a common pathophysiology in ASDs (Fuccillo, 2016). Imaging studies in 

multiple autistic cohorts revealed hypertrophy and abnormal functional connectivity of 

striatal and frontal cortical regions (Langen et al., 2007, 2009, 2014; Turner et al., 2006; 

Wolff et al., 2013), and genomic and transcriptomic analyses have identified corticostriatal 

and striatal spiny projection neurons (SPNs) as neuronal populations with high expression of 

ASD risk genes (Chang et al., 2015; Willsey et al., 2013). In addition, autistic individuals 

often present classical neurological signs of basal ganglia (BG) dysfunction such as 

cognitive inflexibility, dystonia, bradykinesia, and stereotypies (Fuccillo, 2016; Shepherd, 

2013).
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Autism has a strong genetic basis and is associated with multiple de novo gene mutations 

and copy number variants (CNVs) (Geschwind, 2011). Several identified risk genes encode 

proteins involved in neuronal development and synaptogenesis (Parikshak et al., 2013; Pinto 

et al., 2014), consistent with the early age of onset of ASDs (Watts, 2008). Accordingly, 

many mouse models harboring ASD-associated mutations exhibit deficits in synaptic and 

neural circuit function and behavioral phenotypes reminiscent of core symptoms of autism 

(Dhamne et al., 2017; Jiang and Ehlers, 2013; Kabitzke et al., 2018; Kazdoba et al., 2016; 

Mei et al., 2016; Peça et al., 2011). However, longitudinal characterization of the 

neurobehavioral deficits in many of these animal models is still lacking (Del Pino et al., 

2018), which, given the extensive molecular and circuit-level compensations occurring 

during brain development, precludes a conclusive estimate of the etiological significance of 

the different phenotypes observed at later developmental stages (Tien and Kerschensteiner, 

2018; Turrigiano and Nelson, 2004).

Haploinsufficiency of SHANK3 is strongly associated with Phelan-McDermid syndrome 

(PMS) and idiopathic autism (De Rubeis et al., 2018; Monteiro and Feng, 2017). SHANK3 

belongs to the SHANK family of postsynaptic scaffolding proteins that integrate an 

extensive protein complex at glutamatergic synapses, where they interact with multiple 

synaptic channels and receptors (Jiang and Ehlers, 2013). The deletion of exons 13–16 of 

Shank3 in mice (Shank3B−/−) leads to several behavioral deficits, including 

hypolocomotion, abnormal social interactions, and repetitive and anxiety-like behaviors 

(Dhamne et al., 2017; Guo et al., 2019; Jiang and Ehlers, 2013; Kabitzke et al., 2018; Mei et 

al., 2016; Peça et al., 2011; Wang et al., 2016). Adult Shank3B−/− mice have depressed 

corticostriatal transmission and altered patterns of cortical activity, potentially due to deficits 

in parvalbumin (PV) interneuron function (Dhamne et al., 2017; Gogolla et al., 2014; Guo et 

al., 2019; Peça et al., 2011). However, in contrast to adult stages, corticostriatal connectivity 

of Shank3B−/− mice during early postnatal periods is increased compared to wild type (WT), 

suggesting that the loss of Shank3 induces a multiphasic developmental perturbation of 

striatal circuit connectivity and function (Peixoto et al., 2016). Whether postnatal 

perturbations of corticostriatal circuitry are concurrent with and causal of the onset of 

behavioral abnormalities in Shank3B−/− mice remains unclear.

Here, we present a longitudinal behavioral characterization of Shank3B−/− mice, showing 

that many of their behavioral deficits emerge during the second and third postnatal weeks. 

Proteomic analyses of striatal synaptic fractions show extensive synaptic remodeling during 

this period, with pronounced expression changes of several ASD risk factors. The 

normalization of excessive glutamatergic connectivity in neurons of the medial striatum of 

Shank3B−/− mice by downregulating protein kinase A (PKA) activity during postnatal 

development reduces the severity of their phenotypes. These results suggest that disrupted 

postnatal development of striatal circuits is implicated in the onset of behavioral deficits in 

Shank3B−/− mice and highlight the need to characterize the developmental trajectory of 

behavioral abnormalities in animal models of autism and other neurodevelopmental 

disorders to identify the primary patterns of circuit dysfunctionassociated with the 

emergence of maladaptive behaviors.

Peixoto et al. Page 3

Cell Rep. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Early Onset of Behavioral Deficits in Shank3B−/− Mice

To determine the developmental stage at which Shank3B−/− mice begin manifesting 

behavioral deficits, we tested their performance in multiple behavioral assays across 

development (postnatal days [P] P15–P90). In the open field, Shank3B−/− mice moved less 

compared to control WT littermates at all of the developmental ages tested, traversing less 

distance during the 30-min recording session (Figures 1A and 1B; mean ± SEM; P15–P90 

WT: 20.1 ± 2, 26.4 ± 2, 29.6 ± 2.5, 36.9 ± 3.1, 32.1 ± 2.8 m; Shank3B−/−: 9.0 ± 1.3, 14.6 

± 1.8, 17.5 ± 1.4, 25.3 ± 3, 22.2 ± 1.9 m, n = 10,13; repeated measures ANOVA 

[RMANOVA] with Bonferroni multiple comparison test *p < 0.05, **p < 0.005, ***p < 

0.001). Moreover, Shank3B−/− animals explored the center of the arena less compared to 

WT after P21 and spent less time in the center of arena at P15 (Figures 1C and 1D; mean ± 

SEM; total distance in center of arena P15–P90 WT: 4.4 ± 0.7, 6.3 ± 0.9, 6.1 ± 0.9, 12.7 

± 1.7, 11.3 ± 1.8 m; Shank3B−/−: 1.3 ± 0.2, 2.4 ± 0.5, 2.3 ± 0.3, 6.8 ± 1.0, 5.7 ± 0.7 m, n = 

10,13; RMANOVA with Bonferroni multiple comparison test *p < 0.05, ***p < 0.001; mean 

± SEM center/arena time P15–P90 WT: 0.07 ± 0.01, 0.14 ± 0.03, 0.14 ± 0.02, 0.47 ± 0.12, 

0.45 ± 0.12 m; Shank3B−/−: 0.02 ± 0.01, 0.07 ± 0.02, 0.06 ± 0.01, 0.23 ± 0.05, 0.22 ± 0.05, 

n = 10,13, RMANOVA with Bonferroni multiple comparison test *p < 0.05). Reduced 

rearing of Shank3B−/− mice in relation to WT was observed at P15–P60 and became similar 

between genotypes at P90 (Figure 1E; mean ± SEM; wall rearing bouts per session P15–P90 

WT: 43.6 ± 5.8, 61.2 ± 6.4, 56.6 ± 4.9, 69.3 ± 11.9, 45.8 ± 8.33 bouts; Shank3B−/−: 18 ± 3.5, 

37 ± 7.2, 31.4 ± 3.2, 42.17 ± 8.9, 32.2 ± 4.5 bouts, n = 10,13; RMANOVA with Bonferroni 

multiple comparison test *p < 0.05). Consistent with previous reports, Shank3B−/− mice 

groomed for longer periods, although increased grooming only emerged during the P15–P21 

stage, when the maximal phenotypic difference across genotypes was reached (Figure 1G; 

mean ± SEM; total grooming time P15–P90 WT: 418.6 ± 34.5, 363.4 ± 45.3, 319.5 ± 63.8, 

238.2 ± 50.6, 190.6 ± 45.2 s; Shank3B−/−: 497.7 ± 72.9, 730.2 ± 59.8, 567.8 ± 47, 433.1 

± 63.7, 324.3 ± 56.6 s, n = 10,13; RMANOVA with Bonferroni multiple comparison test *p 

< 0.05, ***p < 0.001). The increase in total grooming time occurred predominantly due to 

longer duration of individual grooming bouts, which remained similar in number across 

groups (Figures 1G and 1H; mean ± SEM; average groom bout duration P15–P90 WT: 63.6 

± 8.3, 64.3 ± 7.2, 43.5 ± 6.5, 24.1 ± 3.3, 30 ± 3.7 s; Shank3B−/−: 69.6 ± 9.2, 96.4 ± 9.1, 62.4 

± 6.4, 52.6 ± 12.3, 64.6 ± 6.9 s, n = 10,13; grooming bouts per 30-min session P15–P90 WT: 

7.05 ± 0.57, 6.05 ± 0.74, 8.7 ± 2.09, 9.25 ± 1.53, 6.0 ± 1.33 bouts; Shank3B−/−: 7.19 ± 1.2, 

8.39 ± 0.56, 10.65 ± 1.39, 10.33 ± 1.13, 5.46 ± 0.67 bouts, n = 10,13; RMANOVA with 

Bonferroni multiple comparison test *p < 0.05). No sex dimorphism was observed in the 

open field tests as both male and female Shank3B−/− mice exhibited similar behavioral 

trends compared to WT (Figure S1), which is consistent with previous findings (Kabitzke et 

al., 2018). In addition, the performance of Shank3B−/− mice in the accelerating rotarod was 

worse compared to WT at P17–P20 (Figure 1I; mean ± SEM; time to fall in seconds P17 

WT: 60.5 ± 8.6, 72.4 ± 9.1, 80.5 ± 13.4; Shank3B−/−: 37.1 ± 9, 54.8 ± 9.6, 49.9 ± 7.8; P18 

WT: 76.6 ± 11, 99.6 ± 12.9, 114.6 ± 10.8; Shank3B−/−: 53.7 ± 7.7, 63.8 ± 12.1, 66.3 ± 11.7; 

P19 WT: 97.5 ± 11.1, 141 ± 18.3, 122.6 ± 12.4; Shank3B−/−: 71.8 ± 9, 84.2 ± 10.5, 88.9 

± 10.2; P20 WT: 113.2 ± 22.4, 151.9 ± 17.2, 172.6 ± 23.2; Shank3B−/−: 79.8 ± 9.2, 100.8 
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± 16.1, 107.3 ± 14.6, n = 10,15; RMANOVA Fisher’s least significant difference [LSD] test 

*p < 0.05, **p < 0.005, ***p < 0.0005). Thus, behavioral abnormalities in Shank3B−/− begin 

during early post-natal development, a period during which extensive activity-dependent 

striatal circuit remodeling occurs.

Dynamic Regulation of the Striatal Synaptic Proteome during Postnatal Development

To gain insight into the molecular mechanisms and signaling pathways regulating the 

postnatal maturation of striatal circuits, we analyzed synaptosomal fractions of the dorsal 

striatum of P8–P18 mice by liquid chromatography-tandem mass spectrometry (LC-

MS/MS) (Figure 2). The biochemical isolation of synaptosomes enriched synaptic proteins 

(Figure S2) and permitted the identification of 7,405 protein species that exhibited different 

expression patterns across development (Figures 2A–2C; Data S1). The relative abundance 

of several markers of synaptic and neuronal maturation such as doublecortin (DCX), 

synaptic vesicle glycoprotein 2 (SV2A), postsynaptic density protein 95 (PSD95), Ca2+/

calmodulin-dependent protein kinase IIα (CaMKIIα), excitatory amino acid transporter 2 

(EAAT2), and the myelin-associated enzyme 2′,3′-cyclic nucleotide 3′ phosphodiesterase 

(Cnp) changed markedly during this developmental period (Figures 2B and 2C), consistent 

with previous reports (Gonzalez-Lozano et al., 2016). An intra-sample comparison across 

development identified a cluster of 142 proteins with significant changes in relative 

abundance during P8–P18 (Figures 2D and 2E; Table S1; p < 0.001, Friedman test with 

Benjamini-Hochberg multiple test correction with p < 0.001), 92 of which formed a highly 

interconnected network defined by protein-protein interactions (Figure 2D). Notably, 35 of 

these proteins are encoded by ASD risk genes and 28 others are homologs of other identified 

risk alleles (https://gene.sfari.org), pointing to a high degree of functional convergence and 

interaction of many ASD risk factors during this stage of striatal development. Furthermore, 

regulatory and catalytic subunits of cyclic AMP (cAMP)-dependent PKA and modulators of 

PKA activity are dynamically regulated during this period (Figures 2F–2I), with a 

progressive reduction in the synaptic levels of PKA subunits and of several A-kinase 

anchoring proteins (AKAPs), similar to what is observed in developing cortical circuits 

(Gonzalez-Lozano et al., 2016) and consistent with the altered regulation of PKA signaling 

during this period of striatal maturation (Kozorovitskiy et al., 2015; Yang et al., 2009; 

Yasuda et al., 2003). These results point to an extensive remodeling of the striatal synaptic 

proteome during this developmental period, which is consistent with ongoing neuronal 

maturation and synaptogenesis.

Developmental Switch in SPN Adaptation to Cortical Hyperactivity

Compared to WT controls, Shank3B−/− SPNs have an elevated frequency of miniature 

excitatory postsynaptic currents (mEPSCs) at P14, suggesting an increase in the number, or 

accelerated maturation, of excitatory synapses (Peixoto et al., 2016). However, in adult 

stages, this phenotype is reversed, and corticostriatal transmission and connectivity are 

reduced (Peça et al., 2011; Wang et al., 2017). The extensive postnatal changes in striatal 

synaptic composition suggested that these two phenotypes could be due to distinct plasticity 

mechanisms induced by elevated cortical activity in developing and mature SPNs. To test 

this hypothesis, we recorded mEPSCs in SPNs after different periods of cortical 

hyperactivity induced across development (Figure 3). To increase cortical activity, we 
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blocked synaptic GABA release from cortical interneurons by conditional deletion of the 

vesicular GABA transporter (VGAT) in Slc32a1f/f transgenic mice (Peixoto et al., 2016). 

Unilateral injection of adeno-associated viruses (AAVs) expressing Cre recombinase under 

control of the neuron-specific synapsin promoter (AAV-Syn-Cre-EGFP) allowed restricted 

Cre recombination in neurons of the anterior cingulate cortex (ACC), a major source of 

corticostriatal projections to dorsomedial striatum (DMS) (Figure 3A). Mice were injected at 

P8 to improve stereotaxic precision and avoid disrupting GABA-mediated developmental 

processes during the first postnatal week. AAV-Syn-EGFP injections were used as controls. 

Whole-cell recordings of DMS SPNs at P14 (7 days post-injection) revealed that cortical 

hyperactivity during P8–P14 significantly increased SPN mEPSC frequency (Figure 3B; 

mean ± SEM; SPN mEPSC frequency P14, GFP 0.71 ± 0.07 Hz; Cre 1.39 ± 0.16 Hz, n = 

27,26 neurons from 4 mouse pairs, unpaired Mann-Whitney test p = 0.0002) and mEPSC 

amplitude (Figure 3C; mean ± SEM; SPN mEPSC amplitude P14, GFP 18.41 ± 0.59 pA; 

Cre 20.93 ± 0.82 Hz, unpaired Mann-Whitney test p = 0.039). However, VGAT deletion 

from P8 to P60 resulted in a reversed phenotype such that the SPN mEPSC frequency of 

AAV-Cre-EGFP mice was reduced compared to controls (Figure 3D; mean ± SEM; SPN 

mEPSC frequency P60, GFP 2.37 ± 0.25 Hz; Cre 1.89 ± 0.20 Hz, n = 52, 54 neurons from 5 

mouse pairs, Mann-Whitney test p = 0.033). mEPSC amplitude remained elevated compared 

to SPNs in AAV-GFP-injected control mice (Figure 3E; mean ± SEM; SPN mEPSC 

amplitude P60, GFP 14.66 ± 0.33 pA; Cre 15.97 ± 0.43 Hz, unpaired Mann-Whitney test p = 

0.036).

To identify at which developmental stage cortical hyperactivity starts inducing a reduction in 

SPN mEPSC frequency, we performed similar experiments manipulating cortical activity at 

different developmental time points (Figure 3E). In contrast to injections at P8, injections of 

AAV-Cre at P15, P21, or P53 resulted in a lower mEPSC frequency 7 days post-injection 

(Figures 3F–3H, left plot; mean ± SEM; SPN mEPSC frequency P15–P21 GFP 3.64 ± 0.46 

Hz; Cre 2.29 ± 0.26 Hz, n = 18,19 neurons from 3 mouse pairs; P21–P28 GFP 4.46 ± 0.74 

Hz; Cre 2.5 ± 0.35 Hz, n = 18,18 neurons from 3 mouse pairs; P53–P60 GFP 2.75 ± 0.25 

Hz; Cre 1.92 ± 0.20 Hz, n = 30,30 neurons from 4 mouse pairs; Mann-Whitney test *p < 

0.05, **p < 0.01) with an increase in mEPSC amplitude observed only in the P53–P60 group 

(Figures 3F–3H, right plot; mean ± SEM; SPN mEPSC amplitude: P15–P21 GFP 14.79 

± 0.33 pA; Cre 14.75 ± 0.38 Hz, n = 18,17 neurons from 3 mouse pairs; P21–P28 GFP 15.29 

± 0.59 pA; Cre 14.83 ± 0.36 Hz, n = 18,18 neurons from 3 mouse pairs; P53–P60 GFP 13.28 

± 0.21 pA; Cre 14.27 ± 0.33 Hz, n = 30,30 neurons from 4 mouse pairs, unpaired Mann-

Whitney test *p < 0.05). There was no significant difference in the pair-pulse ratio (PPR) of 

electrically evoked EPSCs (eEPSC) in SPNs of AAV-Cre-EGFP-injected animals at P53 

compared to AAV-GFP-injected controls (Figures 3K and 3L; mean ± SEM; eEPSC PPR, 

AAV-GFP 1.09 ± 0.04; AAV-Cre-EGFP 1.01 ± 0.07, n = 14,12 neurons from 3 mouse pairs, 

unpaired t test p = 0.37), suggesting the decrease in mEPSC frequency is likely not caused 

by lower vesicular release probability. These results indicate that cortical hyperactivity 

induces distinct forms of synaptic plasticity in developing and mature SPNs, consistent with 

previous ex vivo studies in acute slices (Partridge et al., 2000).
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PKA Inhibition in SPNs during Postnatal Development Reduces Corticostriatal 
Connectivity

Postnatal maturation of glutamatergic synapses in SPNs is regulated by PKA activity 

(Kozorovitskiy et al., 2015), but whether postsynaptic PKA signaling is required for this 

process remains unclear. To address this, we infected the striata of P8 mice with AAVs 

expressing protein kinase inhibitor peptide (PKIα) under the neuron-specific synapsin 

promoter (AAV8-hSyn-PKIα-IRES-mRuby2 [internal ribosome entry site, IRES]) and 

performed whole-cell recording in PKIα+ and neighboring uninfected SPNs 7 days post-

injection (Figures 4A and 4B). PKIα expression decreased the SPN mEPSC frequency 

(Figures 4C and 4D; mean ± SEM; control SPN 1.28 ± 0.17 Hz, PKIα SPN 0.64 ± 0.07 Hz, 

n = 19,23 neurons from 5 mice, unpaired Mann-Whitney test p = 0.001), with no significant 

change in mEPSC amplitude (Figures 3C and 3E; mean ± SEM; control SPN 14.5 ± 0.5 pA, 

PKIα SPN 13.9 ± 0.4 pA, n = 19,23 neurons from 5 mice, unpaired Mann-Whitney test p = 

0.21). PKIα expression increased SPN input resistance (Ri) and induced a small reduction in 

membrane capacitance (Figure S3; mean ± SEM; Ri: control SPN 173.2 ± 15.52 MΩ; PKIα 
SPN 315.7 ± 27.49 MΩ; unpaired Mann-Whitney test p < 0.0001; membrane capacitance: 

control SPN 51.3 ± 2.3 pF; PKIα SPN 47.5 ± 2.2 pF, n = 19,23 neurons from 5 mice). To 

determine whether PKIα expression specifically reduces corticostriatal connectivity, we 

compared optogenetically evoked postsynaptic currents (oEPSC) in PKIα+ and control 

SPNs of Rbp4-Cre;Ai32 (Rbp4-Cre;ChR2f/f) transgenic mice that express Cre recombinase 

under the retinal binding protein 4 (Rbp4) promoter, restricting channelrhodopsin-2 (ChR2) 

expression predominantly to layer 5 cortical neurons (Figure 4E). The optical stimulation of 

ChR2+ fibers in DMS was induced by 1-ms pulses of 473 nm light delivered through the 

objective while performing voltage-clamp whole-cell recordings in SPNs. α-Amino-3-

hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)-type and N-methyl-D-aspartate 

(NMDA)-type glutamate receptor-mediated currents were isolated by inhibiting GABAA 

receptors and recording at holding potentials (Vh) of −70 and +40 mV, respectively. The 

expression of PKIα from P8 to P14 strongly reduced Rbp4+ AMPA receptor (AMPAR) 

oEPSC amplitude (Figures 4F and 4G; mean ± SEM; control −956.1 ± 187.9; PKIα −416 

± 84.7 pA; n = 13,16 neurons from 3 mice, unpaired Mann-Whitney test p = 0.013) without 

a significant change in the NMDAR/AMPAR current amplitude ratio (Figure 4H; mean ± 

SEM; control 1.42 ± 0.16; PKIα 1.55 ± 0.15; n = 9,10 neurons from 3 mice, unpaired 

Mann-Whitney test p = 0.28).

Postnatal Expression of PKIα in DMS Neurons Ameliorates Behavioral Abnormalities in 
Shank3B−/− Mice

Repeated corticostriatal stimulation in ventromedial striatum generates persistent 

overgrooming in mice (Ahmari et al., 2013), whereas reduction of corticostriatal 

connectivity in individuals with obsessive-compulsive disorder (OCD) significantly 

improves compulsive behaviors (Dunlop et al., 2016). Moreover, focal disinhibition of 

striatal circuits in mice causes dystonia and motor stereotypies (Bronfeld et al., 2013; 

Israelashvili and Bar-Gad, 2015), suggesting that hyperactivity of striatal circuits may 

underlie core behavioral deficits in ASDs (Fuccillo, 2016). Given the critical role of PKA in 

regulating SPN glutamatergic synapse maturation (Kozorovitskiy et al., 2015), we tested 

whether reducing the excessive postnatal striatal connectivity found in Shank3B−/− mice by 
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postsynaptic inhibition of PKA would decrease the severity of their behavioral deficits. We 

expressed PKIα in medial striatal neurons from P8 to P21 by injecting AAV8-hSyn-PKIα-

IRES-mRuby2 (Chen et al., 2017; Lee et al., 2019) and compared behavioral performance 

with control AAV-GFP-injected littermates at P21. As observed in WT SPNs, expression of 

PKIα in Shank3B−/− SPNs during postnatal development reduces both mEPSC frequency 

(Figures 5A and 5B; mean ± SEM; control 1.54 ± 0.14 Hz; PKIα 0.51 ± 0.09 Hz; n = 17,16, 

unpaired Mann-Whitney test p < 0.0001) and amplitude (Figure 5C; mean ± SEM; control 

13.9 ± 0.3 pA; PKIα 12.7 ± 0.4 pA; n = 17,16 neurons from 3 mouse pairs, unpaired Mann-

Whitney test p = −0.023). Expression of PKIα in medial striatum had a profound impact on 

behavior, resulting in overall decreased grooming time and grooming bout duration (Figures 

5D–5G; mean ± SEM; total grooming time: control 481.8 ± 62, PKIα 320.4 ± 34 s; groom 

bout duration: control 108.4 ± 14.5, PKIα 76.2 ± 5.8 s; groom bout number per session: 

control 4.9 ± 0.5, PKIα 4.2 ± 0.4; n = 16,16 mice, unpaired t test *p < 0.05). Moreover, 

striatal PKIα expression increased locomotor activity, increasing the distance traversed in 

total and in the arena center, as well as the number of wall rearings (Figures 5H–5L; mean ± 

SEM; total distance in arena: control 14.9 ± 1.7, PKIα 25 ± 2.5 m; center:arena distance 

ratio: control 0.19 ± 0.02, PKIα 0.24 ± 0.01; total time spent in center of arena: control 

188.4 ± 39.5, PKIα 0.24 ± 0.01; number of wall rearings per session: control 37.9 ± 4.2, 

PKIα 64.8 ± 7.8; n = 16,16 mice, unpaired t test *p < 0.05, **p < 0.005), both metrics being 

associated with increased exploratory activity and reduced anxiety in mice. By contrast, 

PKIα expression in the medial striatum of WT mice had no influence on animal behavior in 

the open field (Figure S4).

DISCUSSION

Despite increasing knowledge of the genetic underpinnings of autism risk, the specific 

neural substrates and pathophysiological mechanisms underlying the emergence of motor 

and cognitive deficits in ASDs remain unclear. Studies in transgenic mouse models have 

begun to address how different genetic mutations associated with ASDs disrupt neuron 

physiology, circuit organization, and animal behavior (Fuccillo, 2016; Kazdoba et al., 2016). 

However, many of these studies often focused on the characterization of adult animals, 

which, given the extensive molecular and circuit-level adaptations occurring during brain 

development, limits our understanding of the etiological significance of the phenotypes 

observed during these adult stages (Tien and Kerschensteiner, 2018; Turrigiano and Nelson, 

2004). Here, by longitudinally tracking mouse behavior, we found that several of the 

behavioral deficits previously reported in adult Shank3B−/− mice are already observed at 

P15–P21. This early onset indicates that the relevant pathogenic processes implicated in the 

emergence of maladaptive behaviors in these mice occur either during or before this 

developmental stage. Notably, the ~P12–P14 period of brain maturation in the mouse is 

homologous to the ~1–2 years of human development (Semple et al., 2013), which is the 

typical age of symptom onset in ASDs. The emergence of behavioral deficits during this 

particular period strengthens the face validity of Shank3B−/− mice as a model system of 

ASD pathogenesis and highlights the need to characterize early postnatal circuit maturation 

in mouse models of autism and other neurodevelopmental disorders to distinguish primary 

pathophysiological mechanisms from secondary developmental adaptations.
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Whereas deficits in locomotor and exploratory behavior in Shank3B−/− mice were observed 

as early as P15, overgrooming only emerged during P15–P21. This slightly delayed onset is 

consistent with previous reports showing unaltered grooming patterns of Shank3B−/− mice at 

P15 (Kabitzke et al., 2018) and indicates that this maladaptive behavioral pattern is 

established during the third postnatal week, a period of extensive functional maturation of 

striatal circuits (Peixoto et al., 2016; Tepper et al., 1998). Moreover, this developmental 

trajectory of overgrooming resembles the gradual emergence of repetitive and ritualistic 

patterns of behavior in autistic children during the first years of life (Goldman and Greene, 

2013; Wolff et al., 2014) and may account for the conflicting reports of the extent of 

overgrooming in Shank3B−/− mice across different studies (Dhamne et al., 2017; Kabitzke et 

al., 2018; Peça et al., 2011). By contrast, the early onset of hypolocomotion in Shank3B−/− 

mice is consistent with the observed hypotonia in infants diagnosed with PMS (De Rubeis et 

al., 2018). However, no early deficits in geotaxis were found in Shank3B−/− pups during the 

first 2 postnatal weeks, suggesting that this early phenotype is likely due to central and not 

peripheral motor deficits (Kabitzke et al., 2018). In addition, we observed no sexual 

dimorphism in the behavior of <P21 Shank3B−/− mice, which is consistent with previous 

reports (Kabitzke et al., 2018) and potentially due to sexual immaturity.

Proteomic analysis of striatal synaptosome fractions revealed extensive remodeling of 

synaptic protein composition from P8 to P18 (Figure 2). The expression of DCX, a 

microtubule-associated protein involved in dendritic growth that is downregulated as 

synaptic connectivity is stabilized (Donato et al., 2017), decreased markedly during this 

period, consistent with the extensive activity-dependent maturation of striatal synapses 

(Peixoto et al., 2016). Of the 140 proteins with the most pronounced developmental 

expression changes, 92 form a cluster of identified protein-protein interactions. Notably, 35 

of the 92 are products of identified ASD risk genes and 28 others of closely related 

homologs. These results point to convergent and dynamic regulation of several ASD risk 

factors during this particular period of striatal development, which may have important 

implications for understanding how genetic variants of limited penetrance interact and 

contribute to ASD pathogenesis (Geschwind, 2011; Klei et al., 2012). Furthermore, we 

detected a developmental reduction in both the catalytic and regulatory subunits of PKA and 

an increase in the negative regulators of PKA activity from P8 to P18, suggesting a change 

in PKA signaling regulation during this period. Induction of long-term potentiation (LTP) in 

hippocampal CA3-CA1 synapses is PKA dependent before but not after P14 (Yasuda et al., 

2003), whereas mice lacking the PKA regulatory subunit Prkar2b show impaired 

hippocampal LTP at P10–P14 but not P21–P28 (Yang et al., 2009). Our data show a 

pronounced reduction in Prkar2b expression in striatal synapses from P8 to P18, and in 

AKAPs that bind and recruit Prkar2b such as AKAP12 (Havekes et al., 2012) and the ASD-

associated neurobeachin (Wang et al., 2000). Moreover, we have previously shown that in 
vivo systemic administration of PKA inhibitor H89 abrogates the activity-dependent 

potentiation of SPN corticostriatal synapses at P8–P9 (Kozorovitskiy et al., 2015), 

suggesting a critical role for PKA signaling in early SPN synaptic plasticity. In addition, 

caged-glutamate-induced spinogenesis in both striatal SPN and cortical pyramidal neurons is 

also blocked by H89 and shows a progressive developmental decrease in induction 

efficiency up to ~P18, after which point it is no longer inducible (Kozorovitskiy et al., 2015; 
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Kwon and Sabatini, 2011). Here, we extend these results and show that the postsynaptic 

inhibition of PKA in SPNs during P8–P15 greatly reduces corticostriatal transmission. PKIα 
expressing SPNs also exhibited higher membrane resistance, suggesting that PKA signaling 

may also regulate the maturation of SPN-intrinsic properties, which is consistent with the 

dopamine-dependent maturation of SPN excitability described recently (Lieberman et al., 

2018).

In Shank3B−/− mice corticostriatal connectivity is increased during postnatal development 

and decreased during adult stages (Peça et al., 2011; Peixoto et al., 2016; Wang et al., 2017). 

The mechanisms underlying this biphasic developmental trajectory remain unclear, but 

reducing cortical activity during early postnatal periods in Shank3B−/− mice normalizes the 

number of excitatory synapses onto SPNs. The loss of Shank3 also increases cortical 

(Dhamne et al., 2017) and striatal (Wang et al., 2016) activity during adult stages and 

upregulates the expression and post-translational processing of activity-dependent proteins 

such as P-CREB (Amal et al., 2018). Based on this evidence, we hypothesized that the 

different SPN mESPC phenotypes observed in young and adult Shank3B−/− mice may 

reflect distinct adaptations of these neurons to cortical hyperactivity during different 

developmental periods. Consistent with this idea, both chronic and transient elevations of 

cortical activity during adulthood decrease SPN mEPSC frequency (Figures 3D and 3H). 

This reduction in glutamatergic transmission in response to elevated cortical activity is in 

line with the induction of long-term depression (LTD) of striatal synapses by high-frequency 

stimulation (HFS) in ex vivo slice preparations (Kreitzer and Malenka, 2008). This potential 

mechanism may also explain why the overall decrease in mEPSC frequency observed in 

adult Shank3B−/− SPNs is predominantly due to the loss of inputs in striatopallidal SPNs 

(Wang et al., 2017), as some studies reported more robust induction of HFS-LTD in this 

subclass of SPNs compared to striatonigral SPNs (Kreitzer and Malenka, 2008). 

Nevertheless, we found that increased cortical activity before ~P15 increases SPN mEPSC 

frequency instead (Figure 3I). This developmental switch is consistent with the transition 

from HFS-induced LTP to LTD in rat corticostriatal synapses ex vivo at ~P15–P16 

(Partridge et al., 2000) and may underlie the distinct SPN mEPSC phenotypes observed in 

developing versus adult Shank3B−/− mice. The mechanisms underlying these different 

developmental responses remain unclear, but developmental changes in synaptic 

composition, intrinsic excitability, and neuromodulatory signals (Kozorovitskiy et al., 2015; 

Lieberman et al., 2018; Peixoto et al., 2016; Tepper et al., 1998; Dehorter et al., 2011; 

Krajeski et al., 2019) may alter spike-timing-dependent plasticity rules in corticostriatal 

synapses, similar to what is observed during the development of cortical circuits (Kimura 

and Itami, 2019).

Postsynaptic expression of PKIα in striatal neurons during postnatal development 

ameliorated the severity of multiple behavioral deficits in Shank3B−/− mice. It is important 

to note that adult restoration of Shank3 expression or chemogenetic increase of 

striatopallidal SPN excitability in Shank3B−/− mice can also normalize some abnormal 

behaviors such as over-grooming (Mei et al., 2016; Wang et al., 2017). However, such 

manipulations had no effect on hypolocomotion and rearing, two of the most robust and 

replicable phenotypes in Shank3 knockout (KO) animals (Dhamne et al., 2017; Kabitzke et 

al., 2018; Mei et al., 2016; Peça et al., 2011; Wang et al., 2016). The strategy reported here 
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is, to our knowledge, the first manipulation that effectively improved these behavioral 

parameters in Shank3B−/− mice. It will be important for future studies to identify the specific 

patterns of striatal circuit malformation induced by early cortical hyperactivity and to 

address whether early insults during this postnatal period result in irreversible circuit 

dysfunction. The increased activity of medial striatal circuits is associated with 

overgrooming in mice (Ahmari et al., 2013; Burguière et al., 2013), and structural and 

functional deficits between frontal cortical regions and DMS have been found in multiple 

autistic individuals (Langen et al., 2007, 2009, 2014; Turner et al., 2006; Wolff et al., 2013). 

The behavioral improvements observed in response to PKIα expression in medial striatum 

may thus be due to a reduction in frontal cortical-DMS corticostriatal activity or 

connectivity. However, it is important to note that medial striatal regions also receive 

extensive inputs from the thalamus, the basolateral amygdala (BLA), and the bed nucleus of 

the stria terminalis (BNST) (Lago et al., 2017; Smith et al., 2016; Wall et al., 2013). 

Although it remains unclear how the development of these subcortical projection systems is 

regulated by early neural activity, the positive effect of PKIα expression may be due to the 

downregulation of these inputs. Alternatively, a net reduction in the excitatory drive into 

medial SPN populations may normalize the activity converging onto BG output nuclei and 

allow for proper integration of sensorimotor information processed by lateral striatal circuits 

(Hintiryan et al., 2016; Shepherd, 2013). Indeed, excessive BG activity is associated with 

motor deficits in numerous movement disorders (Wichmann and Dostrovsky, 2011), and 

surgical ablation of BG output nuclei often results in marked behavioral improvements in 

some of these conditions (Lozano et al., 2018). By contrast, no available treatments exist for 

ASDs and all of the clinical trials performed to date have had minimal success (Jeste and 

Geschwind, 2016). PKA activity is modulated by a myriad of upstream signaling pathways 

that are differentially expressed and regulated in different neuronal populations across 

development (Greengard, 2001). The modulation of PKA signaling thus offers the potential 

for cell-type-specific tuning of synaptogenesis, providing a potential avenue for correcting 

the abnormal developmental trajectories of striatal circuits in neurodevelopmental disorders 

with early imbalances in neural activity.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Rui Peixoto (rup14@pitt.edu). This study did not generate 

new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental manipulations on mice were performed in accordance with protocols 

approved by the Harvard Standing Committee on Animal Care and guidelines described in 

the US National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

Mice were housed on a 12/12hr light/dark cycle with chow and water provided ad libitum. 

Mice were weaned at P21–23 and separated by sex in cages of 2–4 animals of mixed 

genotypes. For electrophysiology studies, Rbp4-Cre transgenic mice (GENSAT #RP24–
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285K21) were bred to conditional channelrhodopsin-2 (ChR2) expressing mice expressing 

ChR2(H134R)-EYFP under control of an upstream loxP-flanked STOP cassette (Ai32; 

referred to as ChR2f/f; The Jackson Laboratory #012569). For conditional deletion of the 

vesicular GABA transporter in cortical cells we used Slc32a1f/f mice (The Jackson 

Laboratory #012897). Shank3B−/− knock-out mutant mice were described previously (Peça 

et al., 2011) and obtained from The Jackson Laboratory (#017688). Longitudinal 

characterization of Shank3B−/− mouse behavior was performed in age-matched littermates 

from breeding pairs of Shank3B+/− heterozygous animals. For PKIα rescue experiments 

described in Figure 5 Shank3B−/− mice were bred in a homozygous scheme to increase 

cohort size. Mixed cohorts of male and female mice were used in all experiments as no 

sexual dimorphism was ever detected in the mouse lines used and behavioral assays tested 

(Figure S1) as reported in previous studies (Kabitzke et al., 2018).

METHOD DETAILS

Behavioral assays

For all behavioral assays, mice were habituated to the test room for at least one hour prior to 

experiments. For tests in pre-weaned mice (P15-P21) the cage with the dam and the litter 

was taken to the testing room where pups were taken out of the cage and placed in a new 

cage with water and food available until all pups were tested. Dams remained in the home 

cage for the duration of the experiment. Open field test was performed in a 22×22cm 

plexiglass chamber with white opaque walls (center of arena - 13×13cm inner region). 

Uniform illumination was kept consistent across experiments with 1500lux 5500k diffused 

light (Genaray Octalux OLED-55). Behavior was video recorded with a CCD camera 

(Thorlabs DCU22M) at 22fps using Thorcam software.

Stereotaxic intracranial injections

Intracranial injections were performed in P8, P15, P21 or P53 mice anesthetized with 

isoflurane placed into a stereotaxic apparatus (Kopf Instruments model 1900). Viruses were 

delivered by injecting 50–200nl at a maximum rate of 100 nl/min using a Harvard Apparatus 

PHD ULTRA CP injector. For deletion of VGAT in cortical neurons, virus expressing Cre-

EGFP under the neuron specific Synapsin promoter (AAV9-hSyn-Cre-EGFP, Penn vector 

core AV-9-PV1848) were injected in Slc32a1f/f mice using coordinates: AP +1.5 mm; ML 

+0.6 mm; Depth −1 mm from dura. For PKIα infection of striatal neurons, WT and 

Shank3B−/− P8 mice were injected bilaterally with AAV8-hSyn-PKI-ires-mRuby or AAV9-

hSyn-EGFP (Penn vector core AV-9-PV1696) using the following coordinates: AP +0.5 mm; 

ML +1.25 mm; Depth −2.5 mm from dura. Following injections and wound closure, mice 

received ketoprofen for analgesia and were returned to home cages for at least 7 days. 

Injection sites and viral expression were confirmed post hoc by whole brain sectioning and 

imaging and mice with erroneous injections were discarded from analysis.

Acute slice preparation and electrophysiology

Acute brain slices and whole-cell recordings from SPNs were performed using standard 

methods as described previously (Kozorovitskiy et al., 2012). Briefly, mice (6–60 days old) 

were anesthetized by isofluorane inhalation and perfused transcardially with ice-cold 
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artificial cerebrospinal fluid (ACSF) containing (in mM): 125 NaCl, 2.5 KCl, 25 NaHCO3, 2 

CaCl2, 1 MgCl2, 1.25 NaH2PO4 and 25 glucose (310 mOsm per kg). Cerebral hemispheres 

were removed and sliced in cold ACSF (275um coronal slices in Leica VT1200S 

vibratome). Coronal slices containing striatum were recovered for 15–20 minutes at 34°C in 

choline-based recovery solution (in mM): 110 choline chloride, 25 NaHCO3, 2.5 KCl, 7 

MgCl2, 0.5 CaCl2, 1.25 NaH2PO4, 25 glucose, 11.6 ascorbic acid, and 3.1 pyruvic acid), 

and then transferred to a holding chamber with 34°C ACSF that progressively cooled down 

to room temperature (20–22°C). All recordings were obtained within 1–6 h after slicing and 

solutions were constantly bubbled with 95% O2/5% CO2. Individual slices were transferred 

to a recording chamber mounted on an upright microscope (Olympus BX51WI) and 

continuously perfused (1–2 mL per minute) with ACSF at room temperature. Cells were 

visualized using a 40 × water-immersion objective with infrared DIC optics. Whole-cell 

voltage-clamp recordings were made from SPNs in dorsomedial regions of striatum. Patch 

pipettes (2–4 MU) pulled from borosilicate glass (BF150–86-7.5, Sutter Instruments) were 

filled with a Cs+-based internal solution containing (in mM): 130 CsMeSO4, 10 HEPES, 1.8 

MgCl2, 4 Na2ATP, 0.3 NaGTP, and 8 Na2-phosphocreatine, 10 CsCl2, 3.3 QX-314 (Cl− salt), 

(pH 7.3 adjusted with CsOH; 295 mOsm per kg). For all voltage-clamp experiments, errors 

due to voltage drop across the series resistance (< 20 MΩ) were left uncompensated. In all 

experiments, GABAR currents were blocked with 20 μM SR95531 hydrobromide to block 

inhibition from local interneuron or SPNs collaterals. For optogenetic light-evoked AMPAR 

oEPSC recordings ACSF contained 10 μM (R)-CPP to block NMDA currents and recordings 

were performed at −70 mV holding potential. For mEPSC recordings, ACSF also included 1 

μM TTX. Voltage-clamp recordings were performed at room temperature (20–22°C). To 

activate ChR2-expressing neuronal fibers, light from a 473 nm laser (Opto engine LLC) was 

focused on the back aperture of the microscope objective to produce wide-field illumination 

of the recorded cell. TTL triggered pulses of light (1 ms duration; 6 mW/mm2 under the 

objective) were delivered at the recording site at 30 s inter-stimulus intervals. To calculate 

paired-pulse ratio (PPR), recordings were performed in current-clamp mode using a K+ 

based low chloride internal solution composed of (in mM) 130 KMeSO3, 3 KCl, 10 HEPES, 

1 EGTA, 4 Mg-ATP, 0.3 Na-GTP, 8Na2-phosphocreatine (pH 7.3 adjusted with KOH; 295 

mOsm). Current-clamp recordings were perfomed at 32°C and electrical stimulation was 

performed with bipolar tungsten electrodes inserted in the callosal tract dorsal to DMS. 

Membrane currents and potentials were amplified and low-pass filtered at 3 kHz using 

Multiclamp 700B amplifier (Molecular Devices), digitized at 10 kHz and acquired using 

National Instruments acquisition boards and a custom version of ScanImage written in 

MATLAB (Mathworks).

Brain tissue processing and imaging

Mice were deeply anesthetized with isofluorane and perfused transcardially with 4% 

paraformaldehyde in 0.1 M sodium phosphate buffer. Brains were fixed for 24 hours at 4°C, 

washed in phosphate buffer saline (PBS) and sectioned (50 μm) coronally using a vibratome 

(Leica VT1000s). Brain sections were mounted on glass slides, dried and mounted with 

ProLong antifade reagent containing DAPI (Molecular Probes). Whole brain sections were 

imaged with an Olympus VS110 slide-scanning microscope.
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Biochemical isolation of synaptosomes

Mice of different ages were anesthetized with isoflurane and perfused with ice cold Hank’s 

Balanced Salt solution (HBSS). Brains were immediately extracted and dorsal striatal 

regions were dissected in ice cold HEPES buffered sucrose buffer (0.32 M sucrose, 4 mM 

HEPES pH 7.4) containing protease inhibitor cocktail (Roche) and 2mM EDTA. Striatal 

tissue from 6 mice (3M/3F) was pooled in 10 volumes of HEPES-buffered sucrose and 

homogenized in a motor driven glass-teflon homogenizer at ~900 rpm (12 strokes). 

Homogenate was centrifuged at 1000 g at 4°C for 10 min to remove the pelleted nuclear 

fraction and supernatant was centrifuged at 15,000 g for 15 min to yield the crude 

synaptosomal pellet. This pellet was resuspended in 1 mL of HEPES-buffered sucrose 

buffer, layered on top of a discontinuous gradient containing 5mM HEPES and 0.8 to 1.0 to 

1.2 M sucrose (top to bottom; equals 27%/34%/41%) in a ultracentrifuge tube, and 

centrifuged at 150,000 g for 2 hr in a swinging bucket rotor. Synaptosomes were recovered 

at the interface of 1.0 and 1.2 M sucrose layers, diluted to 0.32 M sucrose by adding 2.5 

volumes of 5 mM HEPES pH 7.5 and pelleted by centrifugation at 15,000 g for 20 min.

Immunoblotting and Electron Microscopy

For immunoblotting, whole brain extracts and synaptosomes were normalized for total 

protein content using the BCA Assay (Pierce). Following normalization, samples were 

denatured by the addition of 5 × Laemmli sample buffer (237 mM Tris-HCl, pH 6.8, 10% 

(wt/vol) SDS, 25% (vol/vol) 2-mercaptoethanol, 25% (vol/vol) glycerol, and 0.056% (wt/

vol) bromophenol blue). For AKAP12 blots, aliquots of denatured synaptosomes were 

boiled for 5 minutes. All samples were resolved by 8%–16% SDS-PAGE, and analyzed by 

immunoblotting. Antibodies used in this study include anti-DCX (Santa Cruz sc-271390), 

anti-SV2A (SySy 119002), anti-AKAP12 (Abcam ab49849), anti-Prkacb (Sigma-Aldrich 

sab2104516), anti GAPDH (CST 2118S), anti-Synaptotagmin (SySy 105011), anti-GluN1 

(SySy 114011), anti-VDAC (CST 4661S), anti-Calreticulin (CST 12238S). For electron 

microscopy, synaptosomes were fixed overnight in 1.25% paraformaldehyde, 2.5% 

glutaraldehyde, 0.03% picric acid, 0.1M Cacodylate buffer, pH 7.4. Fixed synaptosomes 

were pelleted and washed in 0.1M cacodylate buffer and postfixed with 1% osmium 

tetroxide and 1.5% potassium ferrocyanide for 1 hour. Samples were then washed twice in 

water, once in Maleate buffer (MB) and incubated in 1% uranyl acetate in MB for 1 hr. This 

was followed by two washes in water and subsequent dehydration for 10 minutes each in the 

following grades of alcohol: 50%, 70%, 90%, 2×10min 100%. The samples were then 

placed in propyleneoxide for 1 hr and infiltrated overnight in a 1:1 mixture of 

propyleneoxide and TAAB Epon (Marivac Canada Inc. St. Laurent, Canada). The following 

day the samples were embedded in TAAB Epon and polymerized at 60C for 48 hr. Ultrathin 

sections (about 60 nm) were cut on a Reichert Ultracut-S microtome, transferred to copper 

grids stained with lead citrate, and visualized in a JEOL 1200EX Transmission electron 

microscope or a TecnaiG2 Spirit BioTWIN. Images were recorded with an AMT 2k CCD 

camera.
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ERLIC separation

Proteomic analysis of striatal synaptosomes was performed by TMTplex experiment using 

samples of different ages (P8, P12, P14, P18). Each sample contained a pool of dorsal 

striatal tissue collected from 6 mice (3M/3F) at the different ages. Each sample was 

submitted for single LC-MS/MS experiment that was performed on a LTQ Orbitrap Elite 

(Thermo Fischer) equipped with Waters (Milford, MA) NanoAcquity HPLC pump. Peptides 

were separated onto a 100 μm inner diameter microcapillary trapping column packed first 

with approximately 5 cm of C18 Reprosil resin (5 μm, 100Å, Dr. Maisch GmbH, Germany) 

followed by analytical column ~20 cm of Reprosil resin (1.8 μm, 200Å, Dr. Maisch GmbH, 

Germany). Separation was achieved through applying a gradient from 5%–27% ACN in 

0.1% formic acid over 90 min at 200 nL min−1. Electrospray ionization was enabled 

through applying a voltage of 1.8 kV using a home-made electrode junction at the end of the 

microcapillary column and sprayed from fused silica pico tips (New Objective, MA). The 

LTQ Orbitrap Elite was operated in data-dependent mode for the mass spectrometry 

methods. The mass spectrometry survey scan was performed in the Orbitrap in the range of 

395 –1,800 m/z at a resolution of 6 × 104, followed by the selection of the twenty most 

intense ions (TOP20) for CID-MS2 fragmentation in the Ion trap using a precursor isolation 

width window of 2 m/z, AGC setting of 10,000, and a maximum ion accumulation of 200 

ms. Singly charged ion species were not subjected to CID fragmentation. Normalized 

collision energy was set to 35 V and an activation time of 10 ms. Ions in a 10 ppm m/z 

window around ions selected for MS2 were excluded from further selection for 

fragmentation for 60 s. The same TOP20 ions were subjected to HCD MS2 event in Orbitrap 

part of the instrument. The fragment ion isolation width was set to 0.7 m/z, AGC was set to 

50,000, the maximum ion time was 200 ms, normalized collision energy was set to 27V and 

an activation time of 1 ms for each HCD MS2 scan.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of mouse behavior

Automated analysis of locomotor behavior was performed in Ethovision XT 11.5 software 

(Noldus). Wall rearing and grooming behavior was scored manually analyzing the videos 

offline with observers blinded to genotype. Grooming includes all sequences of face wiping, 

scratching/rubbing of head and ears, and full-body grooming. Grooming segments less than 

3 s apart were considered part of the same grooming bout. For longitudinal characterization 

of behavior the same animals were analyzed in the open field at different developmental 

stages. For each developmental time point two 30-minute open field sessions were recorded 

in consecutive days and results averaged per mouse. All cages and chambers were 

thoroughly cleaned with Quatricide (Pharmacal Research Labs) and water in between all 

subjects. Accelerating rotarod test was performed in a different cohort of animals and tested 

in four consecutive days (P17-P20) with three daily sessions per animal 20–30 minutes apart 

(4–40rpm in Med Associates ENV-577). Each run was terminated when the animal fell or 

was unable to maintain locomotion on top of the rotarod (full spin). All experiments 

described in Figure 1 were analyzed using repeated-measures ANOVA across groups with 

Benferroni multiple comparison test. Behavioral experiments in Figures 5 and S4 were 

analyzed using unpaired t test. Data for all behavioral experiments are represented per age or 
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experimental group as Mean ± standard error of the mean (SEM). Sample sizes (number of 

mice per group) and statistical significance for each comparison are indicated in the results 

section of each individual panel. All statistical tests were performed in GraphPad PRIZM 8 

software (GraphPad).

Analysis of electrophysiology data

Detection and analysis of mEPSCs was performed using custom routines in Igor Pro 

(Wavemetrics) using the following criteria: Minimum amplitude 7pA, Minimum refractory 

period 2ms, maximum rise/decay separation 4ms, maximum decay tau 20ms, minimum 

decay tau 0.7 ms, minimum decay time 2ms, minimum rise time 1ms, minimum rise rate 

3pA/ms. Frequency and amplitude of mEPSCs were averaged per cell, and further compared 

using non-parametric Mann Whitney test due to non-Gaussian distribution of values. Plots 

represented in Figures 3I and 3J represent mEPSC frequency and amplitude values of AAV-

GFP and AAV-Cre groups normalized to the average of the AAV-GFP group for each 

developmental time point. Analysis of eEPSC amplitude peak for calculation of PPR in 

Figures 3K and 3L were based on detection of minimum value after 20ms of stimulation 

subtracted to average baseline 10ms before stimulation. Calculation of input resistance and 

membrane capacitance in Figure S3 were performed by fitting evoked currents in response 

to −5mV voltage steps in the first seconds after break-in. AMPAR oEPSC amplitude peak in 

Figure 4 was determined by calculating the minimum within 20ms after stimulation 

subtracted to average 50ms baseline prior to optical pulse. NMDAR oEPSC amplitude was 

determined as value 50ms following optical stimulation. Sample sizes for all 

electrophysiology experiments (representing number of neurons recorded per group) and 

statistical significance for each comparison are indicated in the results section of each 

individual panel. All statistical analyses were done in GraphPad PRIZM 8 software 

(GraphPad).

Mass spectrometry analysis

Raw data were submitted for analysis in Proteome Discoverer 2.1.0.81 (Thermo Scientific) 

software. Assignment of MS/MS spectra was performed using the Sequest HT algorithm by 

searching the data against a protein sequence database including all entries from the Human 

Uniprot database (SwissProt 16,768 and TrEMBL 62,460 total of 79,228 protein forms, 

2015) and other known contaminants such as human keratins and common lab contaminants. 

Sequest HT searches were performed using a 20 ppm precursor ion tolerance and requiring 

each peptides N-/C termini to adhere with Trypsin protease specificity, while allowing up to 

two missed cleavages. 6-plex TMT tags on peptide N termini and lysine residues 

(+229.162932 Da) was set as static modifications while methionine oxidation (+15.99492 

Da) was set as variable modification. A MS2 spectra assignment false discovery rate (FDR) 

of 1% on protein level was achieved by applying the target-decoy database search. Filtering 

was performed using a Percolator (64bit version) (Käll et al., 2008). For quantification, a 

0.02 m/z window centered on the theoretical m/z value of each the six reporter ions and the 

intensity of the signal closest to the theoretical m/z value was recorded. Reporter ion 

intensities were exported in result file of Proteome Discoverer 2.1 search engine as an excel 

tables. The total signal intensity across all peptides quantified was summed for each TMT 

channel, and all intensity values were adjusted to account for potentially uneven TMT 
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labeling and/or sample handling variance for each labeled channel. Statistical significance of 

protein enrichment changes across development (P8–P18) were determined by analyzing 

variance of individual peptides across samples (different age) using Friedman test with 

Benjamini-Hochberg multiple test correction with p < 0.00134 cutoff in Scaffold 4.5 

(Proteome Software). Shank3 showed increased enrichment during P8–18 with p = 0.011 but 

was included for analysis due to previous validation of increased postnatal expression (Wang 

et al., 2014). Protein expression changes in Figures 2D and 2E are represented as log2 of the 

max or min abundance values normalized to P8 for proteins with increased or decreased 

expression across development, respectively. Putative protein-protein interactions of Shank3 

and proteins with significant differential enrichment at P8–P18 were analyzed in STRING, 

GeneMANIA and BioGRID and curated in Cytoscape 3.6. Only data from protein-protein 

interaction studies were considered as positive interactions. SFARI gene database (https://

gene.sfari.org) was used to identify ASD risk genes in the identified protein cluster.

DATA AND CODE AVAILABILITY

This study did not generate new code. MATLAB and IgorPro procedures used for analysis 

of electrophysiology data are available upon request (rup14@pitt.edu). The accession 

number for the mass spectrometry data reported in this paper is MassIVE: MSV000084435.
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ACKNOWLEDGMENTS

We thank Susana da Silva and the Sabatini lab for helpful comments on the manuscript, and Scott Soderling and 
Tyler Bradshaw for help with Cytoscape programming and protein database curation. The PKIα-IRES-mRuby2 
construct was a kind gift from Yao Chen. We thank Maria Ericsson and the Harvard Medical School electron 
microscopy (EM) facility for help in preparing and imaging the synaptosomes. This work was supported by the 
Nancy Lurie Marks Family Foundation (B.L.S. and R.T.P.), the William Randolph Hearst Foundation Fund (R.T.P.), 
the HHMI Hanna H. Gray Fellowship (L.C.), and NINDS R37NS046579 (B.L.S.).

REFERENCES

Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Deisseroth K, Gordon JA, and 
Hen R (2013). Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science 
340, 1234–1239. [PubMed: 23744948] 

Amal H, Barak B, Bhat V, Gong G, Joughin BA, Wang X, Wishnok JS, Feng G, and Tannenbaum SR 
(2018). Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome 
and affects key proteins involved in vesicle release and synaptic function. Mol. Psychiatry. 10.1038/
s41380-018-0113-6.

Bronfeld M, Yael D, Belelovsky K, and Bar-Gad I (2013). Motor tics evoked by striatal disinhibition in 
the rat. Front. Syst. Neurosci 7, 50. [PubMed: 24065893] 

Burguière E, Monteiro P, Feng G, and Graybiel AM (2013). Optogenetic stimulation of lateral 
orbitofronto-striatal pathway suppresses compulsive behaviors. Science 340, 1243–1246. [PubMed: 
23744950] 

Chang J, Gilman SR, Chiang AH, Sanders SJ, and Vitkup D (2015). Genotype to phenotype 
relationships in autism spectrum disorders. Nat. Neurosci 18, 191–198. [PubMed: 25531569] 

Peixoto et al. Page 17

Cell Rep. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://gene.sfari.org/
https://gene.sfari.org/


Chen Y, Granger AJ, Tran T, Saulnier JL, Kirkwood A, and Sabatini BL (2017). Endogenous Gαq-
Coupled Neuromodulator Receptors Activate Protein Kinase A. Neuron 96, 1070–1083.e5. 
[PubMed: 29154125] 

De Rubeis S, Siper PM, Durkin A, Weissman J, Muratet F, Halpern D, Trelles MDP, Frank Y, Lozano 
R, Wang AT, et al. (2018). Delineation of the genetic and clinical spectrum of Phelan-McDermid 
syndrome caused by SHANK3 point mutations. Mol. Autism 9, 31. [PubMed: 29719671] 

Dehorter N, Michel FJ, Marissal T, Rotrou Y, Matrot B, Lopez C, Humphries MD, and Hammond C 
(2011). Onset of Pup Locomotion Coincides with Loss of NR2C/D-Mediated Cortico-Striatal 
EPSCs and Dampening of Striatal Network Immature Activity. Front. Cell. Neurosci 5, 24. 
[PubMed: 22125512] 

Del Pino I, Rico B, and Marín O (2018). Neural circuit dysfunction in mouse models of 
neurodevelopmental disorders. Curr. Opin. Neurobiol 48, 174–182. [PubMed: 29329089] 

Dhamne SC, Silverman JL, Super CE, Lammers SHT, Hameed MQ, Modi ME, Copping NA, Pride 
MC, Smith DG, Rotenberg A, et al. (2017). Replicable in vivo physiological and behavioral 
phenotypes of the Shank3B null mutant mouse model of autism. Mol. Autism 8, 26. [PubMed: 
28638591] 

Donato F, Jacobsen RI, Moser MB, and Moser EI (2017). Stellate cells drive maturation of the 
entorhinal-hippocampal circuit. Science 355, eaai8178. [PubMed: 28154241] 

Dunlop K, Woodside B, Olmsted M, Colton P, Giacobbe P, and Downar J (2016). Reductions in 
Cortico-Striatal Hyperconnectivity Accompany Successful Treatment of Obsessive-Compulsive 
Disorder with Dorsomedial Prefrontal rTMS. Neuropsychopharmacology 41, 1395–1403. 
[PubMed: 26440813] 

Fuccillo MV (2016). Striatal circuits as a common node for autism pathophysiology. Front. Neurosci 
10, 27. [PubMed: 26903795] 

Geschwind DH (2011). Genetics of autism spectrum disorders. Trends Cogn. Sci 15, 409–416. 
[PubMed: 21855394] 

Gogolla N, Takesian AE, Feng G, Fagiolini M, and Hensch TK (2014). Sensory integration in mouse 
insular cortex reflects GABA circuit maturation. Neuron 83, 894–905. [PubMed: 25088363] 

Goldman S, and Greene PE (2013). Stereotypies in autism: a video demonstration of their clinical 
variability. Front. Integr. Nuerosci 6, 121.

Gonzalez-Lozano MA, Klemmer P, Gebuis T, Hassan C, van Nierop P, van Kesteren RE, Smit AB, and 
Li KW (2016). Dynamics of the mouse brain cortical synaptic proteome during postnatal brain 
development. Sci. Rep 6, 35456. [PubMed: 27748445] 

Greengard P (2001). The neurobiology of slow synaptic transmission. Science 294, 1024–1030. 
[PubMed: 11691979] 

Guo B, Chen J, Chen Q, Ren K, Feng D, Mao H, Yao H, Yang J, Liu H, Liu Y, et al. (2019). Anterior 
cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nat. Neurosci 22, 
1223–1234. [PubMed: 31332372] 

Havekes R, Canton DA, Park AJ, Huang T, Nie T, Day JP, Guercio LA, Grimes Q, Luczak V, Gelman 
IH, et al. (2012). Gravin orchestrates protein kinase A and β2-adrenergic receptor signaling critical 
for synaptic plasticity and memory. J. Neurosci 32, 18137–18149. [PubMed: 23238728] 

Hintiryan H, Foster NN, Bowman I, Bay M, Song MY, Gou L, Yamashita S, Bienkowski MS, Zingg B, 
Zhu M, et al. (2016). The mouse cortico-striatal projectome. Nat. Neurosci 19, 1100–1114. 
[PubMed: 27322419] 

Israelashvili M, and Bar-Gad I (2015). Corticostriatal divergent function in determining the temporal 
and spatial properties of motor tics. J. Neurosci 35, 16340–16351. [PubMed: 26674861] 

Jeste SS, and Geschwind DH (2016). Clinical trials for neurodevelopmental disorders: At a therapeutic 
frontier. Sci. Transl. Med 8, 321fs1.

Jiang YH, and Ehlers MD (2013). Modeling autism by SHANK gene mutations in mice. Neuron 78, 
8–27. [PubMed: 23583105] 

Kabitzke P, Brunner D, He D, Fazio PA, Cox K, Sutphen J, Thiede L, Sabath E, Hanania T, 
Alexandrov V, et al. (2018). Comprehensive analysis of two Shank3 and the Cacna1c mouse 
models of autism spectrum disorder. Genes Brain Behav. 17, 4–22. [PubMed: 28753255] 

Peixoto et al. Page 18

Cell Rep. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Käll L, Storey JD, and Noble WS (2008). Non-parametric estimation of posterior error probabilities 
associated with peptides identified by tandem mass spectrometry. Bioinformatics 24, i42–i48. 
[PubMed: 18689838] 

Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, and Crawley JN (2016). Translational 
mouse models of autism: advancing toward pharmacological therapeutics. Curr. Top. Behav. 
Neurosci 28, 1–52. [PubMed: 27305922] 

Kimura F, and Itami C (2019). A Hypothetical Model Concerning How Spike-Timing-Dependent 
Plasticity Contributes to Neural Circuit Formation and Initiation of the Critical Period in Barrel 
Cortex. J. Neurosci 39, 3784–3791. [PubMed: 30877173] 

Klei L, Sanders SJ, Murtha MT, Hus V, Lowe JK, Willsey AJ, Moreno-De-Luca D, Yu TW, Fombonne 
E, Geschwind D, et al. (2012). Common genetic variants, acting additively, are a major source of 
risk for autism. Mol. Autism 3, 9. [PubMed: 23067556] 

Kozorovitskiy Y, Saunders A, Johnson CA, Lowell BB, and Sabatini BL (2012). Recurrent network 
activity drives striatal synaptogenesis. Nature 485, 646–650. [PubMed: 22660328] 

Kozorovitskiy Y, Peixoto R, Wang W, Saunders A, and Sabatini BL (2015). Neuromodulation of 
excitatory synaptogenesis in striatal development. eLife 4, e10111. [PubMed: 26551563] 

Krajeski RN, Macey-Dare A, van Heusden F, Ebrahimjee F, and Ellender TJ (2019). Dynamic 
postnatal development of the cellular and circuit properties of striatal D1 and D2 spiny projection 
neurons. J. Physiol 597, 5265–5293. [PubMed: 31531863] 

Kreitzer AC, and Malenka RC (2008). Striatal plasticity and basal ganglia circuit function. Neuron 60, 
543–554. [PubMed: 19038213] 

Kwon HB, and Sabatini BL (2011). Glutamate induces de novo growth of functional spines in 
developing cortex. Nature 474, 100–104. [PubMed: 21552280] 

Lago T, Davis A, Grillon C, and Ernst M (2017). Striatum on the anxiety map: small detours into 
adolescence. Brain Res. 1654 (Pt B), 177–184. [PubMed: 27276526] 

Langen M, Durston S, Staal WG, Palmen SJMC, and van Engeland H (2007). Caudate nucleus is 
enlarged in high-functioning medication-naive subjects with autism. Biol. Psychiatry 62, 262–266. 
[PubMed: 17224135] 

Langen M, Schnack HG, Nederveen H, Bos D, Lahuis BE, de Jonge MV, van Engeland H, and 
Durston S (2009). Changes in the developmental trajectories of striatum in autism. Biol. 
Psychiatry 66, 327–333. [PubMed: 19423078] 

Langen M, Bos D, Noordermeer SDS, Nederveen H, van Engeland H, and Durston S (2014). Changes 
in the development of striatum are involved in repetitive behavior in autism. Biol. Psychiatry 76, 
405–411. [PubMed: 24090791] 

Lee SJ, Chen Y, Lodder B, and Sabatini BL (2019). Monitoring Behaviorally Induced Biochemical 
Changes Using Fluorescence Lifetime Photometry. Front. Neurosci 13, 766. [PubMed: 31417343] 

Lieberman OJ, McGuirt AF, Mosharov EV, Pigulevskiy I, Hobson BD, Choi S, Frier MD, Santini E, 
Borgkvist A, and Sulzer D (2018). Dopamine Triggers the Maturation of Striatal Spiny Projection 
Neuron Excitability during a Critical Period. Neuron 99, 540–554.e4. [PubMed: 30057204] 

Lord C, Cook EH, Leventhal BL, and Amaral DG (2000). Autism spectrum disorders. Neuron 28, 
355–363. [PubMed: 11144346] 

Lozano CS, Tam J, and Lozano AM (2018). The changing landscape of surgery for Parkinson’s 
disease. Mov. Disord 33, 36–47. [PubMed: 29194808] 

Mei Y, Monteiro P, Zhou Y, Kim J-A, Gao X, Fu Z, and Feng G (2016). Adult restoration of Shank3 
expression rescues selective autistic-like phenotypes. Nature 530, 481–484. [PubMed: 26886798] 

Monteiro P, and Feng G (2017). SHANK proteins: roles at the synapse and in autism spectrum 
disorder. Nat. Rev. Neurosci 18, 147–157. [PubMed: 28179641] 

Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, Horvath S, and Geschwind DH 
(2013). Integrative functional genomic analyses implicate specific molecular pathways and circuits 
in autism. Cell 155, 1008–1021. [PubMed: 24267887] 

Partridge JG, Tang KC, and Lovinger DM (2000). Regional and postnatal heterogeneity of activity-
dependent long-term changes in synaptic efficacy in the dorsal striatum. J. Neurophysiol 84, 1422–
1429. [PubMed: 10980015] 

Peixoto et al. Page 19

Cell Rep. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, and Feng G 
(2011). Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 
437–442. [PubMed: 21423165] 

Peixoto RT, Wang W, Croney DM, Kozorovitskiy Y, and Sabatini BL (2016). Early hyperactivity and 
precocious maturation of corticostriatal circuits in Shank3B(−/−) mice. Nat. Neurosci 19, 716–
724. [PubMed: 26928064] 

Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, Thiruvahindrapuram B, Xu X, 
Ziman R, Wang Z, et al. (2014). Convergence of genes and cellular pathways dysregulated in 
autism spectrum disorders. Am.J. Hum. Genet 94, 677–694. [PubMed: 24768552] 

Semple BD, Blomgren K, Gimlin K, Ferriero DM, and Noble-Haeusslein LJ (2013). Brain 
development in rodents and humans: identifying benchmarks of maturation and vulnerability to 
injury across species. Prog. Neurobiol 106–107, 1–16.

Shepherd GMG (2013). Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci 14, 
278–291. [PubMed: 23511908] 

Smith JB, Klug JR, Ross DL, Howard CD, Hollon NG, Ko VI, Hoffman H, Callaway EM, Gerfen CR, 
and Jin X (2016). Genetic-Based Dissection Unveils the Inputs and Outputs of Striatal Patch and 
Matrix Compartments. Neuron 91, 1069–1084. [PubMed: 27568516] 

Tepper JM, Sharpe NA, Koós TZ, and Trent F (1998). Postnatal development of the rat neostriatum: 
electrophysiological, light- and electron-microscopic studies. Dev. Neurosci 20, 125–145. 
[PubMed: 9691188] 

Tien N-W, and Kerschensteiner D (2018). Homeostatic plasticity in neural development. Neural Dev. 
13, 9. [PubMed: 29855353] 

Turner KC, Frost L, Linsenbardt D, McIlroy JR, and Müller R-A (2006). Atypically diffuse functional 
connectivity between caudate nuclei and cerebral cortex in autism. Behav. Brain Funct. 2, 34. 
[PubMed: 17042953] 

Turrigiano GG, and Nelson SB (2004). Homeostatic plasticity in the developing nervous system. Nat. 
Rev. Neurosci 5, 97–107. [PubMed: 14735113] 

Wall NR, De La Parra M, Callaway EM, and Kreitzer AC (2013). Differential innervation of direct- 
and indirect-pathway striatal projection neurons. Neuron 79, 347–360. [PubMed: 23810541] 

Wang X, Herberg FW, Laue MM, Wullner C, Hu B, Petrasch-Parwez E, and Kilimann MW (2000). 
Neurobeachin: a protein kinase A-anchoring, beige/Chediak-higashi protein homolog implicated in 
neuronal membrane traffic. J. Neurosci 20, 8551–8565.

Wang X, Xu Q, Bey AL, Lee Y, and Jiang YH (2014). Transcriptional and functional complexity of 
Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 
causing autism and Shank3 mutant mice. Mol. Autism 5, 30. [PubMed: 25071925] 

Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, Duffney LJ, Kumar S, Mague SD, Hulbert 
SW, et al. (2016). Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 
complete knockout model of autism. Nat. Commun 7, 11459. [PubMed: 27161151] 

Wang W, Li C, Chen Q, Van Der Goes MS, Hawrot J, Yao AY, Gao X, Lu C, Zang Y, Zhang Q, et al. 
(2017). Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of 
autism. J. Clin. Invest 127, 1978–1990. [PubMed: 28414301] 

Watts TJ (2008). The pathogenesis of autism. Clin. Med. Pathol 1, 99–103. [PubMed: 21876658] 

Wichmann T, and Dostrovsky JO (2011). Pathological basal ganglia activity in movement disorders. 
Neuroscience 198, 232–244. [PubMed: 21723919] 

Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, Reilly SK, Lin L, Fertuzinhos S, 
Miller JA, et al. (2013). Coexpression networks implicate human midfetal deep cortical projection 
neurons in the pathogenesis of autism. Cell 155, 997–1007. [PubMed: 24267886] 

Wolff JJ, Hazlett HC, Lightbody AA, Reiss AL, and Piven J (2013). Repetitive and self-injurious 
behaviors: associations with caudate volume in autism and fragile X syndrome. J. Neurodev. 
Disord 5, 12. [PubMed: 23639144] 

Wolff JJ, Botteron KN, Dager SR, Elison JT, Estes AM, Gu H, Hazlett HC, Pandey J, Paterson SJ, 
Schultz RT, et al.; IBIS Network (2014). Longitudinal patterns of repetitive behavior in toddlers 
with autism. J. Child Psychol. Psychiatry 55, 945–953. [PubMed: 24552513] 

Peixoto et al. Page 20

Cell Rep. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yang Y, Takeuchi K, Rodenas-Ruano A, Takayasu Y, Bennett MVL, and Zukin RS (2009). 
Developmental switch in requirement for PKA RIIbeta in NMDA-receptor-dependent synaptic 
plasticity at Schaffer collateral to CA1 pyramidal cell synapses. Neuropharmacology 56, 56–65. 
[PubMed: 18789341] 

Yasuda H, Barth AL, Stellwagen D, and Malenka RC (2003). A developmental switch in the signaling 
cascades for LTP induction. Nat. Neurosci 6, 15–16. [PubMed: 12469130] 

Peixoto et al. Page 21

Cell Rep. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Early onset of behavioral deficits in Shank3B−/− mice during postnatal 

development

• Developmental switch in SPN synaptic adaptation to cortical hyperactivity 

during P15–P21

• Dynamic regulation of multiple ASD risk factors during striatal synapse 

maturation

• PKA inhibition in medial striatal regions ameliorates Shank3B−/− behavioral 

deficits
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Figure 1. Early Onset of Behavioral Deficits in Shank3B−/− Mice
(A) Total distance traveled for 30 min in the open field test by P21 and P60 WT and 

Shank3B−/− mice. Heatmap represents distance values normalized to P60 WT.

(B and C) Mean ± SEM of distance traveled by P15–P90 WT and Shank3B−/− mice during 

30 min (B) in the open field arena or (C) in the center region of the arena.

(D) Mean ± SEM of fraction of distance traveled in the center versus total arena.

(E) Mean ± SEM number of wall rearing bouts per session.

(F) Mean ± SEM total time spent grooming.

(G) Mean ± SEM duration of individual grooming bouts.

(H) Mean ± SEM number of grooming bouts per session.

(I) Mean ± SEM latency to fall in the accelerating rotarod test.
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Figure 2. Dynamic Regulation of PKA and ASD Risk Factors during Postnatal Striatal 
Development
(A) Electron microscopy images of synaptosomal fractions isolated from mouse dorsal 

striatum at P8–P18.

(B) Developmental trajectory of the relative abundance of several proteins associated with 

synaptic and neural circuit maturation identified by LC-MS/MS.

(C) Immunoblot analysis of proteins in whole extracts or isolated synaptosome fractions of 

dorsal striatum from P8–P18 mice.

(D) Protein-protein interaction network of proteins of striatal synaptosomes with significant 

abundance change between P8 and P18. The color of the node center represents changes in 

protein abundance during this period with proteins (red, increased expression; blue, lower 
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expression; log2 normalized to P8 levels). Green and orange circles around the nodes label 

ASD risk factors identified in SFARI gene list or closely related homologs, respectively. 

Nodes with numbers and letters represent the SFARI gene scoring criteria (1–5, confidence 

categories; S, syndromic). Edges represent protein-protein interactions pooled from 

Genemania, STRING, and BioGRID online databases.

(E) Proteins of striatal synaptosomes with significant change in abundance between P8 and 

P18 with no known protein-protein interactions. Labeling of nodes similar to that 

represented in (D).

(F–I) Normalized relative change in abundance from P8 to P18 of (F) catalytic and 

regulatory PKA subunits, (G) adenylyl-cyclases, (H) AKAPs, and (I) negative regulators of 

PKA signaling protein-phosphatase-1 and phosphodiesterases 1B and 10A.
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Figure 3. Developmental Switch in SPN Response to Cortical Hyperactivity
(A) Coronal brain section of Slc32a1f/f mouse injected with AAV-Cre-EGFP in ACC. Scale 

bar, 1 mm. CTX, cortex; STR, striatum.

(B) Whole-cell voltage-clamp recordings in SPNs of DMS in acute brain slices of P14 or 

P60 Slc32a1f/f mice injected at P8 with AAV-EGFP (Ctrl) or AAV-Cre-EGFP (Cre) in the 

ACC.

(C and D) Mean ± SEM of AMPAR mEPSC frequency (left) and amplitude (right) of (C) 

P14 or (D) P60 SPNs of Slc32a1f/f mice injected at P8.

(E) Experimental diagram depicting whole-cell voltage-clamp recordings in SPNs of DMS 

in acute brain slices of P21, P28, or P60 Slc32a1f/f mice injected with AAV-EGFP (Ctrl) or 

AAV-Cre-EGFP (Cre) 7 days before recordings. Bottom traces are representative mEPSC 

recordings performed at P21 of mice injected at P15.

(F–H) Mean ± SEM of AMPAR mEPSC frequency (left) and amplitude (right) of (F) P21, 

(G) P28, and (H) P60 SPNs of Slc32a1f/f mice injected 7 days before recordings.

Peixoto et al. Page 26

Cell Rep. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(I and J) Normalized values of SPN AMPAR (I) mEPSC frequency and (J) mEPSC 

amplitude of AAV-Cre-injected animals compared to AAV-EGFP controls across 

development. Note the developmental shift in the change of mEPSC frequency after AAV-

Cre-EGFP injections at ~P15.

(K) Example traces of eEPSCs in SPNs of P60 Slc32a1f/f mice injected with AAV-EGFP 

(Ctrl) or AAV-Cre-EGFP (Cre) in response to paired electrical pulses with 50 ms inter-

stimulus interval (ISI).

(L) Mean ± SEM ratio of eEPSC amplitude in response to the two electrical stimuli in (K).
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Figure 4. Postnatal Inhibition of PKA Reduces Glutamatergic Synapse Maturation in DMS SPNs
(A) Coronal brain slice of P15 mouse infected with AAV8-Syn-PKIα-mRuby2 in DMS at 

P8. The inset shows a magnified view of the striatum with PKIα+ and neighboring 

uninfected (control) SPNs. Scale bar, 1 mm. CTX, cortex; STR, striatum.

(B) Representative mESPC recordings from DMS control or PKIα+ SPNs at P15.

(C and D) Mean ± SEM (C) mEPSC frequency and (D) mEPSC amplitude in control or 

PKIα+ DMS SPNs.

(E) Coronal brain slice of P15 Rbp4-Cre;ChR2-EYFPf/f mouse infected with AAV8-Syn-

PKIα-mRuby2 in DMS at P8. Scale bar, 1 mm. CTX, cortex; STR, striatum.

(F) Example AMPAR and NMDAR oEPSCs recorded in control and PKIα+ DMS SPNs in 

response to 1-ms 473 nm light pulses.

(G) Mean ± SEM. AMPAR oEPSC amplitude in control and PKIα+ DMS SPNs.

(H) Mean ± SEM ratio of NMDAR/AMPAR oEPSC amplitude in control and PKIα+ DMS 

SPNs.
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Figure 5. Postnatal Expression of PKIα in DMS Rescues Behavioral Abnormalities in Shank3B
−/− Mice
(A) Representative mESPC recordings from control or PKIα+ DMS SPNs of Shank3B−/− 

mice at P13.

(B and C) Mean ± SEM (B) mEPSC frequency and (C) mEPSC amplitude in control or 

PKIα+ DMS SPNs.

(D) Coronal section of P21 Shank3B−/− mouse infected with AAV8-Syn-PKIα-mRuby2 in 

DMS and ventromedial striatum (VMS) at P8. Scale bar, 1 mm.

(E) Mean ± SEM total grooming time of P21 Shank3B−/− mice expressing GFP or PKIα in 

the open field.

(F and G) Mean ± SEM of (F) duration and (G) number of grooming bouts per session.
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(H) The total distance traveled for 20 min in the open field test by P21 Shank3B−/− mice 

injected with AAV-EGFP or AAV-PKIα. Heatmap represents distance normalized to AAV-

PKIα.

(I) Mean ± SEM of total distance traveled in arena.

(J) Mean ± SEM of the ratio of the distance traveled in the center of the arena over the total 

distance traveled.

(K) Mean ± SEM of time spent in the center of the arena.

(L) Mean ± SEM number of wall rearing bouts per session.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-Doublecortin Santa Cruz Cat# sc-271390, RRID:AB_10610966

anti-SV2A Sysy Cat# 119 002, RRID:AB_887802

Anti-AKAP12 Abcam Cat# ab49849, RRID:AB_2225608

anti-Prkacb Sigma-Aldrich Cat# SAB2104516, RRID:AB_10669496

Anti-GAPDH CST Cat# 2118, RRID:AB_561053

anti-Synaptotagmin Sysy Cat# 105 011, RRID:AB_887832

anti-GluN1 Sysy Cat# 114 011, RRID:AB_887750

anti-VDAC CST Cat# 4661, RRID:AB_10557420

anti-Calreticulin CST Cat# 12238, RRID:AB_2688013

Bacterial and Virus Strains

AAV8-hSyn-PKI-ires-mRuby Yao Chen yaochen@wustl.edu

AAV9-hSyn-Cre-EGFP Penn vector core AV-9-PV1848

AAV9-hSyn-EGFP Penn vector core AV-9-PV1696

Deposited Data

Mass spectrometry data MassIVE: MSV000084435

Experimental Models: Organisms/Strains

Ai32(RCL-ChR2(H134R)/EYFP) JAX 012569

Slc32a1f/f JAX 012897

Rbp4-Cre GENSAT #RP24–285K21

pAAV-hSyn-PKI-ires-mRuby Yao Chen yaochen@wustl.edu
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