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Abstract

Longitudinal data are common in clinical trials and observational studies, where missing outcomes 

due to dropouts are always encountered. Under such context with the assumption of missing at 

random, the weighted generalized estimating equation (WGEE) approach is widely adopted for 

marginal analysis. Model selection on marginal mean regression is a crucial aspect of data 

analysis, and identifying an appropriate correlation structure for model fitting may also be of 

interest and importance. However, the existing information criteria for model selection in WGEE 

have limitations, such as separate criteria for the selection of marginal mean and correlation 

structures, unsatisfactory selection performance in small-sample setups, and so forth. In particular, 

there are few studies to develop joint information criteria for selection of both marginal mean and 

correlation structures. In this work, by embedding empirical likelihood into the WGEE framework, 

we propose two innovative information criteria named a joint empirical Akaike information 

criterion and a joint empirical Bayesian information criterion, which can simultaneously select the 

variables for marginal mean regression and also correlation structure. Through extensive 

simulation studies, these empirical-likelihood-based criteria exhibit robustness, flexibility, and 

outperformance compared to the other criteria including the weighted quasi-likelihood under the 

independence model criterion, the missing longitudinal information criterion, and the joint 

longitudinal information criterion. In addition, we provide a theoretical justification of our 

proposed criteria, and present two real data examples in practice for further illustration.
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1 | INTRODUCTION

Longitudinal data are common in clinical trials and observational studies. Due to the 

research interest in conducting inference on the population-level parameter estimates, 

generalized estimating equation (GEE) has been widely employed for marginal regression 

analysis, where the correlations among the observations within subjects are treated as 

nuisance parameters (Liang and Zeger, 1986; Wang, 2014). In longitudinal studies, missing 

data are typically encountered, which poses challenges for model fitting and model 

selection. There are three types of missing data: missing completely at random, missing at 

random (MAR), and missing not at random, depending on whether the factors related to 

missing probability are observed or not (Little and Rubin, 2014). For instance, subjects may 

drop out of the study or are lost to follow-up due to several reasons such as drug resistance 

or side effects. Under such context, MAR is commonly and reasonably assumed for 

statistical inference. Literature has shown that the estimates based on regular GEE are biased 

for longitudinal data under MAR (Laird, 1988). Robins et al. (1995) first proposed the 

weighted GEE (WGEE) method for bias correction by incorporating an inverse probability 

weight matrix. Given the correctly specified model for missing data, the consistency of 

WGEE estimates still holds even when the “working” correlation structure is misspecified.

Model selection is a crucial aspect of longitudinal data analysis. Without a doubt, identifying 

the variables for the marginal mean structure is always essential. Also, an improper 

correlation structure may lead to loss of efficiency of parameter estimates. This problem has 

been exclusively investigated for complete longitudinal data; however, when the missing 

data exist, the efficiency improvement is still under exploration, but several works have 

shown that selecting a proper correlation structure for WGEE is somewhat promising and 

important (Preisser et al., 2002; Shardell and Miller, 2008; Gosho et al., 2014; Gosho, 2016). 

To accomplish these selection goals, development of model information criteria has gained 

substantial attention by researchers. Pan (2001) first proposed one of the most popularly 

used information criteria, the quasi-likelihood under the independence model criterion 

(QIC), but it does not accommodate missing data. For longitudinal data with dropout 

missingness under MAR, Shen and Chen (2012) proposed two separate measures based on 

the quadratic loss function, the missing longitudinal information criterion (MLIC) and the 

MLIC for correlation (MLICC), for selection of marginal mean regression and correlation 

structures in WGEE, respectively. Another option for marginal model selection under this 

scenario is the weighted quasi-likelihood information criterion (QICWp) by accommodating 

the weight matrix into QIC (Platt et al., 2013). Later on, Gosho (2016) proposed QICWr by 

modifying the penalty term of QICWp for selection of both marginal mean and correlation 

structures. Most recently, Shen and Chen (2018) proposed the joint longitudinal information 

criterion (JLIC) with regard to the joint selection of marginal mean and correlation 

structures for longitudinal data with missing outcomes and covariates. However, the 

aforementioned criteria have the following limitations: (a) ignoring missing data; (b) losing 

model selection power when different criteria for either marginal mean structure selection or 

correlation structure selection are implemented; and (c) leading to unsatisfactory results in 

selection rates, particularly when the sample size is small (Shen and Chen, 2012; Gosho, 

2016; Shen and Chen, 2018).
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Contrarily, the empirical likelihood approach by adopting a purely observation-based 

technique has recently gained more attention due to the relaxing of parametric distributional 

assumption, and literature has already shown its outperformance in regression analysis 

especially on confidence interval construction (Owen, 1988; Qin and Lawless, 1994; Qin et 
al., 2009). However, empirical-likelihood-based model selection criteria have not been 

widely investigated yet. Kolaczyk (1995) first proposed the empirical information criterion 

(EIC), but pointed out that convergence to a proper solution was not reached in estimation, 

particularly when the number of estimating equations is larger than the number of 

parameters. Later, Variyath et al. (2010) introduced adjusted empirical likelihood criteria, the 

empirical Akaike information criterion (EAIC) and the empirical Bayesian information 

criterion (EBIC), to guarantee the existence of a solution. However, the computational issue 

remains if the estimators have bounded support (eg, a correlation coefficient). Chen and 

Lazar (2012) applied empirical likelihood for only the correlation structure selection in GEE 

under complete longitudinal data and proposed to use plug-in estimators obtained from 

GEE; however, no theoretical justification of plug-in estimators was provided in their work. 

To our knowledge, there is little work on empirical-likelihood-based model selection criteria 

accommodating missing data under the longitudinal framework.

In this paper, two motivating data applications are provided. One is a large epidemiological 

study, the Atherosclerosis Risk in Communities (ARIC) study. Systolic blood pressure 

(SBP), a crucial risk factor for cardiovascular disease (CVD), is of clinical and research 

interest, and characterizing its longitudinal patterns over time can help for CVD risk 

prediction and determine relatively more effective treatment or medication (Parati et al., 
2013; Muntner et al., 2015). The other one is a study of Schizophrenia disorder. The mean 

level, as well as visit-to-visit variability on severity measurements, is associated with deficits 

in emotional processing and functional impairment (Simon et al., 2007; Bilderbeck et al., 
2016), which could reflect drug effectiveness and indicate a strategy for prevention of 

disease progression. To achieve these clinical objectives, we need to identify the best fitting 

model among different candidates. Here, we propose two information criteria named a joint 

EAIC (JEAIC) and a joint EBIC (JEBIC), which can simultaneously select marginal mean 

and correlation structures in WGEE for longitudinal data with dropout missingness under 

MAR. The basic strategy is that the empirical-likelihood-based criteria are first established 

by utilizing parameter estimates from WGEE together with the proposed empirical 

likelihood, and thus JEAIC and JEBIC can be constructed by incorporating extra penalty 

terms. These criteria are easy to implement in statistical software, and potential 

computational issues can be avoided because the parameter estimates are obtained directly 

from WGEE. Also, this work can be extended to accommodate more general missing 

patterns (ie, intermittent missingness). For simplicity, we mainly focus on monotone dropout 

missingness here.

The paper is organized as follows. In Section 2, we formulate the problem, introduce WGEE 

and the existing model selection criteria, and then provide the proposed information criteria 

of JEAIC and JEBIC based on the empirical likelihood. The theoretical justification for our 

proposal is granted under certain conditions with detailed proof in the Supporting 

Information. In Section 3, we conduct extensive simulations under a variety of scenarios 

with continuous and categorical outcomes to evaluate the performance of the two proposed 

Chen et al. Page 3

Biometrics. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



criteria when compared with the current existing alternatives. Lastly, we illustrate the 

application of our scheme by utilizing two real data examples in Section 4, and conclude 

with a discussion in Section 5.

2 | METHODOLOGY

2.1 | Notation

Let Yi = (Yi1,…,YiT)′ and Xi = (Xi1,…,XiT)′ denote the outcomes and covariates collected 

from subject i, i = 1,…,n, respectively, where Yij is the jth outcome and a p × 1 vector of 

covariates Xij includes the intercept, j = 1,…,T. For simplicity, we assume balanced data 

with equal numbers of observations for all subjects. Let μi = E Yi |Xi  and Vi = Var Yi |Xi  be 

the conditional mean and variance of Yi. It is noted that μi is usually modeled as ξ(μi) = Xiβ 
with ξ as a known and prespecified link function depending on the type of outcomes and β 
as a p × 1 vector of regression parameters (McCullagh and Nelder, 1989). In addition, Vi can 

be written by Ai
1/2Ci(ρ)Ai

1/2, where the matrix Ai is a T × T diagonal matrix with diagonal 

elements var Y it |Xit = ϕν μit , where ν is a known function and ϕ is a dispersion parameter 

which could be known or has to be estimated if unknown; Ci(ρ) is a prespecified “working” 

correlation matrix depending on a set of parameters ρ. Here, we consider the outcomes 

subject to missingness under the assumption of MAR, where the indicator Rij = 1 for the 

observed Yij and Rij = 0, otherwise. For simplicity, we focus on dropout missingness, but it 

can be straightforwardly extended to accommodate other general missing patterns (Robins et 
al., 1995; Shen and Chen, 2018).

2.2 | WGEE

For longitudinal data with dropouts under MAR, WGEE has been proposed by incorporating 

a weight matrix based on the inverse probability of observing the outcomes to adjust for the 

missing mechanism (Robins et al., 1995). Let the probability of observing the outcome for 

the ïth subject as ωi = (ωi1,…,ωiT)′, where ωij = Pr(Rij = 1|Yi, Hi) with Hi including 

potential predictors which could be overlapped with Xi. It is noted that ωij = λi1 × λi2 ×···× 

λij where λi1 = 1 (the outcomes at baseline are all observed) and λij = Pr(Rij = 1|Rij, − 1 = 1, 

Yi, Hi), j = 2,…,T. Given the data (Rij, Yi, Hi), λij can be estimated based on the partial 

likelihood from a logistic regression, ∑i = 1
n ∑ j = 2

T Ri, j − 1log λi j(θ)
Ri j 1 − λi j(θ)

1 − Ri j ,

where θ is a q × 1 vector of regression parameters with consistent estimates obtained by

Snθ = 1
n ∑

i = 1

n
si(θ) = 1

n ∑
i = 1

n
∑
j = 2

T
Ri, j − 1{Ri, j − λi j(θ)}Hi j, (1)

with logit(λij (θ)) = H′ijθ. Thus, the predicted probability λ i j and thereafter ωi j can be 

calculated. After plugging ω into Wi, the estimating equations for the parameters β are
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g(β) = ∑
i = 1

n
g Xi, Yi, β; ω = ∑

i = 1

n
Di′Vi

−1Wi Yi − μi

= 0,
(2)

where γ1′ , γ2′ , …, γn′  which is a T × p matrix, Vi = Ai
1/2CiAi

1/2, and Wi is the weight matrix 

with diagonal elements Ri j/ωi j, j = 1, …, T . The estimate β is consistent even if the 

“working” correlation matrix is misspecified, and n(β − β) is asymptotically normal 

distributed under mild regulatory conditions, given that the dropout model is correctly 

specified (ie, EWi = IT, with Wi evaluated at the true value ω0; Robins et al., 1995).

It is noted that given any prespecified “working” correlation matrix other than an 

independent correlation structure, the correlation coefficient ρ needs to be estimated. 

Usually, the correlation estimates can be obtained based on an iterative process by utilizing 

the Pearson residuals (Wedderburn, 1974). But, the correlation coefficient estimate for the 

longitudinal data with missing outcomes could be biased, while the unbiased estimate for ρjk 

is ρ jk(β) = [{1/{(n − p)ϕ}]∑i = 1
n ei j(β)eik(β)Ri jRik /ωi, jk where ωi, jk is the estimate of 

ωi, jk = Pr Ri j = 1, Rik = 1|Yi, Hi j, Hik  and eij(β) is the residual 

Y i j − μi j / ν μi j (1 ≤ j < k ≤ T) . Because of dropout missingness, the weights can be 

simplified as ωi, jk = ωik = Pr Rik = 1|Yi, Hik  and then 

ρ jk(β) = [1/{(n − p)ϕ}]∑i = 1
n ei j(β)eik(β)Rik /ωik . For other missing patterns (ie, intermittent), 

the estimation would become more complicated (Robins et al., 1995; Chen et al., 2010). In 

addition, ϕ is assumed to be known or estimated as 

ϕ(β) = 1/(nT − p) ∑i = 1
n ∑ j = 1

T ei j
2 (β)Ri j/ωi j (released afterwards for mathematical 

simplicity). For convenient notation, we stack the estimating equations by subject i for the 

parameters γ = (β′, ρ′)′ as follows:

g Xi, Yi, γ; ωi =
Di′Vi

−1Wi Yi − μi(β)
ζ Xi, Yi, ρ; ωi

, (3)

where ζ Xi, Yi, ρ; ωi  is some estimating equation for the correlation coefficients ρ based on 

weighted Pearson residuals. Taking an unstructured case for example, ζ Xt, Yt, ρ; ωt  could be 

κl(β) − ρϕ(1 − p/n), where κi(β) = ρi12(β), …, ρi1T(β), …, ρi(T − 1)T(β) ′ with 

ρi jk(β) = ei j(β)eik(β)Rik /ωik, 1 ≤ j < k ≤ T, and ρ = ρ12, …, ρ1T, …, ρ(T − 1)T ′ .

2.3 | Model selection criteria

2.3.1 | Overview of existing criteria—Before introducing our proposed information 

criteria, we first conduct a literature review of several key criteria on model selection for 

WGEE in longitudinal data analysis, with dropout missingness under MAR. One called 
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MLIC was proposed for the selection on marginal mean regression by Shen and Chen 

(2012), which is based on the expected quadratic loss function and modifies Mallows’s Cp 

statistics (in linear regression). Given the estimates γ = β′, ρ′  and ω MLIC is calculated by

MLIC = ∑
i = 1

n
Yi − μi ′Wi Yi − μi + 2Tr En

−1Jn ,

where En = ∑i = 1
n Di′Vi

−1WiDi and Jn = ∑i = 1
n Di′Vi

−1ϵiϵ′i − Giϵ′i Di with ϵi = Wi Yi − μi
0  and 

Gi = ∑m = 1
n Qmsm′ ∑m = 1

n smsm′
−1si where Qi = Di′Vi

−1Wi Yi − μi  and si is the score 

component of the ith individual in the partial likelihood for the dropout model in (1). It is 

noted that μi
0 is estimated by the largest candidate model based on the collected information, 

and numerical studies via simulation have shown that the misspecification of this model has 

mild or negligible influence on the performance of MLIC. In addition, Shen and Chen 

(2012) also provided MLICC for correlation structure selection by modifying the penalty 

term.

Another commonly used criterion for such context is QICWr (Gosho, 2016), which is 

extended from regular QIC by incorporating the inverse probability weight matrix. Given the 

estimates γ = β′, ρ′ ′ and ω, the QICWr statistic is provided as

QICWr = − 2 ∑
i = 1

n
∑

j = 1

T
Qw β, ω; Yi, Xi, Hi

+ 2Tr ΦIVw ,

where Qw β, ω; Yi j, Xi, Hi  is the weighted log quasi-likelihood function under an 

independence correlation structure, and ΦI = − ∑i = 1
n ∑ j = 1

T ∂2Qw/ ∂ β∂ β′
β = β

.

2.3.2 | Proposed criteria of JEAIC and JEBIC—To begin with, we first propose the 

full weighted estimating equation GF by accommodating a stationary correlation structure 

for the empirical likelihood, which is given by

GF XFi, Yi, β, ρc, θ =

Di′Vi
−1Wi Yi − μi(β)

Ui(β) − h ρc ϕ

si(θ)

, (4)

where si(θ) is the estimating equation for θ in (1). Notation β ∈ ℝL in GF denotes a vector of 

parameters with the same dimensionality as βF ∈ ℝL from our proposed full mean structure 

with XFi as the covariates for the ith subject. Without loss of generality, we can always 

rearrange the covariate matrix XFi so that the first p-dimensional vector in β equals the 
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parameter vector β from the candidate model, and the remaining elements in β equal zeros, 

thus β = β′, 0′ ′ . In addition, a stationary correlation structure is proposed for the full 

WGEE to estimate correlation coefficients, that is, 

ρF
ST = ρ1

ST, …, ρT − 1
ST ′, Ui(β) = (Ui1(β), Ui2(β), …, Ui(T − 1)(β))′ with 

Uim(β) = ∑ j = 1
T − m Ri, j + m/ωi, j + m ei j(β)ei, j + m(β) . Also, for any prespecified correlation 

structure denoted by the superscript c (nested within a stationary correlation structure), 

h ρc = (ρ1
c(T − 1 − p/n), …, ρT − 1

c (1 − p/n))′ with ρc = ρ1
c, …, ρT − 1

c ′ ∈ ℝT − 1 . For instance, 

ρEXC = ρEXC, …, ρEXC ′ when an exchangeable (EXC) correlation structure is fitted. Here, 

we consider a stationary correlation structure for the proposed full model; however, it can be 

extended to a more general case (ie, unstructured), which may substantially increase the 

number of parameters needing estimation, and thus likely lead to convergence issues 

particularly for small n and relatively large T.

Combining all the information above, we thus have the following empirical likelihood ratio, 

which is the key component to select marginal mean and correlation structures:

RF β, ρc, θ = sup
β, ρc, θ

∏
i = 1

n
npi; pi > 0, ∑

i = 1

n
pi = 1,

∑
i = 1

n
piGF XFi, Yi, β, ρc, θ = 0 ,

(5)

where pi = P(Y = yi, X = xi). Here, we assume that only the distributions with an atom of 

probability on each yi and xi have nonzero likelihood. Therefore, {pi}s will follow the rule 

of traditional probability with the sum equal to one. Without imposing constraints defined by 

the estimating equations, ∏i = 1
n pi is maximized as ∏i = 1

n (1/n) . Thus, the empirical 

likelihood ratio is defined as ∏i = 1
n npi . More basic properties about empirical likelihood can 

be found in Owen (2001). An intuitive rationale of model selection based on proposed 

empirical likelihood ratio is as follows: when the estimators βF, ρF
ST = ρ1

ST, …, ρT − 1
ST ′ are 

obtained from the WGEE method with XFi and a stationary correlation structure from (3), 

and θ is calculated from (1), we will have RF βF, ρF
ST, θ = 1, which achieves the upper limit 

of the empirical likelihood ratio. However, the estimators β and ρc other than βF and ρF
ST

will lead to RF βF, ρc, θ < 1. The departure from 1 indicates the misspecification of the 

model to the degree reflected by the magnitude of the deviation. In other words, the closer 

the mean and correlation structures approach the underlying true values, the closer RF will 

approach 1, which ensures the potential for joint selection of marginal mean and correlation 

structures.

Thereafter, by plugging the parameter estimates β′, ρc′ ′ from a candidate model in WGEE 

(3) and θML obtained based on the estimating equation (1) into RF β, ρc, θML , the empirical 
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likelihood ratio is the solution of the following equation by utilizing the Lagrange multiplier 

method (Owen, 2001):

−2logRF β, ρc, θML

= 2 ∑
i = 1

n
log{1 + λ′GF(Xi, Yi, β, ρc, θML)},

(6)

where the parameter λ can be solved by applying the Newton-Raphson method based on

∑
i = 1

n GF Xi, Yi, β, ρc, θML

1 + λ′GF Xi, Yi, β, ρc, θML

= 0. (7)

Thus, for longitudinal data with dropout missingness under MAR, our proposed information 

criteria are defined by

JEAIC = − 2logRF β, ρc, θML + 2p,

JEBIC = − 2logRF β, ρc, θML + plogn,

where p denotes the total number of parameters. The asymptotic property of our proposed 

information criteria can be evaluated based on the existing work. In particular, in the work 

by Kolaczyk (1995), EIC has been proved to be an asymptotically unbiased estimate that is 

proportional to the expected Kullback-Leibler distance between two discrete empirical 

distributions. Also, Variyath et al. (2010) evaluated the consistency of EBIC. In both of their 

works, general estimating equations are considered, but it is straightforward to embed our 

proposed full estimating equation (4) into their theoretical framework when the empirical 

likelihood estimators are utilized. However, our proposed approach is built upon the plug-in 

estimators; thus, it is important to assess the asymptotic proprieties of these plug-in 

estimators and their relationship with the empirical likelihood estimators.

2.3.3 | Asymptotic properties of plug-in estimators—In this section, we will 

investigate the asymptotic properties of our plug-in estimators under MAR, and explain why 

we advocate such an alternative. First, we investigate the asymptotic behavior of estimators 

βEL, ρEL
c , and θEL from maximizing the profile empirical likelihood ratio. Inspired by Qin 

and Lawless (1994) and Qin et al. (2009), we derive the asymptotic properties of the 

estimator shown in Theorem 1 with the proof sketched in the Supporting Information.

Theorem 1.: Let us denote
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gF Xi, Yi, β, ρc, θ =
Di′Vi

−1Wi Yi − μi(β)

Ui(β) − h ρc ϕ
,

β′EL, ρEL
c′ , θ′ EL = argmax

β, ρc, θ
RF β, ρc, θ ,

and s = si(θ) .

Under the conditions specified in the Supporting Information and given γ = β′, ρc′ ′ and θ 

with corresponding true values γ0 and θ0, we have

(1)
γEL − γ0

θEL − θ0
=

−V*A*Qn*
ΩSnθ

+ op n−1/2 , (8)

where Snθ is defined in (1), and

V* = E
∂gF
∂γ′ ′ EgFg′F − E

∂gF
∂θ Ess′ −1E

∂gF
∂θ′

−1
E

∂gF
∂γ′

−1
,

A* = E
∂gF
∂γ′ ′ EgFg′F − E

∂gF
∂θ′ Ess′ −1E

∂gF
∂θ′ ′

−1
,

Qn* = 1
n ∑

i = 1

n
gF Xi, Yi, β, ρc, θ + E

∂gF
∂θ′ ′E ss′ −1Snθ,

Ω = Ess′ −1 .

(2) Furthermore, the asymptotic normality can be derived from (8)

n
γEL − γ0
θEL − θ0

d N 0
0 ,

Σ11 0
0 Σ22

,

with
Σ11 = V*A*Cov Qn* A*′ V*′ , Σ22 .

= ΩCov Snθ Ω′

(3) −2logRF βEL, ρEL
c , θEL  follows a χ2 distribution with L − P degrees of freedom 

where L is the number of estimating equations in (4) and P as the total number of 
parameters.

An interesting finding from Theorem 1 is that the empirical-likelihood-based estimator θEL

is asymptotically equivalent to the estimator θML from partial likelihood in (1) since they 

have the same influence function. Also, the estimator θEL is asymptotically independent of 

the estimator γEL by Theorem 1(II). Thus, we can substitute θML in RF β, ρc, θ  first and then 

estimate γ by maximizing RF γ; θML , by which means, the estimator is asymptotically 
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equivalent to the estimator γEL, thus we keep this notation for this context. Such plug-in 

method can definitely decrease the dimensionality of parameters for estimation by only 

focusing on γ, and thus reducing the computational burden in particular when the dimension 

of θ is relatively large.

However, maximizing RF γ; θML  to estimate γ still raises computational issues since the 

number of the estimating equations may exceed the number of parameters, which requires 0 

to be inside the convex hull of data to guarantee the existence of solution (Variyath et al., 
2010; Chen and Lazar, 2012). Furthermore, the bounded support of correlation coefficients 

also increases the difficulty among the existing algorithms. Instead, we advocate to 

substitute the empirical likelihood estimators γEL in RF γEL; θML  with the estimators from a 

candidate model fitting in WGEE (3), which can avoid computational issues and ensure 

convenient application. Here, we investigate the asymptotic relationship between the WGEE 

and empirical-likelihood-based estimators, which is summarized in the following theorem:

Theorem 2.: Under Theorem 1 and the conditions provided in the Supporting Information, 

the estimates γ EL = β′EL, ρEL
c′ ′ from empirical likelihood based on (5) and γ = (β′, ρc′)′

based on WGEE (3) are asymptotically equivalent.

The proofs for EXC and AR1 scenarios are provided in the Supporting Information. 

Theorem 2 implies that the WGEE estimator is a reasonable approximation of the empirical 

likelihood estimator under certain conditions, indicating that any asymptotic properties 

induced by the empirical likelihood estimator would be reasonably invoked by the WGEE 

estimator. More discussion on conditions is referred to the Supporting Information.

3 | SIMULATION STUDIES

In this section, we investigate the numerical performance of our proposed criteria under 

various settings, and compare with several existing criteria such as MLIC and QICWr as 

well as the most recent work of JLIC. We expect better performance of the two proposed 

criteria compared to the existing alternatives. In addition, JEBIC might have better control of 

false-positive rates than JEAIC under relatively large sample sizes (Variyath et al., 2010).

Our first scenario considers binary outcomes, and the true marginal mean structure is

log
μi j

1 − μi j
= β0 + xi1β1 + xi j2β2 for i

= 1, …, n, j = 1, …, T ,
(9)

where xi1 is the subject (cluster)-level covariate generated from the uniform distribution over 

[0, 1] and xij2 = j − 1 is a time-dependent covariate. The number of observations (ie, cluster 

size) is T = 3. The true parameter vector β = β0, β1, β2 ′ in the marginal mean is (−1, 1, 

0.4)′. The true correlation structure is EXC with a correlation coefficient ρ0 = 0.5. The 

dropout model is
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log
λi j

1 − λi j
= θ0 + yi( j − 1)θ1 + hi jθ2 for i

= 1, …, n, j = 2, …, T ,
(10)

where the covariate hij is uniformly distributed over [−0.5, 0.5]. Different choices for the 

parameters θ = θ0, θ1, θ2 ′ can ensure the missing probability (denoted by m) around 0.2 and 

0.3, that is, θ = (1.74, 0.5, −0.8)′ is for m = 0.2 and θ = (1.05, 0.5, −0.8)′ is for m = 0.3.

In the first scenario, we consider a correctly specified dropout model. Then, we also evaluate 

the robustness of our proposal when the dropout model is misspecified because of the left 

out variable hij in the regression (Shen and Chen, 2018).

In addition, we generate one redundant variable xij3 ~ N (0, 1). The full model considered 

for our proposed criteria as well as MLIC/MLICC includes three variables, xi1, xij2, and xij3. 

Six potential marginal mean structures are considered with three types of “working” 

correlation structures (ie, EXC, first order autoregressive [AR1] and independence [IND]) 

for model fitting. To summarize the simulation results, 500 Monte Carlo data sets with 

sample size n = 100, 200 are generated for each scenario, and the selection rate for each 

combination of marginal mean and correlation structures is reported. Moreover, we also 

consider the scenarios with Gaussian outcomes, the ones where the assumption of MAR is 

violated, and also the ones with redundant variables. Due to limited space, we cannot show 

all these results here, but provide them in the Supporting Information.

Contrarily, to compare our proposal with JLIC, we consider the same setups (with binary 

and Gaussian outcomes) in Shen and Chen (2018) by utilizing their supporting program 

functions for simulations. The detailed information on parameter setups is not provided here 

but can be referred to Shen and Chen (2018). All the simulations are conducted in R and 

MATLAB softwares.

In Table 1, We find out that both JEAIC and JEBIC outperform two-stage MLIC/MLICC 

and QICWr across different settings. In general, all methods exhibit better selection 

behaviors if sample size increases or missing probability decreases, but the superiority of our 

proposal becomes more apparent compared to the other alternatives regarding higher 

improvement in selection rates. Under relatively small sample size, JEAIC and JEBIC 

behave similarly on joint model selection, while JEBIC seems more promising under 

relatively large sample size by imposing more penalty on both parameter number and sample 

size, which agrees with our expectation (Variyath et al., 2010). Contrarily, the performances 

of MLIC/MLICC and QICWr are not satisfactory and consistently stable across different 

setups despite having slightly better performance as the sample size increases. Similar 

patterns and selection rates can be found in Table 2, which indicates that misspecification of 

the dropout model does not have much influence on the performance of our proposed criteria 

when the MAR assumption still holds.
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Moreover, using the same setups in the first scenario, we conduct further investigation by 

only considering marginal mean selection given a prespecified correlation structure 

according to the editor’s suggestion. The results, in the Supporting Information, imply that 

the misspecified correlation structure would worsen the selection performance. More 

interestingly, in Table 1, the marginal selection rates, for mean structures (column total) 

regardless of the correlation structure selection, is comparable or even slightly higher than 

the Oracle one under which the true correlation structure is specified and fixed for the 

marginal mean selection. These findings provide further evidence of our joint selection’s 

advantages; thus, even though the marginal mean structure is the sole interest, the 

implementation of the joint selection would promise a satisfactory selection rate. Also, the 

additional simulations provided in the Supporting Information further indicate the robustness 

of our proposal when the MAR assumption is violated, and also show the generalization into 

the cases with different types of outcomes or a relatively large number of redundant 

predictors in candidate models. Even for the scenarios with relatively higher missing 

proportions (ie, m = 0.5), our proposal is still applicable (results not shown). Overall, our 

proposed JEAIC and JEBIC outperform the other existing criteria, and JEBIC is highly 

recommended when the sample size is relatively large in real applications.

Tables 3 and 4 summarize the comparison between our proposal and JLIC on joint selection 

performance when the missing probability is 0.1 or 0.2 under binary and Gaussian scenarios. 

All results show that JEAIC and JEBIC outperform JLIC with higher selection rates for the 

true underlying model. The improvement becomes more substantial when the outcomes are 

in continuous scale. In addition, with relatively larger sample size, JEBIC performs even 

better, which suggests a possible advantage in controlling false positive rates.

4 | REAL DATA APPLICATIONS

4.1 | Case 1: the ARIC study

The ARIC study was designed to investigate the causes of atherosclerosis and its clinical 

outcomes, the trends in rates of hospitalized myocardial infarction and coronary heart 

disease in 45-year-old to 64-year-old men and women from four US communities. We select 

Forsyth County to identify a total of 1036 white patients who were diagnosed with 

hypertension at the first examination in 1987 to 1989 for analysis (Kim et al., 2012). The 

existing literature has shown that SBP is an important risk factor for CVD risk prediction; 

however, the findings on its longitudinal pattern vary across studies due to several factors 

such as small sample size, lack of model diagnosis, limiting factors, and so on (Muntner et 
al., 2015). Here, we utilize the large epidemiological ARIC study for more exploration. 

During the study period, longitudinal SBP measures were collected at approximately 3-year 

intervals (1987-1989, 1990-1992, 1993-1995, and 1996-1998). There exist 355 dropout 

subjects, leading to a monotone missing pattern. The baseline covariates of interest are 

considered for exploration: age (in years), gender (1 = female; 0 = male), diabetes (1 = 

fasting glucose ≥ 126 mg/dL; 0 = fasting glucose < 126 mg/dL), ever smoker (1 = yes; 0 = 

no), and also the examination times are coded as 1, 2, 3, and 4 for four time intervals. Before 

modeling, data processing is conducted, where the age variable is centered at the mean age 

of 54 and divided by 10 to represent a decade, and also SBP is standardized (Kim et al., 
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2012). Also, the dropout probability λij is estimated from a logistic model with independent 

variables including all baseline covariates aforementioned and Yi,j−1, Yi,j−2, and Yi,j−3.

Table 5 summarizes the results with the boldface values indicating that the information 

criterion is the smallest among possible candidate models. From Table 5, Model 2 with an 

AR1 correlation structure is selected by JEAIC, JEBIC, while Model 2 with an EXC 

correlation structure is selected by MLIC/MLICC and QICWr. Thus, marginal mean 

regression is selected consistently; however, the discrepancy in the selected correlation 

structures based on different criteria shows the necessity and importance to utilize more 

robust and reliable information criteria. Furthermore, we check the empirical pairwise 

correlations between times, and a decreasing trend is shown when time gap becomes larger, 

indicating our selection is reasonable and valid. The final selected model, Model 2, includes 

three variables: time, gender, and age, which all have significant effects on SBP.

4.2 | Case 2: the national institute of the mental health schizophrenia (IMPS) study

To further evaluate our proposal for categorical outcomes, we consider the data from the 

IMPS study that includes 293 patients in the treatment group who were given drugs 

chlorprom azine, fluphenazine, or thioridazine as treatment and 93 patients in placebo group 

(Gibbons and Hedeker, 1994). For each patient, the severity of schizophrenia disorder 

(IMPS79) was measured (range: 0–7) at weeks 0, 1, 3, 6 (time = week). Here, we define Y 
= 1 if IMPS ≥ 4; otherwise, Y = 0. The goal is to investigate treatment effect (drug = 1 for 

treatment; 0 for placebo) and sex (male = 1; female = 0) on Y. The dropout probability λij is 

estimated from a logistic regression with the predictors drugij, sexij, timeij, Yi,j−1, Yi,j−2, and 

Yi,j−3.

Table 6 summarizes the results of model fitting and comparisons. It is noted that previous 

work has shown that an AR1 correlation structure is preferred based on MLICC; thus MLIC 

and QICWr are calculated given this AR1 selection. Table 6 shows that Model 3 is selected 

as the best candidate model based on JEAIC, JEBIC, and MLIC because of the minimum 

values among all six candidate models. However, QICWr selects Model 4 as the best one 

even though the value is slightly lower than that of Model 3. Lastly, the final selected model, 

Model 3, includes two variables, time and drug, which both have significant effects on the 

risk of severe schizophrenia disorder.

5 | DISCUSSION

In this paper, we heuristically introduce two innovative information criteria, JEAIC and 

JEBIC, for longitudinal data with dropout missingness under MAR. The proposed criteria 

are evaluated in both theoretical and numerical studies with better performance compared to 

MLIC, QICWr, and JLIC under a variety of scenarios. In particular, the expected quadratic 

loss distance based upon which MLIC and JLIC are derived is a model-free criterion, which 

only measures how well the estimated means approximate to the population means but 

without identifying the true mean structure (Ye, 1998). Thus, it might not be easy to 

distinguish two mean structures, which are both close to the true mean under finite samples. 

Contrarily, QICWr modifies QIC and implements correlation structure selection based on so-

called “more informative” penalty term (Gosho, 2016). However, it is unclear in theory 
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whether and how correctly specifying a “working” correlation structure will intrinsically 

minimize the penalty term in QICWr. In contrast, our proposed JEAIC and JEBIC are based 

on empirical likelihood, which are distribution-free and efficiently driven by observed data 

and informative estimating equations. This accordingly provides scientific sense why our 

empirical-likelihood-based criteria would have outperformance, assuming that the true 

underlying model is nested within the full estimating equations. Our approach is easy to be 

implemented in software with the code available in the Supporting Information. Also, 

extensive simulations show that our proposed criteria perform computationally efficient and 

are flexible to be extended for more complicated scenarios, indicating the potential for wide 

application.

Despite the aforementioned advantages brought up from JEAIC and JEBIC, there is still 

substantial work for further evaluation or improvement, for instance, selection stability to 

account for sampling variability may need more check via extensive simulation studies using 

a bootstrap approach. Also, two other potential extensions may include: (a) to accommodate 

more general missing patterns such as intermittent missingness; (b) to consider the 

missingness on some time-dependent covariates or high-dimensional predictors (ie, gene 

expression data; Chen et al., 2010), which is also commonly encountered in practice 

nowadays. Therefore, how to generalize our proposal and accurately perform joint model 

selection under these scenarios still needs to be explored.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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