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Abstract

Longitudinal data are common in clinical trials and observational studies, where missing outcomes
due to dropouts are always encountered. Under such context with the assumption of missing at
random, the weighted generalized estimating equation (WGEE) approach is widely adopted for
marginal analysis. Model selection on marginal mean regression is a crucial aspect of data
analysis, and identifying an appropriate correlation structure for model fitting may also be of
interest and importance. However, the existing information criteria for model selection in WGEE
have limitations, such as separate criteria for the selection of marginal mean and correlation
structures, unsatisfactory selection performance in small-sample setups, and so forth. In particular,
there are few studies to develop joint information criteria for selection of both marginal mean and
correlation structures. In this work, by embedding empirical likelihood into the WGEE framework,
we propose two innovative information criteria named a joint empirical Akaike information
criterion and a joint empirical Bayesian information criterion, which can simultaneously select the
variables for marginal mean regression and also correlation structure. Through extensive
simulation studies, these empirical-likelihood-based criteria exhibit robustness, flexibility, and
outperformance compared to the other criteria including the weighted quasi-likelihood under the
independence model criterion, the missing longitudinal information criterion, and the joint
longitudinal information criterion. In addition, we provide a theoretical justification of our
proposed criteria, and present two real data examples in practice for further illustration.
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INTRODUCTION

Longitudinal data are common in clinical trials and observational studies. Due to the
research interest in conducting inference on the population-level parameter estimates,
generalized estimating equation (GEE) has been widely employed for marginal regression
analysis, where the correlations among the observations within subjects are treated as
nuisance parameters (Liang and Zeger, 1986; Wang, 2014). In longitudinal studies, missing
data are typically encountered, which poses challenges for model fitting and model
selection. There are three types of missing data: missing completely at random, missing at
random (MAR), and missing not at random, depending on whether the factors related to
missing probability are observed or not (Little and Rubin, 2014). For instance, subjects may
drop out of the study or are lost to follow-up due to several reasons such as drug resistance
or side effects. Under such context, MAR is commonly and reasonably assumed for
statistical inference. Literature has shown that the estimates based on regular GEE are biased
for longitudinal data under MAR (Laird, 1988). Robins et al. (1995) first proposed the
weighted GEE (WGEE) method for bias correction by incorporating an inverse probability
weight matrix. Given the correctly specified model for missing data, the consistency of
WGEE estimates still holds even when the “working” correlation structure is misspecified.

Model selection is a crucial aspect of longitudinal data analysis. Without a doubt, identifying
the variables for the marginal mean structure is always essential. Also, an improper
correlation structure may lead to loss of efficiency of parameter estimates. This problem has
been exclusively investigated for complete longitudinal data; however, when the missing
data exist, the efficiency improvement is still under exploration, but several works have
shown that selecting a proper correlation structure for WGEE is somewhat promising and
important (Preisser et al., 2002; Shardell and Miller, 2008; Gosho et al., 2014; Gosho, 2016).
To accomplish these selection goals, development of model information criteria has gained
substantial attention by researchers. Pan (2001) first proposed one of the most popularly
used information criteria, the quasi-likelihood under the independence model criterion
(QIC), but it does not accommaodate missing data. For longitudinal data with dropout
missingness under MAR, Shen and Chen (2012) proposed two separate measures based on
the quadratic loss function, the missing longitudinal information criterion (MLIC) and the
MLIC for correlation (MLICC), for selection of marginal mean regression and correlation
structures in WGEE, respectively. Another option for marginal model selection under this
scenario is the weighted quasi-likelihood information criterion (Q/CW,,) by accommodating
the weight matrix into QIC (Platt ef al., 2013). Later on, Gosho (2016) proposed Q/CW, by
modifying the penalty term of Q/CW), for selection of both marginal mean and correlation
structures. Most recently, Shen and Chen (2018) proposed the joint longitudinal information
criterion (JLIC) with regard to the joint selection of marginal mean and correlation
structures for longitudinal data with missing outcomes and covariates. However, the
aforementioned criteria have the following limitations: (a) ignoring missing data; (b) losing
model selection power when different criteria for either marginal mean structure selection or
correlation structure selection are implemented; and (c) leading to unsatisfactory results in
selection rates, particularly when the sample size is small (Shen and Chen, 2012; Gosho,
2016; Shen and Chen, 2018).
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Contrarily, the empirical likelihood approach by adopting a purely observation-based
technique has recently gained more attention due to the relaxing of parametric distributional
assumption, and literature has already shown its outperformance in regression analysis
especially on confidence interval construction (Owen, 1988; Qin and Lawless, 1994; Qin et
al., 2009). However, empirical-likelihood-based model selection criteria have not been
widely investigated yet. Kolaczyk (1995) first proposed the empirical information criterion
(EIC), but pointed out that convergence to a proper solution was not reached in estimation,
particularly when the number of estimating equations is larger than the number of
parameters. Later, Variyath et al. (2010) introduced adjusted empirical likelihood criteria, the
empirical Akaike information criterion (EAIC) and the empirical Bayesian information
criterion (EBIC), to guarantee the existence of a solution. However, the computational issue
remains if the estimators have bounded support (eg, a correlation coefficient). Chen and
Lazar (2012) applied empirical likelihood for only the correlation structure selection in GEE
under complete longitudinal data and proposed to use plug-in estimators obtained from
GEE; however, no theoretical justification of plug-in estimators was provided in their work.
To our knowledge, there is little work on empirical-likelihood-based model selection criteria
accommodating missing data under the longitudinal framework.

In this paper, two motivating data applications are provided. One is a large epidemiological
study, the Atherosclerosis Risk in Communities (ARIC) study. Systolic blood pressure
(SBP), a crucial risk factor for cardiovascular disease (CVD), is of clinical and research
interest, and characterizing its longitudinal patterns over time can help for CVD risk
prediction and determine relatively more effective treatment or medication (Parati et al,
2013; Muntner et al., 2015). The other one is a study of Schizophrenia disorder. The mean
level, as well as visit-to-visit variability on severity measurements, is associated with deficits
in emotional processing and functional impairment (Simon et al., 2007; Bilderbeck et al.,
2016), which could reflect drug effectiveness and indicate a strategy for prevention of
disease progression. To achieve these clinical objectives, we need to identify the best fitting
model among different candidates. Here, we propose two information criteria named a joint
EAIC (JEAIC) and a joint EBIC (JEBIC), which can simultaneously select marginal mean
and correlation structures in WGEE for longitudinal data with dropout missingness under
MAR. The basic strategy is that the empirical-likelihood-based criteria are first established
by utilizing parameter estimates from WGEE together with the proposed empirical
likelihood, and thus JEAIC and JEBIC can be constructed by incorporating extra penalty
terms. These criteria are easy to implement in statistical software, and potential
computational issues can be avoided because the parameter estimates are obtained directly
from WGEE. Also, this work can be extended to accommodate more general missing
patterns (ie, intermittent missingness). For simplicity, we mainly focus on monotone dropout
missingness here.

The paper is organized as follows. In Section 2, we formulate the problem, introduce WGEE
and the existing model selection criteria, and then provide the proposed information criteria
of JEAIC and JEBIC based on the empirical likelihood. The theoretical justification for our
proposal is granted under certain conditions with detailed proof in the Supporting
Information. In Section 3, we conduct extensive simulations under a variety of scenarios
with continuous and categorical outcomes to evaluate the performance of the two proposed
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criteria when compared with the current existing alternatives. Lastly, we illustrate the
application of our scheme by utilizing two real data examples in Section 4, and conclude
with a discussion in Section 5.

2| METHODOLOGY

2.1| Notation

LetY,;=(Ya,....YiD) and X,;=(Xp,...,.X;7)" denote the outcomes and covariates collected
from subject /, /=1,...,n, respectively, where Yj;is the jth outcome and a p x 1 vector of
covariates X jsincludes the intercept, /= 1,..., 7. For simplicity, we assume balanced data
with equal numbers of observations for all subjects. Let p, = E(Y,1X,) and V, = Var(Y,IX,) be

the conditional mean and variance of Y ;. It is noted that i, is usually modeled as &(u) = X ;8
with & as a known and prespecified link function depending on the type of outcomes and 8
as a px 1 vector of regression parameters (McCullagh and Nelder, 1989). In addition, V;can

be written by A}/Qci(p)Al.”z, where the matrix A;isa 7 x T diagonal matrix with diagonal
elements var(Y, IX. ) = ¢u(,,). where v is a known function and ¢ is a dispersion parameter

which could be known or has to be estimated if unknown; C{p) is a prespecified “working”
correlation matrix depending on a set of parameters p. Here, we consider the outcomes
subject to missingness under the assumption of MAR, where the indicator /= 1 for the
observed Yjand Rj;= 0, otherwise. For simplicity, we focus on dropout missingness, but it
can be straightforwardly extended to accommodate other general missing patterns (Robins et
al,, 1995; Shen and Chen, 2018).

2.2| WGEE

For longitudinal data with dropouts under MAR, WGEE has been proposed by incorporating
a weight matrix based on the inverse probability of observing the outcomes to adjust for the
missing mechanism (Robins et al., 1995). Let the probability of observing the outcome for
the ith subject as w; = (wp,...,w;7)’, Where wjj=Pr(Rj=1|Y j H)) with Hincluding
potential predictors which could be overlapped with X . It is noted that w;;= Ay x A XX
Ajjwhere A, =1 (the outcomes at baseline are all observed) and A ;= Pr(#;;= 1|R;; -1 = 1,
Y H), j=2,...,T Given the data (Rj; Y H,), Ajican be estimated based on the partial

R.. 1-R..
likelihood from a logistic regression, ¥7_ | erz LR log| 4, (0) ’J{l - /1l.j(0)} Y\

ij—1

where @is a g x 1 vector of regression parameters with consistent estimates obtained by
1 n 1 n T
n Z S,‘(o) = n Z Z Ri,j— l{Ri,j - ﬂ,‘j(a)}Hij’ 1)

i=1 i=1j=2

with logit(1,;(6)) = H ’,-/0. Thus, the predicted probability ,Tl.j and thereafter @ij can be

calculated. After plugging @ into W, the estimating equations for the parameters Bare
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n

8By =Y 8(X, Y, B:0) = Y DV 'W(Y, - )
i=1 i=1
@

=0,

where {7}.7.....7,} which isa 7x pmatrix, V, = A]/>CA!" and W is the weight matrix
with diagonal elements Rl.j/al.j, j=1,...,T. The estimate 8 is consistent even if the

“working” correlation matrix is misspecified, and yn(8 — g) is asymptotically normal
distributed under mild regulatory conditions, given that the dropout model is correctly
specified (ie, EW ;= | 1; with W ;evaluated at the true value wy; Robins et al., 1995).

It is noted that given any prespecified “working” correlation matrix other than an
independent correlation structure, the correlation coefficient p needs to be estimated.
Usually, the correlation estimates can be obtained based on an iterative process by utilizing
the Pearson residuals (Wedderburn, 1974). But, the correlation coefficient estimate for the
longitudinal data with missing outcomes could be biased, while the unbiased estimate for pjx

i 7 (B) = [(1/{(n = )PNT]_ (e, (Brey(BIR, Ry /@, ;, where &, , is the estimate of
0, 5= Pr(Rl.j = LRy = 1Y, H,, Hik) and () is the residual

(Yl. — ul.j)/,/u(yij)(l < j<k<T).Because of dropout missingness, the weights can be
simplified as o, ; = w,, = Pr(R, = 11Y, H,) and then

ﬁjk(ﬁ) =[1/{(n - p)p}IX]_ 1el.j(ﬁ)el.k(ﬁ)Rik/(T)ik. For other missing patterns (ie, intermittent),
the estimation would become more complicated (Robins et al,, 1995; Chen et al., 2010). In
addition, ¢ is assumed to be known or estimated as

dB) = {l/(nT - p)}2?= | Z?z lefj(ﬁ)Rij/{T)ij (released afterwards for mathematical

simplicity). For convenient notation, we stack the estimating equations by subject / for the
parameters = (8", p’)’ as follows:

DIV WY, - (P}

gX.,Y.,y;(;)\. = N
( (i z) C(X,-,Yle;m,-)

s (©)
where C(Xi, Y, p;0 l.) is some estimating equation for the correlation coefficients p based on
weighted Pearson residuals. Taking an unstructured case for example, g(Xt, Y, p;a?t) could be
K,(B) = pp(1 = pln), Where x,(B) = (B;1,B)s s iy 7Bl s By _ 1y7(B) With

D = e, (Bey PRy /dy. 1< j< ks Toand p = ([)12, s Py P l)T)"

2.3 | Model selection criteria

2.3.1| Overview of existing criteria—Before introducing our proposed information
criteria, we first conduct a literature review of several key criteria on model selection for
WGEE in longitudinal data analysis, with dropout missingness under MAR. One called
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MLIC was proposed for the selection on marginal mean regression by Shen and Chen
(2012), which is based on the expected quadratic loss function and modifies Mallows’s C,
statistics (in linear regression). Given the estimates 7 = (ﬁ’,ﬁ’) and @ MLIC is calculated by

n
MLIC= 3 (Y= WY, - i) + 2Tr(Er7 lJn)’
=

n w1 _\" vl ’ i _ 0
where E, = 3'_ DV 'WD,and J, = 37 | (DV; e, - G’ D, with ;= W(Y, - ) and

l
G =(X_,Q,s,)(Zh _ lsms;n)_lsi where Q, = D!V, 'W (Y, - ji) and s;is the score
component of the th individual in the partial likelihood for the dropout model in (1). It is
noted that ;4? is estimated by the largest candidate model based on the collected information,
and numerical studies via simulation have shown that the misspecification of this model has
mild or negligible influence on the performance of MLIC. In addition, Shen and Chen
(2012) also provided MLICC for correlation structure selection by modifying the penalty
term.

Another commonly used criterion for such context is Q/CW, (Gosho, 2016), which is
extended from regular QIC by incorporating the inverse probability weight matrix. Given the
estimates 7 = (ﬁ’,ﬁ’)’ and @, the Q/CW, statistic is provided as

where Qw(ﬁ,cf);Yij, X, Hl.) is the weighted log quasi-likelihood function under an

independence correlation structure, and ®, = - ¥'_ | X7 _(d°0,/ aﬂaﬂ’)|ﬂ 5

2.3.2| Proposed criteria of JEAIC and JEBIC—To begin with, we first propose the
full weighted estimating equation G £by accommodating a stationary correlation structure
for the empirical likelihood, which is given by

vai_lwi{Yi - ”i(ﬂN)}

GoXp Y. B.050)=| UG -h(p)p | @
S,‘(a)

where s{#) is the estimating equation for &in (1). Notation g € R” in G zdenotes a vector of
parameters with the same dimensionality as g, € RE from our proposed full mean structure

with X zjas the covariates for the ith subject. Without loss of generality, we can always
rearrange the covariate matrix X z;so that the first p-dimensional vector in g equals the
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parameter vector B from the candidate model, and the remaining elements in g equal zeros,
thus g = (§',0') . In addition, a stationary correlation structure is proposed for the full
WGEE to estimate correlation coefficients, that is,

o = (AT 3 ) UGB = Uy B. U B Uy _ By with

U, (B = ZJT:‘ i"(Rl.’j ey m)el.j(ﬁ)el.’j + m(B)- Also, for any prespecified correlation
structure denoted by the superscript ¢ (nested within a stationary correlation structure),
h(p) = (p{(T = 1= pIn), ..., p% _ (1 = pin)) With p° = (p{,....p5 _|) € RT ~ 1. For instance,

EXC _ ( EXC’ ] EXC)

p " when an exchangeable (EXC) correlation structure is fitted. Here,

we consider a stationary correlation structure for the proposed full model; however, it can be
extended to a more general case (ie, unstructured), which may substantially increase the
number of parameters needing estimation, and thus likely lead to convergence issues
particularly for small 7and relatively large 7.

P v P

Combining all the information above, we thus have the following empirical likelihood ratio,
which is the key component to select marginal mean and correlation structures:

n n
RF(B.p".0) = sup |ani; p;>0, Y op=1

¢ | ~
] foo 0 l ®
Z piGF(XFl.,Yi, ﬂ,pc,G) = o},
i=1

where p;= AY =y, X =X,). Here, we assume that only the distributions with an atom of
probability on each y,;and x;have nonzero likelihood. Therefore, {p;}s will follow the rule
of traditional probability with the sum equal to one. Without impasing constraints defined by
the estimating equations, H?z | P; 1s maximized as [T/ _ | (1/n). Thus, the empirical
likelihood ratio is defined as ]‘[;‘= np;- More basic properties about empirical likelihood can
be found in Owen (2001). An intuitive rationale of model selection based on proposed
empirical likelihood ratio is as follows: when the estimators § . 55 = (ﬁfT, Py 1)' are
obtained from the WGEE method with X z;and a stationary correlation structure from (3),

and @ is calculated from (1), we will have RF(ﬁF, oy é) = 1, which achieves the upper limit

of the empirical likelihood ratio. However, the estimators # and 5° other than 4, and 53"

will lead to RF(ﬁF, p5, 67)< 1. The departure from 1 indicates the misspecification of the
model to the degree reflected by the magnitude of the deviation. In other words, the closer
the mean and correlation structures approach the underlying true values, the closer R~ will
approach 1, which ensures the potential for joint selection of marginal mean and correlation
structures.

Thereafter, by plugging the parameter estimates (4, )’ from a candidate model in WGEE

(3)and @, obtained based on the estimating equation (1) into RF(,E, 7°.0,;,). the empirical
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likelihood ratio is the solution of the following equation by utilizing the Lagrange multiplier
method (Owen, 2001):

_210gRF(ﬂA, 5, HAML)
(6)

n ~
= 2 Z log{l + /yGF(Xl’ Yi’ ﬂ’ ﬁc’ 0ML)}’
i=1

where the parameter A can be solved by applying the Newton-Raphson method based on

L GF(Xi’ Y, B.p" 0ML)
~—+ - =0. Q]
=11+ /I/GF(Xi, Y, B, ﬁc,aML)

Thus, for longitudinal data with dropout missingness under MAR, our proposed information
criteria are defined by

JEAIC = — 2logr" (

oA _

B.p soML)+2P,
F ~ ~

JEBIC = —2logR" ($.5.0,,

where p denotes the total number of parameters. The asymptotic property of our proposed
information criteria can be evaluated based on the existing work. In particular, in the work
by Kolaczyk (1995), EIC has been proved to be an asymptotically unbiased estimate that is
proportional to the expected Kullback-Leibler distance between two discrete empirical
distributions. Also, Variyath et al. (2010) evaluated the consistency of EBIC. In both of their
works, general estimating equations are considered, but it is straightforward to embed our
proposed full estimating equation (4) into their theoretical framework when the empirical
likelihood estimators are utilized. However, our proposed approach is built upon the plug-in
estimators; thus, it is important to assess the asymptotic proprieties of these plug-in
estimators and their relationship with the empirical likelihood estimators.

2.3.3| Asymptotic properties of plug-in estimators—In this section, we will
investigate the asymptotic properties of our plug-in estimators under MAR, and explain why
we advocate such an alternative. First, we investigate the asymptotic behavior of estimators

ﬁEL, Py and éEL from maximizing the profile empirical likelihood ratio. Inspired by Qin

and Lawless (1994) and Qin et a/. (2009), we derive the asymptotic properties of the
estimator shown in Theorem 1 with the proof sketched in the Supporting Information.

Theorem 1.: Let us denote
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vl P
DV; Wi{Yi - ”i(ﬂ)}
U8~ h(p)o
(’? EL ﬁgL’ él\EL) = argmaxk’ (8, . 6),

B.o".0
and s= sl.(0).

Under the conditions specified in the Supporting Information and giveny = (/i’, p"/)’ and 6

with corresponding true values yy and 6y, we have

D

Qs ,

TeL = Yo

, ®

~

oEL - 00

where Spg Is defined in (1), and

-1

ag -

a9y’

%
20’

og o
a9y’

og
F =1
=0 (Ess’)

V, = NEgpg p—E E|

dgF -1

26’

agF

20’

(Ess’)_lE !

— EgFgF—E

og
F |, n—1
S0 E(ss’) 'S

n
Q= % 2 gp(X; Y, B.00)+ B ne’

Q= (Ess) L.

2 Furthermore, the asymptotic normality can be derived from (8)

TEL=70 a [0y (P11 ©

) —N (0)’ 0o x|
91~ % 22

X)) = VACOV(QFALVLL E,) .
with
= QCov(S, )@’
F(a ~C 2 ictri) : R -
() —210grR (B 55,05, ) follows a x? distribution with L - P degrees of freedom

where L is the number of estimating equations in (4) and P as the total number of
parameters.

An interesting finding from Theorem 1 is that the empirical-likelihood-based estimator éEL
is asymptotically equivalent to the estimator §ML from partial likelihood in (1) since they
have the same influence function. Also, the estimator éEL is asymptotically independent of
the estimator 7, by Theorem 1(1l). Thus, we can substitute éML in RF(ﬁ, ¢, ) first and then

estimate by maximizing RF(y;éML), by which means, the estimator is asymptotically
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equivalent to the estimator 7, , thus we keep this notation for this context. Such plug-in

method can definitely decrease the dimensionality of parameters for estimation by only
focusing on , and thus reducing the computational burden in particular when the dimension
of Gis relatively large.

However, maximizing RF(y;éML) to estimate ystill raises computational issues since the

number of the estimating equations may exceed the number of parameters, which requires 0
to be inside the convex hull of data to guarantee the existence of solution (Variyath et a/.,
2010; Chen and Lazar, 2012). Furthermore, the bounded support of correlation coefficients
also increases the difficulty among the existing algorithms. Instead, we advocate to

substitute the empirical likelihood estimators 7., in RF( 0,,;) With the estimators from a

TeOue
candidate model fitting in WGEE (3), which can avoid computational issues and ensure
convenient application. Here, we investigate the asymptotic relationship between the WGEE

and empirical-likelihood-based estimators, which is summarized in the following theorem:

Theorem 2.: Under Theorem 1 and the conditions provided in the Supporting Information,
the estimatesy ; = (ﬁ EL ﬁg L)' from empirical likelihood based on (5) andy = (B', p <y

based on WGEE (3) are asymptotically equivalent.

The proofs for EXC and AR1 scenarios are provided in the Supporting Information.
Theorem 2 implies that the WGEE estimator is a reasonable approximation of the empirical
likelihood estimator under certain conditions, indicating that any asymptotic properties
induced by the empirical likelihood estimator would be reasonably invoked by the WGEE
estimator. More discussion on conditions is referred to the Supporting Information.

SIMULATION STUDIES

In this section, we investigate the numerical performance of our proposed criteria under
various settings, and compare with several existing criteria such as MLIC and Q/CW, as
well as the most recent work of JLIC. We expect better performance of the two proposed
criteria compared to the existing alternatives. In addition, JEBIC might have better control of
false-positive rates than JEAIC under relatively large sample sizes (Variyath et al., 2010).

Our first scenario considers binary outcomes, and the true marginal mean structure is

Hij )

log(1 _l{u”) = o+ x;18 +xl-j2ﬂ2 for i
ij

9)

where xj is the subject (cluster)-level covariate generated from the uniform distribution over
[0, 1] and X;p = j— 1 is a time-dependent covariate. The number of observations (ie, cluster
size) is 7= 3. The true parameter vector g = (ﬂo,ﬂl,ﬁz)’ in the marginal mean is (-1, 1,

0.4)’. The true correlation structure is EXC with a correlation coefficient pyp = 0.5. The
dropout model is
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1-2.

A

1) _ .

log( ) =0,+ Yij - 1)91 + hij6’2 for i
ij

(10)

where the covariate /;is uniformly distributed over [-0.5, 0.5]. Different choices for the
parameters 6 = (00,6’1,6’2)’ can ensure the missing probability (denoted by m) around 0.2 and

0.3, that is, 8= (1.74, 0.5, -0.8) " is for m= 0.2 and 8= (1.05, 0.5, —0.8) " is for /7= 0.3.

In the first scenario, we consider a correctly specified dropout model. Then, we also evaluate
the robustness of our proposal when the dropout model is misspecified because of the left
out variable /;in the regression (Shen and Chen, 2018).

In addition, we generate one redundant variable x;3 ~ A/ (0, 1). The full model considered
for our proposed criteria as well as MLIC/MLICC includes three variables, xj, Xjp, and X;z.
Six potential marginal mean structures are considered with three types of “working”
correlation structures (ie, EXC, first order autoregressive [AR1] and independence [IND])
for model fitting. To summarize the simulation results, 500 Monte Carlo data sets with
sample size n =100, 200 are generated for each scenario, and the selection rate for each
combination of marginal mean and correlation structures is reported. Moreover, we also
consider the scenarios with Gaussian outcomes, the ones where the assumption of MAR is
violated, and also the ones with redundant variables. Due to limited space, we cannot show
all these results here, but provide them in the Supporting Information.

Contrarily, to compare our proposal with JLIC, we consider the same setups (with binary
and Gaussian outcomes) in Shen and Chen (2018) by utilizing their supporting program
functions for simulations. The detailed information on parameter setups is not provided here
but can be referred to Shen and Chen (2018). All the simulations are conducted in R and
MATLAB softwares.

In Table 1, We find out that both JEAIC and JEBIC outperform two-stage MLIC/MLICC
and Q/CW, across different settings. In general, all methods exhibit better selection
behaviors if sample size increases or missing probability decreases, but the superiority of our
proposal becomes more apparent compared to the other alternatives regarding higher
improvement in selection rates. Under relatively small sample size, JEAIC and JEBIC
behave similarly on joint model selection, while JEBIC seems more promising under
relatively large sample size by imposing more penalty on both parameter number and sample
size, which agrees with our expectation (Variyath et a/., 2010). Contrarily, the performances
of MLIC/MLICC and Q/CWiare not satisfactory and consistently stable across different
setups despite having slightly better performance as the sample size increases. Similar
patterns and selection rates can be found in Table 2, which indicates that misspecification of
the dropout model does not have much influence on the performance of our proposed criteria
when the MAR assumption still holds.
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Moreover, using the same setups in the first scenario, we conduct further investigation by
only considering marginal mean selection given a prespecified correlation structure
according to the editor’s suggestion. The results, in the Supporting Information, imply that
the misspecified correlation structure would worsen the selection performance. More
interestingly, in Table 1, the marginal selection rates, for mean structures (column total)
regardless of the correlation structure selection, is comparable or even slightly higher than
the Oracle one under which the true correlation structure is specified and fixed for the
marginal mean selection. These findings provide further evidence of our joint selection’s
advantages; thus, even though the marginal mean structure is the sole interest, the
implementation of the joint selection would promise a satisfactory selection rate. Also, the
additional simulations provided in the Supporting Information further indicate the robustness
of our proposal when the MAR assumption is violated, and also show the generalization into
the cases with different types of outcomes or a relatively large number of redundant
predictors in candidate models. Even for the scenarios with relatively higher missing
proportions (ie, m = 0.5), our proposal is still applicable (results not shown). Overall, our
proposed JEAIC and JEBIC outperform the other existing criteria, and JEBIC is highly
recommended when the sample size is relatively large in real applications.

Tables 3 and 4 summarize the comparison between our proposal and JLIC on joint selection
performance when the missing probability is 0.1 or 0.2 under binary and Gaussian scenarios.
All results show that JEAIC and JEBIC outperform JLIC with higher selection rates for the
true underlying model. The improvement becomes more substantial when the outcomes are
in continuous scale. In addition, with relatively larger sample size, JEBIC performs even
better, which suggests a possible advantage in controlling false positive rates.

REAL DATA APPLICATIONS
Case 1: the ARIC study

The ARIC study was designed to investigate the causes of atherosclerosis and its clinical
outcomes, the trends in rates of hospitalized myocardial infarction and coronary heart
disease in 45-year-old to 64-year-old men and women from four US communities. We select
Forsyth County to identify a total of 1036 white patients who were diagnosed with
hypertension at the first examination in 1987 to 1989 for analysis (Kim et a/., 2012). The
existing literature has shown that SBP is an important risk factor for CVD risk prediction;
however, the findings on its longitudinal pattern vary across studies due to several factors
such as small sample size, lack of model diagnosis, limiting factors, and so on (Muntner ef
al., 2015). Here, we utilize the large epidemiological ARIC study for more exploration.
During the study period, longitudinal SBP measures were collected at approximately 3-year
intervals (1987-1989, 1990-1992, 1993-1995, and 1996-1998). There exist 355 dropout
subjects, leading to a monotone missing pattern. The baseline covariates of interest are
considered for exploration: age (in years), gender (1 = female; 0 = male), diabetes (1 =
fasting glucose = 126 mg/dL; 0 = fasting glucose < 126 mg/dL), ever smoker (1 = yes; 0 =
no), and also the examination times are coded as 1, 2, 3, and 4 for four time intervals. Before
modeling, data processing is conducted, where the age variable is centered at the mean age
of 54 and divided by 10 to represent a decade, and also SBP is standardized (Kim et al.,
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2012). Also, the dropout probability A;;is estimated from a logistic model with independent
variables including all baseline covariates aforementioned and Y1, Yj 2, and Yj 3.

Table 5 summarizes the results with the boldface values indicating that the information
criterion is the smallest among possible candidate models. From Table 5, Model 2 with an
AR1 correlation structure is selected by JEAIC, JEBIC, while Model 2 with an EXC
correlation structure is selected by MLIC/MLICC and Q/CW,. Thus, marginal mean
regression is selected consistently; however, the discrepancy in the selected correlation
structures based on different criteria shows the necessity and importance to utilize more
robust and reliable information criteria. Furthermore, we check the empirical pairwise
correlations between times, and a decreasing trend is shown when time gap becomes larger,
indicating our selection is reasonable and valid. The final selected model, Model 2, includes
three variables: time, gender, and age, which all have significant effects on SBP.

Case 2: the national institute of the mental health schizophrenia (IMPS) study

To further evaluate our proposal for categorical outcomes, we consider the data from the
IMPS study that includes 293 patients in the treatment group who were given drugs
chlorprom azine, fluphenazine, or thioridazine as treatment and 93 patients in placebo group
(Gibbons and Hedeker, 1994). For each patient, the severity of schizophrenia disorder
(IMPS79) was measured (range: 0-7) at weeks 0, 1, 3, 6 (time = y/week). Here, we define Y
= 1if IMPS = 4; otherwise, Y'=0. The goal is to investigate treatment effect (drug = 1 for
treatment; O for placebo) and sex (male = 1; female = 0) on Y. The dropout probability A;is
estimated from a logistic regression with the predictors drug;;, sexj;, timej;, Yi i1, Yjj-2, and

Yij-3

Table 6 summarizes the results of model fitting and comparisons. It is noted that previous
work has shown that an AR1 correlation structure is preferred based on MLICC; thus MLIC
and Q/CW,are calculated given this AR1 selection. Table 6 shows that Model 3 is selected
as the best candidate model based on JEAIC, JEBIC, and MLIC because of the minimum
values among all six candidate models. However, Q/CW, selects Model 4 as the best one
even though the value is slightly lower than that of Model 3. Lastly, the final selected model,
Model 3, includes two variables, time and drug, which both have significant effects on the
risk of severe schizophrenia disorder.

DISCUSSION

In this paper, we heuristically introduce two innovative information criteria, JEAIC and
JEBIC, for longitudinal data with dropout missingness under MAR. The proposed criteria
are evaluated in both theoretical and numerical studies with better performance compared to
MLIC, Q/CW,, and JLIC under a variety of scenarios. In particular, the expected quadratic
loss distance based upon which MLIC and JLIC are derived is a model-free criterion, which
only measures how well the estimated means approximate to the population means but
without identifying the true mean structure (Ye, 1998). Thus, it might not be easy to
distinguish two mean structures, which are both close to the true mean under finite samples.
Contrarily, Q/CW, madifies QIC and implements correlation structure selection based on so-
called “more informative” penalty term (Gosho, 2016). However, it is unclear in theory
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whether and how correctly specifying a “working” correlation structure will intrinsically
minimize the penalty term in Q/CW,. In contrast, our proposed JEAIC and JEBIC are based
on empirical likelihood, which are distribution-free and efficiently driven by observed data
and informative estimating equations. This accordingly provides scientific sense why our
empirical-likelihood-based criteria would have outperformance, assuming that the true
underlying model is nested within the full estimating equations. Our approach is easy to be
implemented in software with the code available in the Supporting Information. Also,
extensive simulations show that our proposed criteria perform computationally efficient and
are flexible to be extended for more complicated scenarios, indicating the potential for wide
application.

Despite the aforementioned advantages brought up from JEAIC and JEBIC, there is still
substantial work for further evaluation or improvement, for instance, selection stability to
account for sampling variability may need more check via extensive simulation studies using
a bootstrap approach. Also, two other potential extensions may include: (a) to accommodate
more general missing patterns such as intermittent missingness; (b) to consider the
missingness on some time-dependent covariates or high-dimensional predictors (ie, gene
expression data; Chen et al,, 2010), which is also commonly encountered in practice
nowadays. Therefore, how to generalize our proposal and accurately perform joint model
selection under these scenarios still needs to be explored.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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