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Abstract

A substrate-directed enantioselective anti-carboboration reaction of alkenes has been developed, 

wherein a carbon-based nucleophile and a boron moiety are installed across the C=C bond through 

a 5-membered palladacycle intermediate. A preliminary result also shows it is possible to extend 

this reaction to alkenes that are more distal from the directing group and react via a 6-membered 

palladacycle. The reaction is promoted by a palladium(II) catalyst and a monodentate oxazoline 

ligand. A range of enantioenriched secondary alkylboronate products were obtained with moderate 

to high enantioselectivity that could be further upgraded by recrystallization. This work represents 

an efficient method to synthesize versatile and valuable alkylboronate building blocks. Building on 

an earlier mechanistic proposal by Peng, He, and Chen, a revised model is proposed to account for 

the stereoconvergent nature of this transformation.
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Substrate-directed nucleopalladation offers a powerful platform for generating multiple 

consecutive stereocenters (Scheme 1A). The key feature of these transformations is the 

formation of a stabilized 5- or 6-membered metallacycle intermediate, which enables 

trapping with an additional reaction partner, such as a proton, an electrophile, or a 

nucleophile, under various redox manifolds. Recently, our group1 and others2 have 
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developed numerous alkene hydrofunctionalization and 1,2-difunctionalization reactions by 

exploiting this approach. A frontier in this area of research is controlling the absolute 

stereochemistry of the products by developing enantioselective variants of these 

transformations. In 2016, we reported a non-stereoselective γ-selective 

hydrocarbofunctionalization,1b which was subsequently rendered enantioselective in 2018 

by He, Peng, and Chen through the elegant design and development of a monodentate 

oxazoline (MOX) ligand.2c In a complementary line of inquiry using prochiral carbon 

nucleophiles, our laboratory1f and the group of Zhang and Gong2e have achieved 

enantioselective transformations with a chiral phosphoric acid (CPA) ligand and a chiral 

amine catalyst respectively. Although these strategies have been successful in 

enantioselective hydrocarbofunctionalization, enantioselective alkene 1,2-difunctionalization 

within this family of reactions has not been reported to date. Herein, we describe the first 

asymmetric alkene anti-carboboration reaction via directed nucleopalladation.3 As in our 

previously reported racemic version,4 the reaction proceeds smoothly via either 5- or 6-

membered palladacycle intermediates. The resulting enantioenriched organoboron 

compounds are highly valuable in organic synthesis5,6 and naturally map onto various 

bioactive compounds, such as β-homotryptophan. 7

To begin our study, we selected N-methylindole (2a) as the nucleophile, B2pin2 (3a) as 

boron coupling partner, and 8-aminoquinoline (AQ)-masked8 (Z)-3-hexenoic acid (1d) as 

our pilot alkene substrate. In order to render this reaction enantioselective, we carried out 

extensive screening of base, solvent, and reaction temperature, while at the same time 

examining a variety of chiral ligands (Table 1). During optimization of the solvent, we found 

that HFIP provided high yield but low ee, while THF delivered moderate ee but lower yield. 

Interestingly, using a mixture of HFIP and THF (1:1) as solvent improved both the yield and 

ee (see the Supporting Information (SI) for optimization details). Adding DMF as a third 

solvent component further improved the ee. Commonly used bi- and tridentate oxazoline-

based ligands as well as Yu’s APAO9 and MPAAM10 ligands (L2–L10) only induced low to 

moderate enantioselectivity with attenuated reactivity. Initial screening of monodentate 

ligands such as CPA (L1) and electron-deficient olefins (L11–L13) also failed to exert any 

chiral induction. To our delight, screening of monodentate imidazoline (MIM)(L15–L17) 

and MOX ligands (L18–L39) gave us reasonable levels of enantioselectivity, showing that 

these ligand scaffolds are privileged in this reaction. We decided to choose the MOX 

scaffold for further optimization based on synthetic accessibility considerations. The effect 

of different MOX ligands on the alkene carboboration reaction is similar to the trends in He, 

Peng, and Chen’s report.2c Tryptophan-derived ligands showed higher levels of chiral 

induction than other amino acid derivatives in terms of chiral induction. Systematically 

varying the N-aryl group revealed that the steric and electronic nature of the substituents 

impacts both yield and er (albeit to a minor extent), with electron-withdrawing groups 

proved to be advantageous. Ultimately, our optimization efforts converged with earlier 

findings from the aforementioned study2c in identifying L34, which bears a 3,5-bis-CF3-

phenyl substituent on the indole nitrogen, as the optimal ligand, providing up to 94:6 er and 

71% yield. Interestingly, 3,5-bis-nitro-phenyl substituted ligand L36 also offered the same 

enantioselectivity, albeit with slightly lower yield. Additionally, several oxazolines bearing a 

phenyl or methyl group at C-5 (L37–L39) were prepared based on the idea that increased 
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steric hindrance could further improve the enantioselectivity. Unfortunately, none of these 

ligands performed better than L34.

After identifying the optimal ligand and reaction conditions, we next investigated the scope 

of this palladium(II)-catalyzed asymmetric alkene anti-1,2-carboboration reaction (Table 2). 

A variety of AQ-masked alkenyl carbonyl compounds (1a–1h) were competent substrates in 

this transformation, providing the desired products in moderate to good yields with 

satisfactory er. The absolute configurations of products 4f and 4g were assigned as (R, R) by 

X-ray crystallography analysis, and other products were assigned by analogy.11 Increasing 

the size of R group on the alkene substrate improved the er while slightly lowering the yield. 

For example, terminal alkene 1a (R = H) showed only a moderate er of 86:14, while 

switching the R group to methyl (4d and 4e) and ethyl (4f), led to higher enantiomeric ratios 

of 91:9 and 94:6, respectively. More sterically bulky groups on the alkene, however, shut 

down the reaction. For instance, in the case of 4q, only trace amount of product was formed 

under the standard reaction conditions. Generally, Z-alkene substrates are more reactive than 

E-alkenes. Under the standard conditions, E-alkene 1b was carboborylated in less than 50% 

conversion. Nevertheless, with more forcing conditions, 4d could be generated from 1b in 

high yield and good enantioselectivity. In all the cases where internal alkene substrates were 

used, >20:1 dr was observed,12 demonstrating the excellent stereocontrol of this 

carboboration reaction. To our surprise, both E- and Z-alkene substrates (1b and 1c) resulted 

in the same major diastereomer after carboboration (4d and 4e), which is inconsistent with 

the stereoinduction and -convergence model proposed by He, Peng, and Chen.2c We instead 

believe the E-alkene is first isomerized to Z-configuration upon Pd(II) coordination, 

followed by anti-nucleopalladation to give a common alkylpalladium intermediate in both 

cases (vide infra). Gratifyingly, AQ-masked 4-pentenoic acid substrate 1i underwent this 

transformation smoothly through a putative 6-membered palladacycle delivering 4p in high 

yield and moderate er. However, internal alkene 1k was incompatible with this 

difunctionalization reaction.

We have also studied the scope of indole nucleophiles under the standard reaction 

conditions. Various indole derivatives bearing substituents at different positions on the 

indole ring were well tolerated in this transformation (4m–4o). Indoles with electron-

withdrawing substituents were incompatible coupling partners (2i–2k), potentially due to 

diminished nucleophilicity (4r–4t). Different groups on indole nitrogen also have a 

significant effect on reaction outcomes. With larger substituents (4k and 4l), the 

enantioselectivity of the reaction was improved, albeit with diminished yields. We have also 

attempted nucleophiles that were demonstrated to be compatible in our previously published 

hydrocarbofunctionalization method,1b such as 1,3-cyclopentadione and 3-

(dimethylamino)phenol. However, these nucleophiles were ineffective in 1,2-carboboration, 

even under non-stereoselective conditions (See SI). To our delight, 1,3-dicarbonyl compound 

2c was found to be a suitable nucleophile and provided the corresponding product (4c) in 

low yield and moderate er.

Subsequently, this Pd(II)-catalyzed asymmetric alkene carboboration method was performed 

on gram-scale to demonstrate its operational simplicity and practicality (Scheme 2). 

Compound 4f was prepared from Z-alkene 1d, N-methylindole (2a), and B2pin2 (3a) on 
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gram scale, with the yield and er consistent with the smaller scale experiment. Furthermore, 

recrystallization of the final product from Et2O or EtOH could provide nearly enantiopure 

secondary boronate 4f in satisfying overall yield.

A series of derivatizations were next conducted to further illustrate the synthetic utility of 

the carboborylated products (Scheme 3). Treatment of compound 4f with aqueous KHF2 

generated trifluoroborate salt 5 in high conversion. Initial attempts of boronate oxidation 

with strong oxidants, such as H2O2 solution, proved to be unsuccessful, presumably because 

of undesired oxidation of the electron-rich indole ring. Finally, using a mild oxidant 

NaBO3•4H2O,13 boronate 4f was efficiently converted into chiral alcohol 6 with almost 

complete stereoretention. Ni(tmhd)2-mediated methanolysis14,15 and a two-step 

transamidation deprotection16 of the AQ protecting group were also performed to deliver the 

corresponding methyl ester 7 and amide 8 with retention of the C–B bond, which could 

potentially be carried forward into further transformations.

Both in He, Peng, and Chen’s asymmetric hydrocarbonation reaction2c and this work, 

stereoconvergence was observed, with Z- and E-alkene substrates giving the same absolute 

and relative stereochemistry (Scheme 4A). In the previously proposed stereoinduction model 

(Scheme 4B),2c with an E-alkene, Int-E-I-down was computed to be more stable than Int-
E-II-up, and with a Z-alkene, Int-Z-II-up was computed to be more stable than Int-Z-I-
down. These trends also hold in the corresponding transition state energies, where 

nucleopalladation from Int-E-I-down (to give Int-E-III) and from Int-Z-II-up (to give Int-
Z-III) is favored for E and Z alkenes, respectively. This model predicts that the C(sp3)–Pd 

stereocenter at C2 would have opposite configuration with E and Z alkenes, which is not in 

agreement with our results.17 This discrepancy prompted us to consider an alternative 

explanation (Scheme 4C). Specifically, we envisioned a different scenario in which alkene 

isomerization to interconvert Int-E-I-down and Int-Z-II-up takes place under the reaction 

conditions, followed by nucleopalladation, which occurs preferentially through the lower-

energy pathway involving Int-Z-II-up. Although the precise mechanism of alkene 

isomerization remains unclear at this stage,18 evidence suggests that it occurs in the present 

system only after alkene complexation with palladium(II). To test the viability of this 

alternative mechanism, several mechanistic experiments were performed (Scheme 4D). At 

room temperature, treatment of Z-alkene 1d with stoichiometric Pd(OAc)2 both with and 

without L34 led to formation of the corresponding palladium(II) complex Pd-I with the 

retention of alkene geometry. In contrast, E-alkene 1l underwent E/Z isomerization in the 

presence and absence of MOX ligand. Interestingly, L34 seems to promote E-to-Z 
isomerization, possibly by creating a more sterically hindered environment around the 

palladium(II) center (See SI for additional mechanistic experiments).19 These results are 

consistent with the model depicted in Scheme 4C, where isomerization of Int-E-I-down to 

Int-Z-II-up takes place before the nucleopalladation step for the E-alkene substrates. which 

accounts for the observed stereoconvergence in the described 1,2-difunctionalization.

In conclusion, we have developed an enantioselective carboboration reaction of unactivated 

alkenyl carbonyl compounds using a chiral monodentate oxazoline (MOX) ligand. This 

reaction proceeded smoothly through 5- and 6-membered palladacycle intermediates to 

install a secondary boron group to the β or γ positions relative to the carbonyl group. A 
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variety of carbon nucleophiles and alkene substrates were demonstrated to be compatible, 

with moderate to good yields and enantioselectivity. Recrystallization of the final product 

was shown to greatly improve the product er. The reaction was scalable, and cleavage of the 

8-aminoquinoline (AQ) directing group was demonstrated. To explain the stereoconvergence 

of Z- and E-alkenes, a revised mechanism based on Chen’s original stereoinduction model 

was proposed. Future work will focus on the development of new chiral ligands and 

expanding the scope of substrated-directed palladium(II)-catalyzed 1,2-difunctionalization to 

other types of reactions and substrates. These results will be reported in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Background and Project Synopsis
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Scheme 2. 
Gram-Scale Synthesis and Recrystallization
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Scheme 3. 
Product Diversification
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Scheme 4. 
Investigation of Stereoconvergent Nucleopalladation
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