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Abstract

There exist many problems in science and engineering that involve optimization of an unknown or 

partially unknown objective function. Recently, Bayesian Optimization (BO) has emerged as a 

powerful tool for solving optimization problems whose objective functions are only available as a 

black box and are expensive to evaluate. Many practical problems, however, involve optimization 

of an unknown objective function subject to unknown constraints. This is an important yet 

challenging problem for which, unlike optimizing an unknown function, existing methods face 

several limitations. In this paper, we present a novel constrained Bayesian optimization framework 

to optimize an unknown objective function subject to unknown constraints. We introduce an 

equivalent optimization by augmenting the objective function with constraints, introducing 

auxiliary variables for each constraint, and forcing the new variables to be equal to the main 

variable. Building on the Alternating Direction Method of Multipliers (ADMM) algorithm, we 

propose ADMM-Bayesian Optimization (ADMMBO) to solve the problem in an iterative fashion. 

Our framework leads to multiple unconstrained subproblems with unknown objective functions, 

which we then solve via BO. Our method resolves several challenges of state-of-the-art 

techniques: it can start from infeasible points, is insensitive to initialization, can efficiently handle 

‘decoupled problems’ and has a concrete stopping criterion. Extensive experiments on a number of 

challenging BO benchmark problems show that our proposed approach outperforms the state-of-

the-art methods in terms of the speed of obtaining a feasible solution and convergence to the 

1.We used the open source codes provided by Baldi et al. (2015); Gardner et al. (2014); Gramacy et al. (2016); Picheny et al. (2016).
2.We chose the value 0:045 empirically, as it resulted in an active trade off between the objective and the constraint, while also 
ensuring consideration of limitations on the resources that happened to be available to us in our implementation. Clearly this choice 
will be highly implementation dependent, both in terms of problem and computational platform.
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global optimum as well as minimizing the number of total evaluations of unknown objective and 

constraints functions.
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1. Introduction

Bayesian optimization (BO) has been shown to be a powerful tool for solving optimization 

problems whose objective functions are unknown and expensive to evaluate (Brochu et al., 

2010a; Martinez-Cantin et al., 2007; Hutter et al., 2011; Torn and Zilinskas, 1989). For 

example, in drug design (Azimi et al., 2012; Scott, 2010; Brochu et al., 2010b), where the 

goal is to maximize the efficacy of a drug, the evaluation of the objective function, i.e., drug 

efficacy, across multiple drug formulations requires producing and testing new drugs, which 

would be subject to resource and cost limitations. As another example, minimizing the 

validation error of a machine learning model, such as hyperparameter tuning of a deep 

neural network (LeCun et al., 2015), involves many evaluations of the objective function,i.e., 

the validation error, where each evaluation requires training and evaluating a new model 

(Bergstra et al., 2011; Hoffman et al., 2014; Snoek et al., 2012; Swersky et al., 2013).

In many real-world problems, the desired solution, in addition to optimizing the objective 

function, must satisfy constraints that are also unknown and expensive to evaluate (Shahriari 

et al., 2016). For example, in the drug design problem, the goal is often to maximize the 

drug efficacy while limiting its side effects. In the hyperparameter tuning problem in 

machine learning, the optimal hyperparameters not only must minimize the validation error, 

but also must ensure that the prediction time of the learned model is sufficiently short. The 

majority of existing work on BO has focused on the unknown-objective problem (Jones et 

al., 1998; Kushner, 1964; Lizotte, 2008; Jones, 2001; Hernández-Lobato et al., 2014; Cox 

and John, 1992; Wu et al., 2017), while only a few recent reports have addressed the 

problem in the unknown-objective unknown-constraint setting (Snoek, 2013; Gelbart et al., 

2014; Gardner et al., 2014; Bernardo et al., 2011; Hernández-Lobato et al., 2015; Picheny et 

al., 2016; Gramacy et al., 2016; Picheny, 2014), (see Section 4 for a review).

1.1 Existing Challenges & Paper Contributions

In this subsection, we describe some of the limitations of the state-of-the-art constrained 

Bayesian optimization methods. First, several of these methods, including Expected 

Improvement with Constraints (EIC) (Schonlau et al., 1998; Snoek, 2013; Gelbart et al., 

2014), Integrated Conditional Expected Improvement (IECI) (Bernardo et al., 2011) and 

Expected Volume Reduction (EVR) (Picheny, 2014), require a feasible initial point. 

However, in practice, a feasible point is often not available; hence, these algorithms require 

finding a feasible point first, which consumes part of the computational budget. Second, 

most existing constrained BO methods, including EIC, IECI, EVR, Augmented Lagrangian 

for Bayesian Optimization (ALBO) (Gramacy et al., 2016) and Slacked-augmented 

Lagrangian for Bayesian Optimization (Slack-AL) (Picheny et al., 2016), require joint 
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evaluation of the objective function and all constraints at a candidate point in each step, in 

order to quantify its utility for finding a global optimum. However, for a large class of 

problems, labeled as “decoupled”, the objective function and the constraints can each be 

evaluated independently. This can be especially advantageous in settings where some 

functions might be significantly more expensive to evaluate than the others (Gelbart, 2015). 

For example, in the hyperparameter tuning problem, evaluating the prediction time may not 

require training the model and is often much cheaper than evaluating the validation error. 

Thus, methods that require joint evaluation of all unknown functions, including EIC, IECI, 

EVR, ALBO, and Slack-AL could increase the overall cost of solving decoupled problems 

more than might be necessary. Third, the majority of existing methods, including IECI, 

EVR, ALBO and Predictive Entropy Search with Constraints (PESC) (Hernández-Lobato et 

al., 2015), do not have closed form expressions for the so-called ‘acquisition function’, 

which is a key step in the BO algorithm. Thus, these methods need to approximate the 

acquisition function, typically via algorithms such as Expectation Propagation (Minka, 

2001) or Monte-Carlo Sampling (Picheny et al., 2013), which often suffer from 

implementation difficulty and slow execution time, or may cause instabilities (Picheny et al., 

2016; Gelbart, 2015). Finally, most of the BO methods fix a computational budget in terms 

of either wall-clock time or the number of function evaluations, and stop when the budget is 

exhausted. However, this budget is an additional parameter which must be hand tuned, and 

the performance of the BO method typically is highly dependent on it. A value that is too 

small may result in missing easy improvement while one that is too large might incur 

additional cost for an insignificant gain. Thus, having an automatic stopping criterion is 

highly desirable while many BO methods, including EIC, IECI, EVR and PESC, lack such a 

criterion.

In this paper, we propose a novel constrained BO framework for optimizing an unknown 

objective function subject to unknown constraints that resolves all the aforementioned 

challenges. First, we reformulate the problem into an equivalent unconstrained optimization. 

Since the joint (Bayesian) optimization of the unconstrained problem over the unknown 

objective function and unknown augmented constraints is challenging, we introduce 

auxiliary variables, one per constraint, and then force these variables to be equal to the the 

original variable, resulting in an equivalent constrained formulation, where the constraints 

are now known. The new formulation allows to perform the (Bayesian) optimization over 

each term independently, decoupling the objective function optimization from constraint 

satisfaction. To efficiently solve our proposed optimization, we adopt the Alternating 

Direction Method of Multipliers (ADMM) framework (Boyd et al., 2011; Hong and Luo, 

2017; Parikh et al., 2014), which leads to solving an ‘optimality subproblem’, and a 

‘feasibility subproblem’ for each constraint, at each iteration. The optimality subproblem 

minimizes the objective function close to current solutions of the feasibility subproblems, 

while each feasibility sub-problem searches for a feasible solution of its constraint close to 

the current solution of the optimality subproblem. Our framework, which we call Alternating 

Direction Method of Multipliers for Bayesian Optimization (ADMMBO), provides the 

following advantages compared to the state-of-the-art methods (see Table 1 for a summary).

– Unlike many existing methods, ADMMBO can start from an infeasible initial point and 

gradually move towards a feasible point via solving the feasibility subproblems.
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– Due to its separation of the optimizations over each expensive to evaluate function, i.e., 

objective function and each constraint, ADMMBO can handle decoupled problems 

efficiently, without requiring joint evaluation of all such functions at each candidate point.

– Because it decomposes the overall problem into separate subproblems, each involving only 

one expensive to evaluate function, resulting in simpler BO steps, ADMMBO may be able to 

facilitate derivation of closed-form acquisition functions.

– ADMMBO offers a well-defined stopping criterion, inherited from ADMM, which in 

practice avoids unnecessary function evaluations. The stopping criterion is satisfied when 

the solutions of the optimality and feasibility subproblems converge to each other.

– Our experiments empirically show that ADMMBO achieves good solutions significantly 

faster than the state-of-the-art methods, is relatively insensitive to initialization, and requires 

fewer function evaluations to find desirable solutions. Moreover, our results suggest that 

ADMMBO’s performance does not depend on whether the optimal solution lies on the 

boundary of or inside the feasible region, and is also insensitive to the relative volume of the 

feasibility region.

1.2 Paper Organization

In Section 2, we review both BO and the ADMM algorithm that we build upon. We motivate 

and introduce our proposed reformulation of the constrained problem and present our 

ADMMBO algorithm to solve this reformulated optimization in Section 3. In Section 4, we 

discuss existing related work on constrained BO that handles unknown-objective unknown-

constraint optimization problems. We present experimental results on synthetic and real data 

in Section 5. Finally, in Section 6, we discuss our results and open avenues for future 

research and conclude the paper.

2. Background

In this section, we review the underlying components of our proposed method: Bayesian 

Optimization in its standard settings, with a focus on EI as the acquisition function, and the 

ADMM algorithm.

2.1 Bayesian Optimization

Bayesian optimization (Shahriari et al., 2016; Brochu et al., 2010b) addresses the problem of 

finding a global minimum (or maximum), x*, of an objective function f (x) over a bounded 

box ℬ ∈ ℝd, where f is unknown but available to evaluate pointwise via computationally 

costly queries. Thus, the goal is to find x* with as few evaluations of f (x) as possible. Given 

a collection of initial points in ℬ and their observed objective values, denoted by 

ℱ = xl, f xl l = 1
n , BO methods iteratively suggest the next best candidate xl+1, and 

evaluate the corresponding objective value at iteration l + 1. More specifically, to find xl+1, 

BO first assumes a prior probability model for the unknown function f, denoted by p[f (x)], 

and then uses the observed data, ℱ, to update the posterior probability p[ f (x) |ℱ]. This 

posterior is then used to build an acquisition function, denoted by α(x), which provides an 
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estimate of the optimization usefulness of any candidate point x ∈ ℬ if it is chosen as xl+1 

for the next function evaluation. In contrast to f (x), the acquisition function α(x) has a 

known form and can be maximized over x ∈ ℬ, using analytical or numerical optimization 

techniques. The optimum of the acquisition function provides a recommendation for xl+1 

that is used to evaluate f (xl+1) and then to update the data ℱ accordingly. BO iteratively 

repeats this process, guiding the search towards sampling a global minimizer of f.

Many BO methods assume that the unknown function f (x) is a Lipschitz continuous 

bounded function over ℬ, and then model p[f (x)] as a Gaussian Process (GP) (Močkus, 

1975; Jones et al., 1998; Hernández-Lobato et al., 2014; Kushner, 1964; Cox and John, 

1992). GPs are non-parametric Bayesian models which are widely used in the Bayesian 

optimization literature since they provide a flexible fit for modeling unknown functions. 

Moreover given GP models, some acquisition functions give closed-form expressions, which 

can be efficiently optimized with numerical optimization techniques (Rasmussen and 

Williams, 2006; Houlsby et al., 2012). As an example, which we will then employ in the 

exposition of our method below, we describe a popular acquisition function called Expected 

Improvement (Jones et al., 1998; Brochu et al., 2010b). Given data ℱ, let f + denote the best 

objective value achieved by the points in ℱ. Then the improvement of any given point x, 

denoted by I(x), corresponds to the improvement of f (x) relative to f +, i.e., 

I(x) ≜ max 0, f + − f (x) . An efficient strategy in BO would be to choose the next candidate 

for function evaluation by finding a point x which offers the largest improvement (Jones et 

al., 1998). However, since f (x) is unknown and expensive to evaluate pointwise, it is 

difficult to calculate improvement I(x). Alternatively, Expected Improvement of x, denoted 

by EI(x), is an acquisition function which computes the expectation of I(x) with respect to 

p[ f (x) |ℱ]. Močkus (1975); Jones et al. (1998); Brochu et al. (2010b) has shown that 

assuming a GP model for p[f (x)], the Expected Improvement can be computed using the 

closed-form expression

EI(x) = E f |ℱ[I(x)] = σ f (x)
m f (x) − f +

σ f (x) Φ
m f (x) − f +

σ f (x) + ϕ
m f (x) − f +

σ f (x) , (1)

where the expectation is computed with respect to the posterior probability p[ f (x) |ℱ]. Here, 

Φ(•) denotes the normal cumulative distribution function, ϕ( ⋅ ) is the standard normal 

probability density function, and mf(x) and σf(x) are the posterior mean and standard 

deviation of p[f(x)|F], respectively. All four of these components can be cheaply and easily 

evaluated for any given x. Thus, one advantage of EI(x) over I(x) is that EI(x) can be cheaply 

evaluated pointwise without requiring evaluation of f(x). Moreover, according to (1), EI(x) 

can be efficiently maximized using numerical optimization techniques to suggest the most 

promising point (from the perspective of EI) for function evaluation.

2.2 Alternating Direction Method of Multipliers (ADMM) Optimization

Our reformulation of the optimization of an unknown-objective unknown-constraint problem 

allows us to build a framework based on a popular numerical optimization technique, 

ADMM (Boyd et al., 2011; Hong and Luo, 2017; Parikh et al., 2014), which we briefly 
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review here. Consider the problem of minimizing f (x) + g(x) with respect to x, where 

x ∈ ℝd and f , g:ℝd ℝ. Specifically, consider the case where separately minimizing f (x) 

and g(x) is relatively easy, while optimizing their sum is challenging. For example in the 

Least Absolute Shrinkage and Selection Operator (LASSO) problem (Tibshirani, 1996; 

Mota et al., 2013), we are interested in minimizing ‖Ax − b‖2
2 + λ‖x‖1with respect to x, with 

an overdetermined dictionary, A. While each term can be easily minimized, it is much 

harder to minimize the sum of the two terms. ADMM is a powerful numerical optimization 

method which handles such cases (Boyd et al., 2011; Hong and Luo, 2017).

In order to minimize f (x) + g(x), ADMM first defines an auxiliary variable z ∈ ℝd for the 

function g, and considers the following optimization, which is equivalent to the original 

minimization problem,

min
x, z

f (x) + g(z) s.t . x = z . (2)

To solve (2), ADMM first builds the augmented Lagrangian function (ALF) for (2), where 

the ALF provides an unconstrained surrogate function for the constrained problem. 

Specifically, ALF augments the objective function of a constrained problem with terms 

penalizing the infeasibility of the constraints. These penalty terms include the product of the 

feasibility gap with a dual variable vector, also called a Lagrange multiplier vector, and the 

squared Euclidean norm of the feasibility gap. More specifically, ALF for (2) is given by

Lρ(x, z, y) ≜ f (x) + g(z) + yT(x − z) + ρ
2 ‖x − z‖2

2, (3)

where y ∈ ℝd denotes the Lagrange multiplier vector corresponding to the constraint, x – z is 

the feasibility gap, and ρ is a positive penalty parameter.

Starting from an initial value for y, z, ADMM iteratively updates the values of variables x, y, 
z by minimizing the ALF, until convergence. Let xk, zk, yk denote the values of variables at 

iteration k. At iteration k + 1, ADMM solves two optimization problems, one over x while 

fixing z = zk and y = yk and one over z while fixing x and y, and updates the Lagrange 

multiplier vector afterwards. More specifically, at iteration k + 1, ADMM solves

xk + 1 = argmin
x

Lρ x, zk, yk = argmin
x

f (x) + yk T x − zk + ρ
2 ‖x − zk‖2

2,

zk + 1 = argmin
z

Lρ xk + 1, z, yk = argmin
z

g(z) + yk T xk + 1 − z + ρ
2 ‖xk + 1 − z‖2

2,

yk + 1 = yk + ρ xk + 1 − zk + 1 .

(4)

The primal residual is defined as rk + 1 ≜ xk + 1 − zk + 1, i.e., the gap between the main 

variable x and the auxiliary variable z, and the dual residual can be shown to be 

sk + 1 ≜ − ρ zk + 1 − zk  (Boyd et al., 2011; Hong and Luo, 2017). Assuming f and g are 
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closed, proper and convex, and also that the unaugmented Lagrangian Lρ(x, z, y) − ρ
2 ‖x − z‖2

2

has a saddle point, Boyd et al. (2011) proves that as k ∞, rk 0, f xk + g zk p*, and 

yk y* where p* is the optimal objective value of primal problem (2) and y* is the dual 

optimal point. The necessary and sufficient optimality conditions for the ADMM problem 

are primal feasibility and dual feasibility, and they are effecively met in practice when the 

𝓁2-norm of both the primal and dual residuals of (2) fall below an appropriately small 

tolerance. Boyd et al. (2011) shows that ADMM can be extended to problems optimizing 

sum of more than two functions. In this situation, ADMM defines a distinct auxiliary 

variable zi for each additional function gi, i = 1,…, N, and enforces each such variable to be 

equal to the main variable x. The rest of the algorithm naturally follows. See (Boyd et al., 

2011), chapter 7 for a detailed discussion.

3. Constrained Bayesian Optimization via ADMMBO

In this section, we describe our proposed framework, which we refer to as ADMMBO, for 

solving the Bayesian optimization problem under unknown constraints. More specifically, 

we consider the constrained optimization problem of

min
x ∈ ℬ

f (x)

s.t . ci(x) ≤ 0, i = 1, …, N,
(5)

where, ℬ ⊂ ℝd is a bounded domain and f , ci:ℝd ℝ are unknown functions which can be 

evaluated pointwise. However, such evaluations are expensive. Our goal is to determine a 

sampling procedure for x that sequentially approaches a global optimum, x*, with as few 

function queries from f and all ci’s as possible.

To tackle the problem, we first reformulate (5) into the unconstrained optimization

min
x ∈ ℬ

f (x) + ∑
i = 1

N
M1 ci(x) > 0 , (6)

where 1(•) is an indicator function, which is one when its argument is true and is zero 

otherwise, and M is a positive constant. For a sufficiently large M, the constrained problem 

in (5) will be equivalent to the unconstrained one in (6).

Proposition 1.

Given Lipschitz continuity of f and compactness of ℬ, f is bounded for every x in ℬ. Let η𝓁
and ηu denote, respectively, the lower and upper bound of f, i.e., η𝓁 ≤ f (x) ≤ ηu, ∀x ∈ ℬ. 

Assume the feasible region of (5) is non-empty. For M > ηu − η𝓁, the unconstrained 

optimization in (6) will be equivalent to (5).
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Proof.

Let J(x) denote the value of the objective function of (6). For any infeasible point of (5) 

xi ∈ ℬ, we have J xi ≥ η𝓁 + M, since the minimum value that f can attain is η𝓁 and the 

second term in (6) will be at least M, as xi is infeasible for at least one constraint. On the 

other hand, for any feasible point x f ∈ ℬ of (5), we have J x f ≤ ηu . Since M > ηu − η𝓁, we 

always have J(xf) < J(xi), hence (6) always finds a feasible solution, which makes the second 

term of the objective function vanish. As a result, the minimization in (6), obtains the 

minimizer of f, which satisfies all the constraints, hence being equivalent to (5).

A key observation in our proposed framework is that while jointly minimizing the objective 

function in (6) is difficult, individually minimizing each term of the objective function using 

Bayesian optimization allows independent function evaluations for f and each ci. More 

specifically, we can minimize f (x) with respect to x by assuming a GP model for p[f (x)] 

and using BO afterwards. Similarly, we can minimize 1(ci(x) > 0) with respect to x by 

assuming a GP model for p [ci(x) and using it to build a Bernoulli random variable with 

parameter θi ≜ p ci(x) > 0  to represent 1(ci(x) > 0), and then applying BO. In contrast, 

optimizing the entire objective function in (6) is difficult and also may require joint function 

evaluations for f and every ci. To take advantage of the simplicity of individually optimizing 

each term in the objective function of (6), we introduce N auxiliary variables, one per 

constraint function, and consider the following optimization problem

min
x, z1, …, zN ∈ ℬ

f (x) + ∑
i = 1

N
M1 ci zi > 0

s.t . x = zi, i = 1, …, N .
(7)

which clearly is equivalent to (6). Notice that in contrast to the unknown-objective unknown-

constraint problem in (5), in (7) the equality constraints are known (deterministic) and only 

the objective function is unknown. Moreover, each of the unknown terms in the objective 

function of (7) is defined over a different variable, leading to a variable separation property 

which we will take advantage of. Next, we describe how ADMMBO combines Bayesian 

optimization with an ADMM-inspired framework to solve (7) efficiently.

3.1 ADMMBO Formulation

In this section, we describe our approach to combine the ADMM algorithm with BO steps to 

solve the proposed equivalent reformulation in (7). We first need to build the ALF for the 

optimization in (7), which is given by

Lρ x, zi, yi = f (x) + ∑
i = 1

N
M 1 ci zi > 0 + yi

T x − zi + ρ
2 ‖x − zi‖2

2 = f (x)

+ ∑
i = 1

N
M 1 ci zi > 0 + ρ

2 ‖x − zi +
yi
ρ ‖

2

2
− ρ

2 ‖yi‖2
2 ,

(8)
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where yi ∈ ℝd is a Lagrange multiplier vector, and ρ is a positive penalty parameter. Note 

that the second line in (8) follows from the first line by completing the square and reordering 

terms. Having formed the ALF, to apply the ADMM algorithm, as discussed in Section 2.2, 

we initialize the unknown variables and the Lagrange multiplier vectors and at ADMM 

iteration k, we solve for each variable in turn, using BO, having fixed the rest. More 

specifically, for (8), the kth ADMM iteration will become

xk + 1 = argmin
x ∈ ℬ

f (x) + ∑
i = 1

N ρ
2 ‖x − zi

k +
yi

k

ρ ‖
2

2

,

zi
k + 1 = argmin

zi ∈ ℬ
M1 ci zi > 0 + ρ

2 ‖xk + 1 − zi +
yi

k

ρ ‖
2

2

, ∀i = 1, …, N

yi
k + 1 = yi

k + ρ xk + 1 − zi
k + 1 , ∀i = 1, …, N .

(9)

The x update, which we refer to as the optimality subproblem, minimizes the unconstrained 

objective function of the original problem in (5), f, plus a sum of quadratic terms that force 

the solution to be close to the feasible region. On the other hand, each zi update, which we 

refer to as feasibility subproblems, looks for a feasible point of the constraint ci that is also 

close to the unconstrained optimum found in the optimality subproblem.

Since both the optimality and feasibility subproblems involve unknown objectives, we solve 

each of them using Bayesian optimization with unconstrained acquisition functions. Thus, in 

ADMMBO there are two levels of iteration: ADMM iterations (from now on referred to as 

main loop iterations), and BO iterations, which are performed to solve each subproblem 

during each main loop iteration. ADMMBO’s general framework allows it to incorporate 

any unconstrained acquisition function, including EI, Predictive Entropy Search (PES)

(Hernández-Lobato et al., 2014), and Knowledge Gradient (KG)(Wu et al., 2017), as best 

fits a given problem. For example, while PES is reported to outperform EI by Hernández-

Lobato et al. (2014),but has also been reported to be relatively slow due to its need to sample 

x* and compute expectation propagation approximations (Hernández-Lobato et al., 2016). 

EI has a closed-form solution which, in practice, may make it faster than PES (Jones et al., 

1998). The choice of acquisition function for each subproblem in any main loop iteration of 

ADMMBO is a matter of user preference and does not change ADMMBO’s structure. In 

this paper we chose to use EI to solve both the optimality and feasibility subproblems 

because of its wide popularity and because its structure more easily leads to closed form 

solutions. In addition, while we could have modeled the objective function of each 

subproblem with a single GP, this would have ignored available partial knowledge about the 

structure of these objectives. Instead, we designed a specific Bayesian model for each 

subproblem objective that takes advantage of this knowledge to better guide the 

optimization. We show that EI still maintains a closed-form solution given these new 

Bayesian models.
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3.1.1 Expected Improvement for the Optimality Subproblem—For the kth main 

loop iteration, the optimality subproblem associated with (9) requires optimizing the sum of 

the unknown objective function, f, and a known function, i.e.,

min
x ∈ B

uk(x), where uk(x) ≜ f (x) + ∑
i = 1

N ρ
2 ‖x − zi

k +
yi

k

ρ ‖
2

2

. (10)

As f (x) is an unknown function, we solve (10) via BO by assuming that f follows a GP 

prior. Since zi
k and yi

k are given and fixed, the second term in the definition of uk(x) is 

constant for any given x. Thus, we can still model p [uk(x)] as a GP. Given observed data 

ℱ = xl, f xl l = 1
n , xl ∈ ℬ, we compute 𝒰k = xl, uk xl l = 1

n
 and denote the best objective 

value of (10) so far by uk+. Then, similar to the standard EI, we compute the Expected 

Improvement for the optimality subproblem, which will be

EI(x) = E
uk |𝓊k

max 0, uk + − uk(x)

= σ
uk(x)

m
uk(x) − uk +

σ
uk(x) Φ

m
uk(x) − uk +

σ
uk(x) + ϕ

m
uk(x) − uk +

σ
uk(x) ,

(11)

where mu
k(x), σu

k(x) are, respectively, the mean and standard deviation of the posterior 

distribution p[uk(x)|𝓊k]. Thus, for any given x, we can calculate its EI via (11).

3.1.2 Expected Improvement for the Feasibility Subproblem—For kth main loop 

iteration, the ith feasibility subproblem associated with (9) requires optimizing the sum of an 

unknown function and a known function, i.e,

min
zi ∈ ℬ

hi
k zi , where hi

k zi ≜ 1 ci zi > 0 + ρ
2M ‖xk + 1 − zi +

yi
k

ρ ‖
2

2

. (12)

Let us call qi
k zi = ρ

2M ‖xk + 1 − zi +
yi
k

ρ ‖
2

2
. Since ci(zi) is unknown, we solve (12) via BO by 

assuming that ci follows a GP prior. Then, we model 1(ci(zi) > 0) as a Bernoulli random 

variable with the parameter θi ≜ p ci zi > 0 . Since xi
k + 1 and yi

k are given and fixed, qi
k zi

will be constant for any given zi. Thus, we model hi
k zi  as a shifted Bernoulli random 

variable, again with the parameter θi, which is equal to qi
k zi + 1 with probability θi, and 

equal to qi
k zi  with probability 1 – θi. Note that 1 – θi for any zi is a Gaussian Cumulative 

Distribution Function (CDF) based on the marginal Gaussianity of GPs (Houlsby et al., 

2012; Gardner et al., 2014; Rasmussen and Williams, 2006). Given 
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𝒞i = zl, i, ci zl, i l = 1

mi , zl, i ∈ ℬ, we generate ℋi
k = zl, i, hi

k zl, i l = 1

mi
 using Ci, and denote 

the best objective value of (12) by hi
k + . We then compute the Expected Improvement for the 

ith feasibility subproblem, which is given by

EI zi = E
hi
k |ℋi

k max 0, hi
k + − hi

k zi = max 0, hi
k + − qi

k zi − 1 θi

+ max 0, hi
k + − qi

k zi 1 − θi ,
(13)

Given any zi, if hi
k + − qi

k zi ) is non-positive, then EI(zi) is zero. If hi
k + − qi

k zi  lies between 

zero and one, the first term in (13) is zero while the second term has a positive value. When 

hi
k + − qi

k zi  is larger than one, both terms are positive. Thus, we can simplify (13) to

EI zi =

0, if hi
k + − qi

k zi ≤ 0

max 0, hi
k + − qi

k zi 1 − θi , if 0 < hi
k + − qi

k zi ≤ 1

max 0, hi
k + − qi

k zi 1 − θi + max 0, hi
k + − qi

k zi − 1 θi, else.

(14)

Notice that according to the closed-form expressions in (11) and (14), Els can be cheaply 

evaluated pointwise at any given point. As a result, these acquisition functions can be 

maximized with standard numerical optimization methods such as DIRECT or stochastic 

gradient descent (Finkel, 2003; Bottou, 2010)

3.2 ADMMBO Algorithm

Algorithm 3.1 summarizes the steps of ADMMBO. The parameters to the algorithm are the 

search space β . the coefficient M, the number of initial function evaluations for the objective 

function n, number of initial function evaluations for each constraint mi for i = 1,…, N, the 

maximum number of ADMM iterations K, the ADMM’s penalty parameter ρ, and the total 

BO iteration budget, the maximum number of function evaluations throughout the algorithm. 

We distribute this budget among main loop where at iteration k, αk denotes the BO budget 

for the optimality subproblem and βi
k is the BO budget for ith feasibility subproblem, the 

tolerances for the stopping criterion ϵ, and a confidence parameter δ to determine the final 

solution returned in the case that the budget is exhausted before convergence.
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Algorithm 3.1

ADMMBO

1: Input: ℬ, n, mi, δ, K, αk, βi
k, ρ, ϵ, M; ∀i = 1, …, N, ∀k = 1, …, K

2:
Randomly generate xl ∈ ℬ

l = 1
n and zl, i ∈ ℬ

l = 1

mi , ∀i = 1, …, N

3:
Initialize: k = 1, ℱ1 = xl, f xl l = 1

n , Ci
1 = zl, i, ci zl, i l = 1

mi , yi
1 = 0, zi

1 = 0, S = False;

4: while (k ≤ K) and (S == False) do

5:  xk + 1, ℱk + 1 OPT ℱk, ℬ, αk, zi
k, yi

k
 (See Algorithm 3.2)

6:  for i = 1,…, N do

7:   zi
k + 1, 𝒞i

k + 1 FEAS 𝒞i
k, ℬ, βi

k, xk + 1, yi
k

 (See Algorithm 3.3)

8:   yi
k + 1 = yi

k + ρ xk + 1 − zi
k + 1

9:   rk + 1[i] = xk + 1 − zi
k + 1

10:   sk + 1[i] = − ρ zi
k + 1 − zi

k

11:  end for

12:  if ‖rk + 1‖2 ≤ ϵ and ‖sk + 1‖2 ≤ ϵ  then S = True

13:  end if

14:  k ← k + 1

15: end while

16: if S==True then   Output: xk+1

17: else

  Output: argmin argmin
x ∈ ℱK ∪ 𝒞1

K ∪ … ∪ CN
K

E f |ℱK[ f (x)] s.t . p ci(x) ≤ 0 ≥ 1 − δ

18: end if

Algorithm 3.1 works as follows: first in order to build the initial datasets ℱ and 𝒞i, the 

algorithm randomly generate n and mi samples in the search space ℬ, and then evaluate f 
and ci at the corresponding points (lines 2 – 3). After initializing the parameters (line 3), 

ADMMBO iterates through its main loop until it reaches the total BO iteration budget or the 

stopping criterion is satisfied (line 4). At the kth iteration of the main loop, ADMMBO 

solves the optimality subproblem with BO given budget αk. Specifically, this step is done by 

calling the Algorithm 3.2, denoted OPT, which outputs a desirable solution of the optimality 

subproblem and the updated dataset ℱ (line 5). Then, for each constraint i, ADMMBO 

performs the following steps: first it solves the corresponding feasibility subproblem with 

BO given budget αi
k, by calling the algorithm 3.3, denoted FEAS, which outputs a good 

solution of the ith feasibility subproblem and the updated dataset Ci (line 7). Then, 
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ADMMBO updates the corresponding Lagrange multipliers and components of the primal 

and dual residuals (lines 8 – 10). Afterwards, at the end of each main loop iteration, it 

checks the stopping criterion, i.e. whether the 𝓁2‐norms of the primal and dual residuals are 

smaller than or equal to a chosen tolerance (line 12). If the stopping criterion is satisfied, the 

algorithm stops and reports the most recent x as the desirable solution for the unknown-

objective unknown-constraint problem (5) (line 17). Otherwise, it keeps iterating. After 

reaching the maximum number of total iterations without meeting stopping criterion, 

ADMMBO reports a final recommendation for the desirable solution of (5). This 

recommendation is the point belonging to the merged data ℱ ∪ 𝒞1 ∪ … ∪ 𝒞N which has the 

lowest expected objective value subject to the posterior probability of satisfying the 

constraints being at least 1 – δ, where δ is a parameter representing the maximum 

acceptance probability that a final solution is infeasible.

Algorithm 3.2

OPT

1: Input: ℱ = xl, f xl l = 1
n , ℬ, α, zi, yi; i = 1, …, N

2: Initialize: ℱ1 = ℱ
3: for t = 1,…, α do

4:

 Given ℱt, compute 𝒰t = (xl, f xl + ∑
i = 1

N ρ
2 ‖xl − zi +

yi
ρ ‖

2

2

l = 1

n

5:  Update the GP posterior p u(x) |𝒰t

6:  xt argmaxx ∈ ℬEI(x) (use expression (11) for EI(x))

7:  ℱt + 1 = ℱt ∪ xt, f xt

8:  n ← n + 1

9: end for

10:

xmin = argmin f (x) + ∑
i = 1

N ρ
2 ‖x − zi +

yi
ρ ‖

2

2

11: Output: [xmin, Fα]

Algorithm 3.3

FEAS

1:
Input: 𝒞i = zl, i, ci zl, i l = 1

mi , ℬ, βi, x, yi

2: Initialize: Ci
1 = Ci

3: for t = 1,…,βi do
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4:

 Given 𝒞i
t, compute ℋi

t = zl, i, 1 ci zl, i > 0 + ρ
2M ‖x − zl, i +

yi
ρ ‖

2

2

l = 1

mi

5:  Update the GP posterior p ci zi |𝒞i
t

6:  zi
t argmaxzi ∈ ℬEI zi  (use expression (13) for EI(zi))

7:  𝒞i
t + 1 = 𝒞i

t ∪ zi
t, ci zi

t

8:  mi ← mi + 1

9: end for

10:

zmin = argmin
zi ∈ 𝒞i

βi
1 ci zi > 0 + ρ

2M ‖x − zi +
yi
ρ ‖

2

2

11:
Output: zmin, 𝒞i

βi

Algorithm 3.2, denoted by OPT, solves the optimality subproblem with BO under a budget 

α. For α iterations, OPT repeats the following steps: Given yi zi, and dataset ℱ, it computes 

𝒰 and updates the GP posterior p[u(x) |𝒰] . Then, OPT uses this posterior to compute EI(x) 

using equation (11) and maximizes it over x ∈ ℬ . It evaluates the objective function f at the 

global optimum of EI(x), and updates data ℱ accordingly. After a iterations, OPT gives a 

final recommendation for the solution of the optimality subproblem, and outputs the most 

updated data ℱ.

Algorithm 3.3, denoted by FEAS, solves each feasibility subproblem with BO under a 

budget βi. For βi iterations, FEAS repeats the following steps: Given x, yi, and data 𝒞i, it 

computes ℋi . Then, FEAS updates the GP posterior p ci zi |𝒞i  and use this posterior and 

ℋi to compute EI(zi) using equation (13). Next, it maximizes EI(zi) over zi ∈ ℬ, evaluate the 

constraint Ci at the optimum of the EI(zi) and updates Ci accordingly. After βi iterations, the 

algorithm gives a final recommendation of the solution for the feasibility subproblem, and 

outputs the most updated data Ci.

ADMMBO has the potential to be parallelized at two different levels: first, the feasibility 

subproblems are independent and can be solved independently, in parallel (lines 6 – 11 in 

Algorithm 3.1). Second, BO iterations at OPT and FEAS (lines 3 – 9 in Algorithm 3.2 and 

3.3) can be parallelized according to a scheme suggested by Snoek et al. (2012) where a new 

candidate location is selected according to not only the observed data, but also the locations 

of pending function evaluations. Both parallelization will lead to speed up of ADMMBO.

3.2.1 Hyperparameter Tuning for ADMMBO—ADMMBO has two sets of 

parameters: BO-dependent parameters, which are commonly used by other constrained BO 

methods, and ADMM-dependent parameters, which lend themselves to the ADMM 

framework of ADMMBO. BO-dependent parameters are B, a box defining the search space, 
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n and mi, the number of initial random samples at which to evaluate f and each ci, 

respectively, δ, the parameter used if ADMMBO does not converge, and a total BO iteration 

budget.

ADMM-dependent parameters are K, the maximum number of iterations in the main loop, 

along with αk and βi
k, the BO iteration budgets for the optimality and ith feasibility 

subproblems during the kth main loop iteration. These three hyperparameters should be 

jointly set in a way that ∑k = 1
K αk + ∑i = 1

N βi
k  equals to the total BO iteration budget. ρ is 

the ADMM penalty parameter, and ϵ is a small tolerance which controls the stopping rule 

for the algorithm. We provide guidance on how to set these hyperparameters in practice in 

section 5.1. Finally, M controls the penalization of infeasibility. In Proposition 1, we suggest 

to set the value of M based on the range of f over ℬ . The unconstrained range of f is known 

for many user-defined objectives. For example, if we define f as the validation error of a 

machine learning model, this range equals, the maximum possible error, 1, minus the 

minimum possible error 0, 1 – 0 = 1. Since the unconstrained range of f is an upper bound 

for the range of f over ℬ, we can use it to set M. However, this range might be unknown in 

practice. In such cases, we recommend setting the value of M equal to a large number with 

respect to any likely value of f, which can be chosen based on the application domain. As 

long as M is reasonably large, its precise value does not affect the performance of 

ADMMBO in practice. In section 5.7, we illustrate that ADMMBO’s performance is not 

sensitive to the choice of M over a very wide range of values.

3.2.2 Convergence in Practice—Convergence guarantees for ADMM only hold for 

convex problems (Boyd et al., 2011). However, here only limited information is available 

about the objective function and the feasible set and thus often the convexity of the problem 

is unknown. If f is a convex function and the feasible set is a convex set, ADMM has 

convergence guarantees given each subproblem is solved exactly. In ADMMBO,however, 

the subproblems have unknown objectives which the algorithm solves using BO methods. 

These methods offer exact solutions only given an unlimited budget, which is not realistic in 

practice. For a limited budget, BO methods find approximate solutions for the subproblems, 

and thus similar to the rest of the BO state-of-the-art, ADMMBO cannot offer convergence 

guarantees.

However, in fact, we have chosen ADMM precisely to build upon the many studies that have 

found that ADMM exhibits a good empirical performance even if the convergence 

conditions are not satisfied (Xu et al., 2016; Wang et al., 2015; Hong et al., 2016). We report 

in section 5 that ADMMBO converged for the non-convex problems we tested.

4. Related Work

Two general strategies have been introduced to extend Bayesian optimization to constrained 

Bayesian optimization with unknown constraints. One strategy is to modify the acquisition 

function within the Bayesian optimization framework, that the acquisition function 

simultaneously takes into account the feasibility of a candidate point along with its objective 

value. Most previous work falls into this category, including EIC, IECI, EVR, and PESC 
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(Schonlau et al., 1998; Snoek, 2013; Gelbart et al., 2014; Gardner et al., 2014; Bernardo et 

al., 2011; Picheny, 2014; Hernández-Lobato et al., 2015). The second strategy merges 

Bayesian optimization with numerical optimization techniques which are designed to deal 

with constrained optimization problems. To the best of our knowledge, to date there is only 

one such approach in this category for BO, ALBO, along with its Slack-AL variant, 

(Gramacy et al., 2016; Picheny et al., 2016). We describe some existing methods in both 

categories next.

4.1 Constrained BO using Modified Acquisition Functions

Several proposed acquisition functions for BO problems with unknown constraints are 

extensions of EI (Jones et al., 1998). One such extension, Expected Improvement with 

Constraints is reported by Schonlau et al. (1998); Snoek (2013); Gelbart et al. (2014), and 

Gardner et al. (2014). Given a point x, EIC calculates the expectation of the improvement of 

the objective value of x over the best observed objective value evaluated at a feasible point 

so far, and then weight it by the probability of feasibility of x. Assuming independent 

Gaussian process models for the objective function and constraints, EIC yields closed-form 

solutions based on the standard normal CDF and PDF. Bernardo et al. (2011) proposed 

another variation of EI, Integrated Expected Conditional Improvement, based on a one-step 

look-ahead strategy. Given a candidate point x, IECI measures how much reduction in the 

improvement of the objective value of a typical point x’ is expected, if we have previously 

evaluated the objective value of x and augmented our data with it. IECI does not have a 

closed-form solution, and thus its integral is computed numerically over a grid of x’. This 

limits the application of IECI to small dimensional problems (Hernández-Lobato et al., 

2015; Shahriari et al., 2016).

In addition to EI-based methods, there is a class of information-based acquisition functions 

designed to reduce a chosen measure of uncertainty about the location of the global 

optimum. Thus, for a candidate point, such methods evaluate the reduction in their 

uncertainty measure which will be obtained by evaluating its objective value. Expected 

Volume Reduction proposed by Picheny (2014) uses the expected volume of the feasible 

region as its measure of uncertainty. For a point x, EVR first computes the probability that, 

for any given point x’ f (x’) is less than the minimum of the best observed f so far 

corresponds to a feasible point and f (x). It then integrates that probability against the 

probability of feasibility of x’ over all x’. Another information-based acquisition function, 

Predictive Entropy Search with Constraints (PESC) uses entropy as its uncertainty measure. 

Specifically, PESC first calculates the differential entropy of the posterior of the global 

optimum and then for a point x, measures how much reduction is expected in this entropy if 

we evaluate the objective function and constraints at point x (Hernández-Lobato et al., 

2015).

4.2 Constrained BO using Numerical Optimization

In addition to the approaches based on BO with a modified acquisition function, there is a 

second category that solves the unknown constraint problem using ideas from the field of 

numerical optimization. Many numerical optimization algorithms tackle a constrained 

problem by reformulating it into two or more coupled unconstrained problems, which are 
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generally easier to handle, and then solving them via alternating iterations (Nocedal and 

Wright, 2006). Here, where the constrained problem involves unknown functions, the idea is 

to define unconstrained surrogate problems using numerical optimization techniques, and 

then solve these problems, which still involve unknown functions, with BO. The first, and 

to-date only, methods in this category are based on the augmented Lagrangian method.

Gramacy et al. (2016) proposed the Augmented Lagrangian for BO, ALBO, which uses the 

Augmented Lagrangian Function (ALF) to formulate unconstrained surrogate problems, and 

then solves them using EI as acquisition function. The challenge in the proposed approach is 

that ALF of the original problem involves a complicated mixture of unknown functions. 

Thus, the previous calculations for the EI, which assumed a single GP model, do not hold 

any more. Building a probabilistic model for this mixture objective and recalculating EI 

based on it is a challenging task. As a result, EI calculations in ALBO do not result in closed 

form solutions, and so this method relies on Monte-Carlo approximation. To address this 

issue, Picheny et al. (2016) introduced Slack-AL by modifying the original problem to 

include a slack variable and then applying the augmented Lagrangian method on the 

modified problem. The authors optimized the modified ALF with EI iterations. It turns out 

that the modified ALF in Slack-AL is easier to solve than the ALF in ALBO. As a result, the 

Expected Improvement in Slack-AL, in contrast to ALBO, has a closed-form expression, 

and may be evaluated with library routines.

5. Experiments

In this section, we evaluate the performance of ADMMBO on several synthetic problems, 

studied in the constrained Bayesian optimization literature (Gardner et al., 2014; Gramacy et 

al., 2016; Picheny et al., 2016), as well as on the problem of hyperparameter tuning for a fast 

neural network on the MNIST digit recognition dataset (LeCun, 1998; Hernández-Lobato et 

al., 2015). We compare ADMMBO with four state-of-the-art constrained Bayesian 

optimization methods1: EIC (Gelbart et al., 2014; Gardner et al., 2014), ALBO (Gramacy et 

al., 2016), Slack-AL (Picheny et al., 2016) and PESC (Hernández-Lobato et al., 2015).

5.1 Implementation Details

In all the synthetic problems, discussed below, similar to (Hernández-Lobato et al., 2015; 

Picheny et al., 2016; Gramacy et al., 2016), we assume that f and ci follow independent GP 

priors with zero mean and squared exponential kernels. For the problem of hyperparameter 

tuning in Neural Networks on the MNIST dataset, we assume that f and ci, follow 

independent GP priors with zero mean and with Matérn 5/2 kernels (Hernández-Lobato et 

al., 2015). For ADMMBO, in all the experiments we set M = 50, ρ = 0.1, ϵ = 0.01, δ = 0.05 

and initialize yi
1 with a zero vector and and zi

1 with min(ℬ) . Further, in all the experiments, 

we set the total BO iteration budget to 100(N +1), where N is the number of constraints of 

the optimization. We empirically observed that ADMMBO performed best when we assign a 

higher BO budget for the first iteration of the algorithm. Thus, we set α1 = βi
1 = 20 for the 

first iteration and αk = βi
k = 2, 2 ≤ K for the rest. Considering total BO budget and the 

budgets for the optimality and feasibility subproblems, we set K = 40. We initialize datasets 
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ℱ and 𝒞i with n = mi = 2 points. Notice that initial points are randomly generated and will not 

necessarily be feasible.

The convergence speed of ADMM in practice depends on the value of the penalty parameter 

ρ (Boyd et al., 2011). Specifically, a large value of ρ imposes a large penalty on violating the 

primal feasibility and thus encourages small primal residuals. On the other hand, a small 

value of ρ increases the penalty on the dual residual, encouraging it to be small, but at the 

same time also reduces the penalty on primal feasibility, resulting in a larger primal residual. 

To improve the convergence speed of ADMMBO in practice and to make the performance 

less sensitive to the choice of the penalty parameter ρ, following (Boyd et al., 2011), we use 

the penalty ρk at iteration k, where

ρk + 1 =

τincrρk if ‖rk‖2 > μ‖sk‖2

ρk /τdecr if ‖sk‖2 > μ‖rk‖2

ρk otherwise.

(15)

We set μ = 10 and τincr = τdecr = 2 similar to (Boyd et al., 2011; Hong and Luo, 2017).

5.2 Performance Metrics

To test the sensitivity of different algorithms to the initialization of ℱ, 𝒞1, …, 𝒞N , we run 

each algorithm for each synthetic problem with 100 random initializations and for the 

hyperparameter tuning problem for 5 random initializations. For each method after each 

additional function evaluation, we report the median of the best observed objective value at a 

feasible point, over all random initializations. This median is shown by a solid curve in our 

figures (Figures 1 to 6). For each method, we start to report results (show the median curve) 

once all 100 runs have found a feasible point. The budget at which each method attains such 

a point over 100 runs is denoted by a dashed vertical line in our figures. Moreover, the 

variability of the performance is illustrated after different number of function evaluations by 

reporting the 25/75 percentiles of the best feasible objective value over the 100 runs. 

Moreover, in Figures 1 to 4, we depict the feasible region of our 2-dimensional problems, 

their global and local optima, as well as the final recommendation provided by each method 

given a specific budget, among 100 runs.

5.3 Test Problem with a Small Feasible Region

Consider the following optimization problem, studied also in (Gardner et al., 2014),

x ∈ ℬ
min sin x1 + x2
s.t. sin x1 sin x2 + 0.95 ≤ 0,

(16)

where ℬ = [0, 6]2 . This is a challenging problem since both the objective function and the 

constraint are highly non-linear. Moreover, the feasible region with respect to the bounded 

parameter space ℬ is small, hence, finding a feasible point is difficult.
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The left plot in Figure 1 shows the feasible region of (16) and its global and local optima, 

while the right figure shows the median of the objective value of the best feasible point, 

obtained by each method, among 100 runs as a function of total number of function 

evaluations. As the results demonstrate, ADMMBO outperforms EIC, ALBO, Slack-AL and 

PESC in terms of finding the global optimum at a lower budget. Moreover, ADMMBO is the 

first method to find a feasible point in all 100 runs, followed by PESC second and then the 

others. Only ADMMBO, ALBO, and Slack-AL have defined stopping criteria, and of those 

three only ADMBBO reaches its criterion and stops before the pre-set budget is exhausted. 

Figure 2 shows the best points obtained by ADMMBO, ALBO, and Slack-AL after 100 

function evaluations, over 100 runs. Over all runs, ADMMBO has consistently found a 

feasible solution very close to the global optimum (black star in the left figure in Figure 1). 

However, the best points obtained by ALBO and Slack-AL are scattered throughout the 

entire feasible region and not necessarily close to the global optimum. Note that in a few 

runs, the best solutions found by these two methods are outside the feasible region, and thus 

are infeasible. We observe that ALBO and Slack-AL require a higher budget in order to 

converge to the global optimum of (16).

5.4 Test Problem with Multiple Constraints

Our second benchmark problem is a toy two dimensional problem introduced first in 

(Gramacy et al., 2016), and used later in (Picheny et al., 2016; Hernández-Lobato et al., 

2015). We have chosen this problem specifically to test our ADMMBO on a problem with 

multiple constraints. More specifically, for ℬ = [0, 1]2, we consider the optimization problem

min
x∈ℬ

x1 + x2

s . t . 0.5sin 2π x1
2 − 2x2 + x1 + 2x2 + 1.5 ≤ 0, − x1

2 − x2
2 + 1.5 ≤ 0.

(17)

The left plot in Figure 3 shows the feasible region of (17) and its global and local optimizers, 

and the right plot shows the performance of different methods as a function of the number of 

function evaluation budget. The layout is the same as for the previous figure. Again, 

ADMMBO achieves the best performance in terms of converging to the global optimum at a 

lower budget, followed by PESC. We believe this is due to the fact that both ADMMBO and 

PESC can handle decoupled problems, including this example, via single function 

evaluations, while EIC, ALBO and Slack-AL enforce joint function evaluations at each step. 

Moreover, as the plot demonstrates, ADMMBO and ALBO are the first methods that arrive 

at a feasible point over 100 runs at a lower number of function evaluations.

Figure 4 shows the best points obtained by ADMMBO, EIC, and PESC after 50 function 

evaluations, over 100 runs. Over all runs, ADMMBO and PESC have found solutions very 

close to the global or local optima (black and pink stars in the left figure in Figure 3). 

However, EIC was unable to narrow down its search toward such an optimum, and thus its 

proposed solutions are scattered throughout the entire feasible region. According to the 

Figure 3, all methods, including EIC, ultimately converge to the global optimum. However, 

ADMMBO and PESC achieve this sooner and at a lower budget.
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5.5 Test Problem in Higher Dimensions

We chose the first two problems, defined over a two-dimensional space, in order to be able 

to visualize the feasible regions, global and local optima, as well as the final solution of 

different algorithms. Here, we evaluate the performance of ADMMBO on a test problem 

which is defined over a higher dimensional space. This is a modification of the example in 

(Picheny et al., 2016), where the constraint is the Hartman 4-dimensional function. This 

function was used as an equality constraint in (Picheny et al., 2016), however, we modified it 

as an inequality constraint to follow the format of (5). More specifically, for ℬ = [0, 1]4, we 

consider the optimization problem

x ∈ ℬ
min ∑

i = 1

4
xi

s.t. 1.1923 ∑
i = 1

4
Eiexp − ∑

j = 1

4
A ji x j − P ji

2 − 1.1 ≤ 0 ,
(18)

where Aji, Ei and Pji denote, respectively, the entries of

A =

10.00 0.05 3.00 17.00
3.00 10.00 3.50 8.00
17.00 17.00 1.70 0.05
3.50 0.10 10.00 10.00

, E =

1.0
1.2
3.0
3.2

, P =

0.131 0.232 0.234 0.404
0.169 0.413 0.145 0.882
0.556 0.830 0.352 0.873
0.012 0.373 0.288 0.574

.

As Figure 5 shows, ADMMBO and PESC compared to EIC, ALBO, and Slack-AL achieve 

lower value of the objective function after a smaller number of function evaluation. 

However, similar to other examples, ADMMBO arrives at a feasible point after fewer 

number of functions evaluations compared to PESC. As an interesting observation, in the 

budget range of [5,25], ADMMBO shows a flat curve, which we speculate is due to being at 

a local minima, however, finally ADMMBO escapes this local minimizer. Again, as this 

figure shows, an advantage of ADMMBO compared to existing work is its efficient stopping 

criterion that allows our algorithm to terminate before consuming the total budget, hence, 

avoiding unnecessary function evaluations.

5.6 Tuning a Fast Neural Network

In our last experiment, we tune the hyperparameters of a a three-hidden-layers fully 

connected neural network for a multiclass classification task using MNIST dataset (LeCun, 

1998; LeCun et al., 2015). A version of this experiment was previously reported in 

(Hernández-Lobato et al., 2015). We train the network using stochastic gradient descent with 

momentum. We consider the optimization problem of finding a set of hyperparameters that 

minimize the validation error subject to the prediction time being smaller than or equal to 

0.045 second on NVIDIA Tesla K80 GPU. 2 Here, we focus on eleven hyperparameters: 

learning rate, decay rate, momentum parameter, two drop out probabilities for the input layer 

and the hidden layers as well as two regularization parameters for the weight decay, the 

weight maximum value, the number of hidden units in each of the 3 hidden layers, and the 

choice of activation function (RELU or sigmoid). We define B = [0 1; 0 1; 0 1; –4 1; 0 100; 

Ariafar et al. Page 20

J Mach Learn Res. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



–4 0; –3 0; 50 500; 50 500; 50 500; 0 1]. We build our network using Keras with TensorFlow 

backends (Chollet et al., 2015; Abadi et al., 2016). We compute the prediction time as the 

average time of 1000 predictions, over a batch size of 128 (Hernández-Lobato et al., 2015).

We compare ADMMBO only with PESC, since as previously reported (Hernández-Lobato 

et al., 2015, 2016) (and also consistent with our results on the synthetic experiments), PESC 

typically outperforms EIC and ALBO. Moreover, among state-of-the-art methods, 

ADMMBO and PESC are the only ones capable of handling decoupled problems, and thus 

are a good fit for this experiment. Note that since the computational cost of evaluating the 

validation error and the prediction time are significantly different, we show the results in 

terms of total wall-clock time rather than the total number of function evaluations.

As the results in Figure 6 show, PESC performed better at first. PESC found the first feasible 

set of hyperparameters slightly faster than ADMMBO, and also was able to find 

hyperparameters with lower validation error compared to the hyperparameters suggested by 

ADMMBO. However, around 18 minutes after initializing the algorithms, ADMMBO’s 

performance started to improve and outperformed PESC from minute 22 on. For example, at 

minute 40, ADMMBO found a desirable set of hyperparameters resulting in 0.05 validation 

error and less than 0.045 seconds prediction time. After the same time, PESC’s suggested 

hyperparameter result in a shorter prediction time less than 0.045 seconds, but their 

validation error was around 0.45. One interesting observation is that ADMMBO terminated 

after around one hour, satisfying its stopping criterion, avoiding extra expensive evaluations.

5.7 Sensitivity Analysis on M and ρ

In this section, we report on an evaluation of the sensitivity of ADMMBO to the 

hyperparameters M and ρ. In the first set of experiments, we set the value of M to 20 and ran 

ADMMBO for fifteen uniformly distributed initial values of ρ ∈ [0.0001, 2], while keeping 

the rest of the hyperparameters as in 5.1. In Figure 7 we report on some selected cases, to 

avoid cluttering the figure. The figure illustrates that ADMMBO’s performance was not very 

sensitive to the initial value of ρ. In particular, for initial ρ = 2, ADMMBO attained a 

feasible point over all 100 runs after no more than 27 function evaluations, while for other 

values of ρ, the same was achieved after roughly 15 evaluations. Even with ρ = 2, at budget 

15, 91 out of 100 runs had already found a feasible solution. The vertical dashed line in 

Figure 7 shows the budget at which the last run found a feasible solution.

In the second set of experiments, we set the value of ρ to 0.1 and ran ADMMBO for ten 

uniformly distributed values of M ∈ [0.001,2] as well as M = 100,1000. As Figure 8 

shows,again reporting on a subset of the values tested for clarity, the performance of 

ADMMBO did not depend strongly on the precise value of M as long as it was large 

enough. Note that in problem (17), the range of f over ℬ was 2. Even for M < 2, ADMMBO 

found good solutions, failing only when M was 4 order of magnitude smaller than the 

bound. Also, ADMMBO with different values of M found a feasible point over 100 runs at 

the same budget. Finally, given all different combinations of M and ρ, ADMMBO always 

converged before spending the total iteration budget of 300.
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6. DISCUSSION

In this paper, we address the problem of solving an optimization whose objective function 

and constraints are unknown and available to evaluate pointwise, but at high computational 

cost. We proposed a novel constrained Bayesian optimization algorithm, called ADMMBO, 

which merges ADMM, a powerful tool from numerical optimization, with Bayesian 

optimization techniques. ADMMBO defines a set of unconstrained subproblems, over the 

modified objective function and over modified constraints, and iteratively solves them using 

Bayesian optimization on each subproblem. Some key advantages of ADDMBO are its 

ability to start from an infeasible point, its ability to effectively handle decoupled problems, 

the ability to find closed-form acquisition functions, and its stopping criterion. We showed 

the effectiveness of ADMMBO through experiments on benchmark problems and the 

problem of hyperparameter tuning for a fast neural network for digit recognition. 

ADMMBO consistently outperformed existing methods and obtained the feasible optimum 

with the fewest number of black-box evaluations. We speculate that the reason behind this 

rapid convergence is that ADMMBO typically first finds the unconstrained optimum of the 

problem, and then finds for the closest point to that optimum which belongs to the feasible 

set, which turns out to be an effective search strategy.

There are several ways in which we believe ADMMBO could be extended or improved. One 

would be to enable ADMMBO to handle problems with unknown equality constraints. A 

straightforward approach would be to rewrite an equality constraint as a pair of inequality 

constraints and employ our current algorithm. Since ADMMBO is highly parallelizable 

(lines 6 – 11 in Algorithm 3.1 can be implemented in parallel), increasing the number of 

constraints may not be a significant computational barrier. However, investigating more 

principled ways of handling equality constraints is a topic for future investigation. Another 

extension of clear interest is to speed up ADMMBO through augmenting the problem with 

environmental variables which directly affect the duration of function evaluations (Klein et 

al., 2016). For example, in tuning the hyperparameters of a neural network, the size of the 

training set or the number of epochs can be regarded as such variable. Then, similar to 

Snoek et al. (2012), one can penalize ADMMBO’s acquisition functions with the inverse 

duration of function evaluations. We speculate that this may lead to finding a good solution 

for the unknown optimization problem as quickly as possible. A further extension concerns 

developing a comprehensive budget management strategy. This will be useful specifically in 

cases where we have partial knowledge about the unknown functions, in particular an 

estimate of the relative computational complexity of the objective and constraint functions. 

In this setting, we may be able to leverage such estimates to more efficiently distribute the 

budget. Another direction worth exploring is the flexibility within the ADMMBO 

framework to adopt different random process models (beyond independent GPs) and 

different acquisition functions (beyond EI). In particular using Predictive Entropy as 

acquisition function with approximations potentially similar to PESC-F would seem to be a 

promising approach to explore, given both the results in the literature and the relative 

success of PESC in our experiments. With any new acquisition function we would face the 

challenge of efficiently optimizing it. Acquisition functions are often multi-modal and 

complex, and it is an open question how best to carry out this particular optimization step.
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Finally, we mention one current limitation of ADMMBO, which is the number of 

hyperparameters. Good values will clearly speed up the optimization time of ADMMBO. In 

our experiments here, we followed the default initialization suggested in (Boyd et al., 2011; 

Hong and Luo, 2017) for the ADMM-related parameters and were able to obtain favorable 

results. However, for more complex problems, an adaptive initialization policy, potentially 

similar to ρ’s adaption rule based on primal and dual residuals suggested by Boyd et al. 

(2011), might make the algorithm less sensitive to the possibility of a poor parameter setting.

Acknowledgements

This project was supported by NIH grant R01CA199673 from NCI.

References

Abadi Martín, Barham Paul, Chen Jianmin, Chen Zhifeng, Davis Andy, Dean Jeffrey, Devin Matthieu, 
Ghemawat Sanjay, Irving Geoffrey, Isard Michael, et al. Tensorflow: A system for large-scale 
machine learning. In OSDI, volume 16, pages 265–283, 2016.

Azimi Javad, Jalali Ali, and Fern Xiaoli. Hybrid batch bayesian optimization. arXiv preprint arXiv:
12025597, 2012.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Enhanced higgs boson to τ+ τ-search with deep 
learning. Physical review letters, 114(11):111801, 2015.

Bergstra James S, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter 
optimization. In Advances in neural information processing systems, pages 2546–2554, 2011.

Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, and West M. 
Optimization under unknown constraints. Bayesian Statistics 9, 9:229, 2011.

Bottou Léon. Large-scale machine learning with stochastic gradient descent. In Proceedings of 
COMPSTAT’2010, pages 177–186. Springer, 2010.

Boyd Stephen, Parikh Neal, Chu Eric, Peleato Borja, and Eckstein Jonathan. Distributed optimization 
and statistical learning via the alternating direction method of multipliers. Foundations and Trends® 
in Machine Learning, 3(1):1–122, 2011.

Brochu Eric, Brochu Tyson, and Freitas Nando de. A bayesian interactive optimization approach to 
procedural animation design. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics 
Symposium on Computer Animation, pages 103–112. Eurographics Association, 2010a.

Brochu Eric, Cora Vlad M, and Nando De Freitas. A tutorial on bayesian optimization of expensive 
cost functions, with application to active user modeling and hierarchical reinforcement learning. 
arXiv preprint arXiv:10122599, 2010b.

Francois Chollet et al. Keras, 2015.

Dennis D Cox and Susan John. A statistical method for global optimization. In Systems, Man and 
Cybernetics, 1992., IEEE International Conference on, pages 1241–1246. IEEE, 1992.

Finkel Daniel E. Direct optimization algorithm user guide. Center for Research in Scientific 
Computation, North Carolina State University, 2, 2003.

Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John P Cunningham. 
Bayesian optimization with inequality constraints. In ICML, pages 937–945, 2014.

Michael A Gelbart, Jasper Snoek, and Ryan P Adams. Bayesian optimization with unknown 
constraints. arXiv preprint arXiv:14035607, 2014.

Gelbart Michael Adam. Constrained Bayesian Optimization and Applications. PhD thesis, 2015.

Robert B Gramacy, Genetha A Gray, Sébastien Le Digabel, Herbert KH Lee, Pritam Ranjan, Garth 
Wells, and Stefan M Wild. Modeling an augmented lagrangian for blackbox constrained 
optimization. Technometrics, 58(1):1–11, 2016.

José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy 
search for efficient global optimization of black-box functions. In Advances in neural information 
processing systems, pages 918–926, 2014.

Ariafar et al. Page 23

J Mach Learn Res. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



José Miguel Hernández-Lobato, Michael Gelbart, Matthew Hoffman, Ryan Adams, and Zoubin 
Ghahramani. Predictive entropy search for bayesian optimization with unknown constraints. In 
International Conference on Machine Learning, pages 1699–1707, 2015.

José Miguel Hernandez-Lobato, Michael A Gelbart, Ryan P Adams, Matthew W Hoffman, and Zoubin 
Ghahramani. A general framework for constrained bayesian optimization using information-based 
search. 2016.

Hoffman Matthew, Shahriari Bobak, and Freitas Nando. On correlation and budget constraints in 
model-based bandit optimization with application to automatic machine learning. In Artificial 
Intelligence and Statistics, pages 365–374, 2014.

Hong Mingyi and Luo Zhi-Quan. On the linear convergence of the alternating direction method of 
multipliers. Mathematical Programming, 162(1–2):165–199, 2017.

Hong Mingyi, Luo Zhi-Quan, and Razaviyayn Meisam. Convergence analysis of alternating direction 
method of multipliers for a family of nonconvex problems. SIAM Journal on Optimization, 26(1): 
337–364, 2016.

Houlsby Neil, Huszar Ferenc, Ghahramani Zoubin, and Hernández-Lobato Jose M. Collaborative 
gaussian processes for preference learning. In Advances in Neural Information Processing 
Systems, pages 2096–2104, 2012.

Hutter Frank, Hoos Holger H, and Leyton-Brown Kevin. Sequential model-based optimization for 
general algorithm configuration. In International Conference on Learning and Intelligent 
Optimization, pages 507–523. Springer, 2011.

Jones Donald R. A taxonomy of global optimization methods based on response surfaces. Journal of 
global optimization, 21(4):345–383, 2001.

Jones Donald R, Schonlau Matthias, and Welch William J. Efficient global optimization of expensive 
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

Klein Aaron, Falkner Stefan, Bartels Simon, Hennig Philipp, and Hutter Frank. Fast bayesian 
optimization of machine learning hyperparameters on large datasets. arXiv preprint arXiv:
160507079, 2016.

Kushner Harold J. A new method of locating the maximum point of an arbitrary multipeak curve in the 
presence of noise. Journal of Basic Engineering, 86(1):97–106, 1964.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015. 
[PubMed: 26017442] 

Daniel James Lizotte. Practical bayesian optimization. University of Alberta, 2008.

Ruben Martinez-Cantin, Nando de Freitas, Arnaud Doucet, and José A Castellanos. Active policy 
learning for robot planning and exploration under uncertainty. In Robotics: Science and Systems, 
volume 3, pages 334–341, 2007.

Minka Thomas Peter. A family of algorithms for approximate Bayesian inference. PhD thesis, 
Massachusetts Institute of Technology, 2001.

Močkus J. On bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical 
Conference, pages 400–404. Springer, 1975.

Mota Joao FC, Xavier Joao MF, Aguiar Pedro MQ, and Markus Puschel. D-admm: A communication-
efficient distributed algorithm for separable optimization. IEEE Transactions on Signal Processing, 
61(10):2718–2723, 2013.

Nocedal Jorge and Wright Stephen J.. Numerical Optimization. Springer, New York, NY, USA, second 
edition, 2006.

Parikh Neal, Boyd Stephen, et al. Proximal algorithms. Foundations and Trends@ in Optimization, 
1(3):127–239, 2014.

Picheny Victor. A stepwise uncertainty reduction approach to constrained global optimization. In 
Artificial Intelligence and Statistics, pages 787–795, 2014.

Picheny Victor, Ginsbourger David, Richet Yann, and Caplin Gregory. Quantile-based optimization of 
noisy computer experiments with tunable precision. Technometrics, 55(1):2–13, 2013.

Ariafar et al. Page 24

J Mach Learn Res. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://yann.lecun.com/exdb/mnist/


Picheny Victor, Gramacy Robert B, Wild Stefan, and Digabel Sebastien Le. Bayesian optimization 
under mixed constraints with a slack-variable augmented lagrangian. In Advances in Neural 
Information Processing Systems, pages 1435–1443, 2016.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning, 
volume 1 MIT press Cambridge, 2006.

Schonlau Matthias, Welch William J, and Jones Donald R. Global versus local search in constrained 
optimization of computer models. Lecture Notes-Monograph Series, pages 11–25, 1998.

Scott Steven L. A modern bayesian look at the multi-armed bandit. Applied Stochastic Models in 
Business and Industry, 26(6):639–658, 2010.

Shahriari Bobak, Swersky Kevin, Wang Ziyu, Adams Ryan P, and Freitas Nando de. Taking the human 
out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1): 148–175, 
2016.

Snoek Jasper. Bayesian optimization and semiparametric models with applications to assistive 
technology. PhD thesis, Citeseer, 2013.

Snoek Jasper, Larochelle Hugo, and Adams Ryan P. Practical bayesian optimization of machine 
learning algorithms. In Advances in neural information processing systems, pages 2951–2959, 
2012.

Swersky Kevin, Snoek Jasper, and Adams Ryan P. Multi-task bayesian optimization. In Advances in 
neural information processing systems, pages 2004–2012, 2013.

Tibshirani Robert. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical 
Society. Series B (Methodological), pages 267–288, 1996.

Torn Aimo and Zilinskas Antanas. Global optimization. Springer-Verlag New York, Inc., 1989.

Wang Yu, Yin Wotao, and Zeng Jinshan. Global convergence of admm in nonconvex nonsmooth 
optimization. Journal of Scientific Computing, pages 1–35, 2015.

Wu Jian, Poloczek Matthias, Wilson Andrew G, and Frazier Peter. Bayesian optimization with 
gradients. In Advances in Neural Information Processing Systems, pages 5273–5284, 2017.

Xu Zheng, De Soham, Figueiredo Mario, Studer Christoph, and Goldstein Tom. An empirical study of 
admm for nonconvex problems. arXiv preprint arXiv:161203349, 2016.

Ariafar et al. Page 25

J Mach Learn Res. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Left: feasible region of (16) consists of two oval regions. The pink and black stars 

show,respectively, the local and global optimizer. Right: the curve of the median and 25/75 

percentiles of the best objective value found by each method, among 100 runs that obtain a 

feasible solution, as a function of the total budget for function evaluation. We report the 

results of each method for a budget once all of its 100 runs obtain a feasible solution.
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Figure 2: 
Feasible region of (16) and the best solutions obtained by ADMMBO (left), ALBO (middle) 

and Slack-AL (right) after 100 function evaluations, over 100 runs. For each method, each 

point represents the final solution of that method over one run, after 100 total function 

evaluations.
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Figure 3: 
Left: feasible region of the optimization problem (17). Right: performance of different 

methods as a function of the total budget for function evaluation.
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Figure 4: 
The feasible region of (17) and the best solutions obtained by ADMMBO (left), EIC 

(middle) and PESC (right) after 50 function evaluations, over 100 runs. For each method, 

each point represents the final solution of that method over one run, after 50 total function 

evaluations.
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Figure 5: 
Performance of different algorithms solving (18) as a function of the total budget for 

function evaluation.
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Figure 6: 
Comparison between ADMM and PESC for hyperparameter tuning for a neural network 

with short prediction time.
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Figure 7: 
Performance of ADMMBO solving (17) given M = 20 and different values of ρ.
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Figure 8: 
Performance of ADMMBO solving (17) given M = 0.1 and different values of M.
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Table 1:

Advantages of ADMMBO with respect to the state-of-the-art methods.

Advantages Infeasible initialization Decoupled problems Closed-form acquisition func. Stopping criterion

EIC – – ✓ –

IECI – – – –

PESC ✓ ✓ – –

EVR – – – –

ALBO ✓ – – ✓

Slack-AL ✓ – ✓ ✓

ADMMBO ✓ ✓ ✓ ✓

J Mach Learn Res. Author manuscript; available in PMC 2019 December 03.


	Abstract
	Introduction
	Existing Challenges & Paper Contributions
	Paper Organization

	Background
	Bayesian Optimization
	Alternating Direction Method of Multipliers (ADMM) Optimization

	Constrained Bayesian Optimization via ADMMBO
	Proposition 1.
	Proof.
	ADMMBO Formulation
	Expected Improvement for the Optimality Subproblem
	Expected Improvement for the Feasibility Subproblem

	ADMMBO Algorithm

	Algorithm 3.1
	Algorithm 3.2
	Algorithm 3.3
	Related Work
	Constrained BO using Modified Acquisition Functions
	Constrained BO using Numerical Optimization

	Experiments
	Implementation Details
	Performance Metrics
	Test Problem with a Small Feasible Region
	Test Problem with Multiple Constraints
	Test Problem in Higher Dimensions
	Tuning a Fast Neural Network
	Sensitivity Analysis on M and ρ

	DISCUSSION
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Table 1:

