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Abstract Living cells proliferate by completing and coordinating two cycles, a division cycle

controlling cell size and a DNA replication cycle controlling the number of chromosomal copies. It

remains unclear how bacteria such as Escherichia coli tightly coordinate those two cycles across a

wide range of growth conditions. Here, we used time-lapse microscopy in combination with

microfluidics to measure growth, division and replication in single E. coli cells in both slow and fast

growth conditions. To compare different phenomenological cell cycle models, we introduce a

statistical framework assessing their ability to capture the correlation structure observed in the

data. In combination with stochastic simulations, our data indicate that the cell cycle is driven from

one initiation event to the next rather than from birth to division and is controlled by two adder

mechanisms: the added volume since the last initiation event determines the timing of both the

next division and replication initiation events.

Introduction
Across all domains of life, cell proliferation requires that the chromosome replication and cell division

cycles are coordinated to ensure that every new cell receives one copy of the genetic material. While

in eukaryotes this coordination is implemented by a dedicated regulatory system in which genome

replication and division occur in well-separated stages, no such system has been found in most bac-

teria. This suggests that the molecular events that control replication initiation and division might be

coordinated more directly in bacteria, through molecular interactions that are yet to be elucidated.

The contrast between this efficient coordination and the apparent absence of a dedicated regulatory

system is particularly remarkable since most bacteria feature a unique replication origin which

imposes that multiple rounds of replication occur concurrently in fast growth conditions. For exam-

ple, in the specific case of E. coli that we study here, it has long been known that growth rate, cell

size, and replication initiation are coordinated such that the average number of replication origins

per unit of cellular volume is approximately constant across conditions (Donachie, 1968) or that cel-

lular volume grows approximately exponentially with growth rate (Taheri-Araghi et al., 2017).

Although several models have been proposed over the last decades to explain such observations

(for a review and a historical perspective see for example Willis and Huang, 2017), so far direct vali-

dation of these models has been lacking, due to a large extent to the lack of quantitative measure-

ments of cell cycles parameters in large samples with single-cell resolution.

Thanks to techniques such as microfluidics in combination with time-lapse microscopy, it has

recently become possible to perform long-term observation of growth and division in single bacte-

ria. By systematically quantifying how cell cycle variables such as size at birth, size at division, division

time, and growth rate vary across single cells, insights can be gained about the mechanism of cell
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cycle control. Several recent studies have focused on understanding the regulation of cell size,

resulting in the discovery that E. coli cells maintain a constant average size by following an adder

strategy: instead of attempting to reach a certain size at division (i.e. a sizer mechanism) or to grow

for a given time (i.e. a timer mechanism), it was found that cells add a constant length dL to their

birth length Lb before dividing (Amir, 2014; Campos et al., 2014; Taheri-Araghi et al., 2017). In

particular, while the cell size at division and the division time correlate with other variables such the

cell size at birth and growth rate, the added length dL fluctuates independently of birth size and

growth rate. A remarkable feature of the adder model is its capacity to efficiently dampen large cell

size fluctuations caused by the intrinsically noisy regulation, without the need for any fail-safe mecha-

nism. This efficient strategy has been shown to be shared by various bacterial species as well as by

archea (Eun et al., 2018) and even some eukaryotes such as budding yeast (Soifer et al., 2016).

Here, we focus on how the control of replication initiation is coordinated with cell size control in

E. coli, a question that has attracted attention for a long time (Helmstetter, 1974; Pierucci, 1978;

Koppes and Nanninga, 1980). Several models have been proposed to explain how the adder

behavior at the level of cell size might arise from a coordinated control of replication and division.

Broadly, most models assume that the accumulation of a molecular trigger, usually assumed to be

DnaA, leads to replication initiation, which in turn controls the corresponding future division event

(Campos et al., 2014; Ho and Amir, 2015; Wallden et al., 2016). Subtle variations in how the initia-

tion trigger accumulates and how the initiation to division period is set in each model imply distinct

molecular mechanisms, and thus fundamentally different cell cycle regulations. Specifically, most

models assume that initiation is triggered either when a cell reaches a critical absolute volume (initia-

tion size, see for example Wallden et al., 2016) or alternatively when it has accumulated a critical

volume since the last initiation event (see e.g. Ho and Amir, 2015). In order to explain the coordina-

tion between cell cycle events, division is often assumed to be set by a timer starting at replication

initiation, but recent studies have also proposed that the two cycles might be independently regu-

lated (Micali et al., 2018a; Si et al., 2019). Finally, it is often assumed that the regulation strategy

could be different at slow and fast growth where different constraints occur.

We use an integrated microfluidics and time-lapse microscopy approach to quantitatively charac-

terize growth, division, and replication in parallel across many lineages of single E. coli cells, both in

slow and fast growth conditions. We show that insights about the underlying control mechanisms

can be gained by systematically studying the structure of correlations between these different varia-

bles. Our single-cell observations are inconsistent with several previously proposed models including

models that assume replication is initiated at a critical absolute cell volume and models that assume

division is set by a timer that starts at replication initiation. Instead, the most parsimonious model

consistent with our data is a double-adder model in which the cell cycle commences at initiation of

replication and both the subsequent division and the next initiation of replication are controlled by

the added volume. We show that this model is most consistent with the correlation structure of the

fluctuations in the data and, through simulations, we show that this model accurately reproduces

several non-trivial observables including the previously observed adder behavior for cell size control,

the distribution of cell sizes at birth, and the distribution of the number of origins per cell at birth.

Moreover, the same model best describes the data both at slow and fast growth rates. As far as we

are aware, no other proposed model at the same level of parsimony can account for the full set of

observations we present here.

Results
To test possible models for the coordination of replication and division in E. coli we decided to sys-

tematically quantify growth, replication initiation, and division across thousands of single E. coli cell

cycles, across multiple generations, and in various growth conditions. To achieve this, cells were

grown in a Mother Machine type microfluidic device (Wang et al., 2010) and imaged by time-lapse

microscopy. We used M9 minimal media supplemented with glycerol, glucose or glucose and eight

amino acids, resulting in doubling times of 89, 53 and 41 min, respectively. The cell growth and divi-

sion cycles were monitored by measuring single-cell growth curves obtained through segmentation

and tracking of cells in phase contrast images using the MoMA software (Kaiser et al., 2018). The

replication cycle was monitored by detecting initiation as the duplication of an oriC proximal FROS

tagged locus imaged by fluorescence microscopy (Figure 1A). This of course only offers a proxy for
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initiation timing, as origin splitting can be affected by a cohesion time (Reyes-Lamothe et al.,

2008). These measurements allowed us to quantify each single cell cycle by a number of variables

such as the growth rate, the sizes at birth, replication initiation, and division, the times between birth

and replication initiation and the time between birth and division. As done previously, we assume

that cell radius is constant and use cell length as a proxy for cell volume (Adiciptaningrum et al.,

2016; Taheri-Araghi et al., 2017). Since we can follow cells over multiple generations, we can also

measure quantities that span multiple division cycles such as the total time or total cell growth

between consecutive replication initiation events. As we analyze growth conditions spanning cases

with both single and overlapping rounds of replication, we defined two alternative ways of defining

variables. In particular, while the cell cycle is classically defined from division to division (Figure 1C),

we also use an alternative framework proposed recently (Ho and Amir, 2015; Amir, 2017), in which

the cell cycle is defined from one replication initiation to the next (Figure 1D). As this framework is

centered on origins of replication rather than on cells, we consequently define a new quantity L, the

cell length per origin, which allows tracking of the amount of cell growth per origin of replication.

For instance, in a case where a cell is born with an ongoing round of replication which started at time

t, Li for that cell is defined as Li ¼ Li=4 where Li is the length of the mother cell which contains four
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Figure 1. Experimental approach and analysis framework. (A) Time-lapse of E. coli cells growing in a single microfluidic channel. The fluorescence

signal from FROS labeling is visible as red spots in each cell. The green dotted line is an aid to the eye, illustrating the replication of a single origin. (B)

Consistent with an adder model, the added length between birth and division is uncorrelated with length at birth (here and in all other scatter plots,

the darker lines show the mean of the binned data and the error bars represent the standard error per bin). (C) The classical cell cycle is defined

between consecutive division events, shown here with replication and division for slow growth conditions (i.e. without overlapping rounds of

replication). (D) We introduce an alternative description framework where the cell cycle is defined between consecutive replication initiation events. The

observables that are relevant to characterize the cell cycle in these two frameworks are indicated (see also Table 1).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Table with source data for Figure 1B.

Figure supplement 1. Schema of the cell cycle and variable definitions for the case of fast growth with overlapping replication cycles.
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origins at time t (Figure 1—figure supplement 1). Using these definitions allows us to avoid having

to apply artificial cut-offs as for example done in Wallden et al. (2016). In this article, we explore a

wide variety of models that take either a division-centric or replication-centric view of the cell cycle.

Using specific correlations observed in our data, we show how entire classes of models can be

rejected. In addition, we present a general statistical framework for ranking models based on their

ability to capture the full correlation structure of the data.

Cell size adder
We first verified whether our measurements support the previously observed adder behavior in cell

size, and find that added length dL between birth and division is indeed uncorrelated with length at

birth Lb in all growth conditions (Figure 1B), and, also in agreement with the adder model, the heri-

tability of birth length between mother and daughter is characterized by a Pearson correlation coef-

ficient of r » 0:5 (see Appendix 1—table 1). There has been a question in the literature as to whether

adder behavior is also observed at slow growth. Slow growth conditions have only been tested in

two studies. While an initial study reported that adder behavior is not observed at slow growth

(Wallden et al., 2016), a more recent study did observe adder behavior at slow growth (Si et al.,

2019). Our own observations are thus in line with this later study and it should also be noted that

Si et al. (2019) only found a weak deviation from adder behavior when reanalyzing the data of

Wallden et al. (2016). Thus, while more independent studies are needed, on the whole the currently

available data appear to support that adder behavior is independent of growth conditions.

Replication initiation mass
A popular idea dating back to the 1960s and still often used today to explain the coupling of division

and replication cycles is the initiation mass model. The observations that cell volume grows exponen-

tially with growth rate (Schaechter et al., 1958) and that, across a range of conditions, the time

between replication initiation and division is roughly constant (Helmstetter et al., 1968) led Dona-

chie to propose that the volume per origin of replication is held constant (Donachie, 1968). In par-

ticular, the model proposes that initiation occurs when a cell reaches a critical volume. A simple

prediction of this model is that, for a given cell, the cell length Li at which initiation occurs should be

independent of other cell cycle variables such as the length at birth Lb. However, as can be seen in

Figure 2A, we observe that the initiation length Li and birth length Lb are clearly correlated in all

conditions, rejecting the initiation mass model. The absence of an initiation mass has already been

shown by Adiciptaningrum et al. (2016) and confirmed in a recent comprehensive analysis

(Micali et al., 2018a). Note that, by assuming that the concentration of the molecule that controls

Table 1. Variables definitions.

Division-centric Replication-centric

Measured variables

Lb Size at birth* Li Size per origin at initial replication initiation*

Ld Size at division* Lf Size per origin at final replication initiation*

Tbd Duration between birth and division Tif Duration between consecutive replication initiations

Li Size at replication initiation* Lb Size per origin at birth*

Tbi Duration between birth and replication initiation Tib Duration between replication initiation and birth

Derived variables

l ¼ 1

Tbd
log LdLb Cell growth rate* (between birth and division) a ¼ 1

Tif
logLfLi Cell growth rate* (between consecutive replication initiations)

dL ¼ Ld � Lb Division ’adder’ dLib ¼ Lb � Li Replication ’adder’

dLbi ¼ Li � Lb Birth-to-initiation ’adder’ dLif ¼ Lf � Li Initiation-to-birth ’adder’

Rbd ¼ Ld=Lb Growth ratio between birth
and division

Rif ¼ Lf =Li Growth ratio between con-
secutive initiations

Rbi ¼ Li=Lb Growth ratio between birth
and initiation

Rib ¼ Lb=Li Growth ratio between initia-
tion and birth

* variables indicated by a star are measured from a linear fit of exponential elongation.
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initiation is the same independent of growth rate, and a critical amount of this molecule has to accu-

mulate per origin to trigger initiation, then this model would still predict that the average volume

per origin in bulk is independent of growth rate (Si et al., 2017).

Multiple origins accumulation model
Just as a constant average cell size can be accomplished by adding a constant volume per division

cycle rather than by dividing at a critical division volume, so a constant average volume per origin of

replication can also be implemented by controlling the added volume between replication initiations

rather than by a critical initiation volume. A concrete proposal for such an adder mechanism, called

the multiple origins accumulation model, has recently received increasing attention (Ho and Amir,

2015). In this model, a molecule that is expressed at a constant cellular concentration accumulates

at each origin until it reaches a critical amount, triggering replication, after which it is degraded and

starts a new accumulation cycle. Given that, for a molecule at constant concentration, the added vol-

ume over some time period is proportional to the amount produced of the molecule, the result of

this process is that the cell adds a constant volume per origin dLif between initiation events (with

dLif ¼ Lf � Li where indexes stand for ’initial’ and ’final’ respectively, see Figure 1D and Table 1 for

more details). Note also that in this ’per origin’ formalism dLif is independent of the status of the

division cycle, for example a cell might have two origins nori ¼ 2 and a length at initiation Lori2i or

have already divided and have one origin nori ¼ 1 and a length Lori1i , but

Li ¼ Lori2i =2 ¼ ðLori2i =2Þ=1 ¼ Lori1i =1 is invariant. If replication is indeed triggered by such an adder

mechanism, then one would expect the observed added lengths dLif to be independent of the

length Li at the previous initiation. As shown in Figure 2B, our data support this prediction.

Connecting replication and division cycles
Having validated the multiple origins accumulation model for replication control, we now investigate

its relation to the division cycle. A common assumption is that the period Tid from initiation to divi-

sion (classically split into the replication period C and the end of replication to division period D) is

constant and independent of growth rate (Cooper and Helmstetter, 1968; Ho and Amir, 2015).

Such a constant period might suggest a timer mechanism by which, on average, a fixed time elapses

in each cell between initiation and division. However, as visible in Figure 3A, while on average Tid is

BA

L
i

if

Figure 2. Models for initiation control. (A) The initiation mass model predicts that the length at initiation Li should be independent of the length at

birth Lb. However, we observe clear positive correlations between Li and Lb in all growth conditions. (B) In contrast, the length accumulated between

two rounds of replication dLif is independent of the initiation size Li, suggesting that replication initiation may be controlled by an adder mechanism.

The online version of this article includes the following source data for figure 2:

Source data 1. Table with source data for Figure 2.
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indeed rather constant across growth conditions, within each condition fast growing cells clearly

complete this period faster than slow growing cells. One possibility is to assume that the time Tid is

coupled to growth rate l by an unspecified mechanism in such a way as to recover the empirically

observed correlation (Wallden et al., 2016). However, Figure 3B reveals another and arguably sim-

pler solution. We find that dLid ¼ Ld � Li, the length per origin added by a cell between initiation

and division, has an adder behavior as well: independently of its size at initiation Li, a cell will com-

plete the corresponding division cycle after having accumulated a constant volume per origin dLid.

The double-adder model
These observations motivated us to formulate a model in which the cell cycle does not run from one

division to the next, but rather starts at initiation of replication, and in which both the next initiation

of replication and the intervening division event, are controlled by two distinct adder mechanisms. In

this replication-centric view, the cell cycles are controlled in a given condition by three variables: an

average growth rate l, an average added length per origin dLif , and an average added length dLid

between replication initiation and division. In particular, we assume that these three variables fluctu-

ate independently around these averages for each individual cell cycle, and that all other parameters

such as the sizes at birth, initiation, and the times between birth and division or between initiation

and division, are all a function of these three fundamental variables. This double-adder model is

sketched in Figure 4 for the case of slow growth conditions: a cell growing at rate l initiates replica-

tion at length Li and thereby starts two adder processes. The cell then divides when reaching a size

Ld ¼ Li þ n dLid ¼ n ðLi þ dLidÞ, where n ¼ 2 is the number of replication origins. Second, the next

replication round will be initiated when the total length has increased by dLif per origin.

Simulations of the double-adder model
To assess to what extent our double-adder model can recover our quantitative observations, we

resorted to numerical simulations. We first obtained from experimental data the empirical distribu-

tions of growth rates l, the added length per initiation dLif , and the added length between initiation

and division dLid. A series of cells are initialized at the initiation of replication, with sizes taken from

the experimental distributions. For each cell, a growth rate l is independently drawn from its

0 T
id

2 
ib

BA

Figure 3. Initiation to division period. (A) Several models assume that a constant time passes from an initiation event to it corresponding division

event. However, within each growth condition, that period is clearly dependent on fluctuations in growth rate. (B) The length accumulated from

initiation to division is constant for each growth condition, suggesting an adder behavior for that period. In A and B, the Pearson correlation coefficient

R and p values are indicated for each condition.

The online version of this article includes the following source data for figure 3:

Source data 1. Table with source data for Figure 3.
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empirical distribution, and values of dLid and dLif are drawn from independent distributions, to set

the times of the next division and replication initiation events. This procedure is then iterated indefi-

nitely, that is a new growth rate and values of each adder are independently drawn for each subse-

quent cycle. As has been observed previously (Campos et al., 2014) the growth rate is correlated

(r » 0:3) between mother and daughter. Accounting for this mother-daughter correlation in growth

rate was found not to be critical for capturing features of E. coli cell cycle, but was included in the

model to reproduce simulation conditions of previous studies.

As can be seen in Figure 5, the double-adder model accurately reproduces measured distribu-

tions and correlations at all growth rates. In particular, the global adder behavior for cell size regula-

tion naturally emerges from it (Figure 5A). Note however that in particular at fast growth (Glucose

+AA), the relation between dL and Lb deviates from pure adder behavior, that is dL weakly anti-cor-

relates with Lb (Figure 1B). Interestingly, this deviation is recovered as well in the simulations

(Figure 5A), supporting the validity of our model. The specific relation between length at initiation

Li and length at birth Lb, which prompted us to reject the initiation mass model, is too reproduced

by the model (Figure 5B). Furthermore, the distribution of the number of origins at birth, which

reflects the presence of overlapping replication cycles is also reproduced (Figure 5D). Finally, we

d
if

d
ib

t = 0

t = T
ib

t = T
if

replication
initiation

cell
division

Figure 4. The double-adder model postulates that E. coli cell cycle is orchestrated by two independent adders,

one for replication and one for division, reset at replication initiation. Both adders (shown as coloured bars) start

one copy per origin at replication initiation and accumulate in parallel for some time. After the division adder

(green) has reached its threshold, the cell divides, and the initiation adder (orange) splits between the daughters.

It keeps accumulating until it reaches its own threshold and initiates a new round of division and replication

adders. Note that the double-adder model is illustrated here for the simpler case of slow growth.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Average localization of the origin in cells growing in M9 glycerol.
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note that while the average cell length parameters (e.g. for Lb in Figure 5C) are recovered in the

simulations, the variances of the simulated distributions are a bit larger in the faster growth condi-

tions, which can be attributed to an overestimation of the variances of the two adder distributions.

An exhaustive comparison between experiments and simulations can be found in Figure 5—figure

supplement 1 through Figure 5—figure supplement 4.

A B

C D

Figure 5. Comparison of predictions of the double-adder model with experimental observations. (A) Binned scatter plot of the added length between

birth and division dL versus length at birth Lb shows no correlations in both the data and the simulations, demonstrating that the double-adder model

reproduces the adder behavior at the level of cell size. (B) Binned scatter plot of the length at initiation Li versus length at birth Lb shows almost

identical correlations in data and simulation. (C) Average (± s.d) cell length at birth Lb. Both the mean and standard deviation are recovered in the

model simulation. (D) The distribution of the number of origins at birth is also highly similar between experiments and data for all growth conditions.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Table with source data for Figure 5AB.

Source data 2. Table with source data for Figure 5C.

Source data 3. Table with source data for Figure 5D.

Figure supplement 1. Detailed comparisons of cell cycle variables distributions and correlations between experiments and simulations for M9+glycerol

condition (with automated origin tracking).

Figure supplement 2. Detailed comparisons of cell cycle variables distributions and correlations between experiments and simulations for M9+glycerol

condition (with manual origin tracking).

Figure supplement 3. Detailed comparisons of cell cycle variables distributions and correlations between experiments and simulations for M9+glucose

condition (with manual origin tracking).

Figure supplement 4. Detailed comparisons of cell cycle variables distributions and correlations between experiments and simulations for M9+glucose

+8a.a. condition (with manual origin tracking).
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As our model recovers the classic adder from birth to division, that is independence of Lb and dL,

one could ask whether, instead of assuming division to be controlled by an adder between initiation

and birth, one could simply have a classic birth-to-division adder running independently and in paral-

lel with a replication adder. Harris and Theriot (2016) proposed that a homeostatic mechanism

maintaining a constant cell surface to volume ratio could produce a birth-to-division adder, but only

if division were controlled completely independently of replication. A recent study that emerged

during the course of this work (Si et al., 2019) also argued that the division and replication cycles

are uncoupled and controlled independently. To test these ideas, we implemented a model in which

division and replication are controlled by completely independent adder mechanisms. Although this

model recapitulates most experimental observations, it predicts a negative correlation between vol-

ume at initiation Li and the added volume dLib between initiation and birth (Appendix 2), which is at

odds with the adder behavior we observe in the data (Figure 3). It should also be noted that purely

geometric division models such as the Harris and Theriot (2016) model have been recently chal-

lenged more broadly by research indicating that surface expansion is coupled to dry-mass increase

rather than to volume increase (Oldewurtel et al., 2019).

Recently, Micali et al. (2018b) introduced a wider class of models in which the replication and

division cycles are controlled by two concurrently running processes, which are coupled through a

check-point that demands a certain minimal amount of time has to elapse between replication initia-

tion and division. This class includes models in which independent replication and division adders

are coupled through such a check-point and, if parameters are appropriately tuned, it is possible for

such a model to exhibit no correlation between Li and dLib, that is reproduce the observed adder

behavior for the period between replication initiation and division (Micali and Cosentino Lagomar-

sino, personal communication). Although such a model is thus potentially consistent with our obser-

vations, it requires the parameters to be precisely tuned and, moreover, this tuning has to apply to

all growth conditions.

The double-adder model best captures the correlation structure of the
data
In this work, we used empirically observed correlations between certain variables, such as those

shown in Figure 2 and Figure 3, to motivate our double-adder model, and then used numerical sim-

ulations of this model to show that this model also successfully reproduces other features of the

experimental data (Figure 5). However, it is conceivable that other models would be equally suc-

cessful in reproducing the experimental observations. We thus aimed to devise a general approach

for systematically comparing the performance of a large class of models.

The basic idea behind this approach is that, if the cell cycle is controlled by independent control

processes, then we expect the variables associated with these control processes to fluctuate inde-

pendently. To illustrate this, let’s consider for the moment the simpler case of the division cycle and

cell size control (Figure 6A). If cell size homeostasis were controlled by a ‘sizer’ mechanism, we

would expect the size at division Ld to fluctuate independently of size at birth Lb and growth rate l.

If it were instead controlled by a ‘timer’, then we would expect the time Tbd between birth and divi-

sion to fluctuate independently from size at birth Lb and growth rate l. However, the measurements

show that the time Tbd is clearly negatively correlated with both growth rate and size at birth.

Instead, the added volume dL fluctuates almost independently of size at birth Lb and growth rate l

(Figure 6A). It is precisely this independence of fluctuations in added volume from fluctuations in

the other variables, that constitutes the support of the adder mechanism. Here, we generalize this

idea by systematically considering all sets of variables that can be used to describe the cell cycle in

single cells, and quantifying, for each set of variables, the extent to which they fluctuate

independently.

A single division cycle needs 3 variables to be fully described and we will refer to such sets of var-

iables as decompositions. For example, the set ðLb; Ld; lÞ corresponds to a ‘sizer’ decomposition, the

set ðLb; Tbd; lÞ to a ‘timer’ decomposition, and ðLb; dL; lÞ to an adder decomposition. For each

decomposition, we can now calculate, from the data, the matrix R of observed correlations Rij

between each pair of variables ði; jÞ in the decomposition. For example, Figure 6A shows the corre-

lation matrices R for the adder and timer decompositions. The more independent the variables are

in the decomposition, the smaller the correlations will be. As a measure for the overall independence

of the variables in a decomposition we use the determinant of the matrix R, that is we define

Witz et al. eLife 2019;8:e48063. DOI: https://doi.org/10.7554/eLife.48063 9 of 23

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.48063


Covariance between High negative

correlation

B

A

I ~ 1I ~ 1I ~ 1I ~ 1I ~ 1I ~ 1I ~ 1I ~ 1 I ~ 0.3
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Figure 6. Decomposition method. (A) The cell division cycle of a single cell can be described by different

combinations of three variables which we refer to as decompositions. For example, the set ðLb; dL;lÞ corresponds

to an adder decomposition, while ðLb;Tbd ;lÞ corresponds to a timer decomposition. For each possible

decomposition, we can calculate the matrix R of observed correlations Rij between each pair of variables in the

decomposition from the data. Shown are the correlation matrices for the adder decomposition (left) and the timer

decomposition (right), with positive correlations shown in red and negative correlations in blue. The independence

I of each decomposition is defined as the determined of the correlation matrix I ¼ detðRÞ and is indicated on top

of each matrix. While the independence for the adder decomposition is close to the possible maximum of 1, the

independence of the timer correlation is much lower due to a strong negative correlation between growth rate l

and the cell cycle duration Tbd . (B) Conceptual illustration of the independence measure I. For each

decomposition, the data can be thought of as a scatter of points in the space of the decomposition’s variables,

normalized such that the variance of points along each dimension is 1. In this conceptual example, we show two

scatters of points for the two variables x0 and x1. The independence I corresponds to the square of the volume

covered by the scatter of points. On the left, there is virtually no correlation between the two variables, that is

R01 » 0, such that the independence I ¼ detðRÞ ¼ 1� R2

01
» 1. In contrast, on the right there is a strong correlation,

leading to a much lower independence I » 0:3. In this way, the independence measure quantifies to what extent

the variables in the decomposition fluctuate independently, and this measure applies to scatters of any number of

dimensions.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Table with source data for Figure 6.

Figure supplement 1. Correlation matrices for all decompositions of the division cycle.
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I ¼ detðRÞ. The intuitive meaning of this measure is illustrated in Figure 6B. We can think of each

cell cycle as a point in the three-dimensional space spanned by the decomposition, such that all cell

cycle observations form a scatter of points in this space. If we normalize each axis by setting its scale

such that the variance equals 1 along the axis, then the independence I ¼ detðRÞ corresponds exactly

to the volume covered by the scatter of points. Note that, if there are no correlations, the matrix R

will become the identity matrix, that is Rii ¼ 1 and Rij ¼ 0 when i 6¼ j, and the independence will

become exactly 1. The larger the correlations between the variables, the smaller the volume I will

become, and it will become zero in the limit of perfect correlation between 2 or more variables.

Thus, the independence per definition ranges from 0 to 1 (perfect independence).

We can now apply this systematic approach to the complete cell cycle case. In this case, we mea-

sured the variables shown in Table 1 (measured variables) either for the replication- or the division-

centric view of the cell cycle. As for the division cycle case analyzed in Figure 6, we can use equa-

tions relating these variables in order to derive a set of additional variables as shown in Table 1

(derived variables). We need four variables to define both replication and division cycles, and using

now all the measured and derived variables, as well as the equations connecting them, we can create

all possible decompositions of four variables sufficient to describe the cell cycle, and measure their

independence using the decomposition method. Finally, we can rank all decompositions according

to their independence to find which ones offer the most accurate description of the data. Such a sta-

tistical analysis is only relevant when applied to a large dataset and we therefore focus here on the

slow growth condition (M9 glycerol) for which we implemented automatic origin tracking.

The tables in Figure 7A show the five best models ranked by decreasing independence (all

decompositions can be found in Figure 7—figure supplement 3). Note that these variable sets

include previously proposed sizer and timer models as special cases, for example the inter-initiation

model combined with an initiation to division timer (Ho and Amir, 2015) is highlighted in red in Fig-

ure 7—figure supplement 3. The most successful decompositions are shown in greater detail as

correlation matrices Figure 7B. We find in general that none of the division-centric models accom-

plishes high independence. For example, as shown in the covariance matrix of Figure 7B right, the

best division-centric model is plagued by high correlation between Lb and dLbi. This strongly sug-

gests that the cell cycle control is better described from a replication-centric point of view. Of all

replication-centric models, our double-adder model clearly reaches the highest independence, fol-

lowed by various derivative models in which one of the adders is replaced by another variable. Nota-

bly, the top three decompositions are the same for the real data and for the data from the

simulations of the double-adder model, underscoring that these near optimal variants are expected

for data produced by a double-adder mechanism. We note that independence of our double-adder

model on the real data is a bit lower than on simulated data Figure 7B, that is 0.88 versus 0.98. This

residual dependence might either result from correlated errors in the measurements, or it might

reflect some small biological dependence not captured by our model. As an additional control, we

also applied our decomposition analysis to a dataset from a simulation with the multiple origins

accumulation model in which there is an inter-initiation added volume dLif and a timer from initiation

to division Tib. As shown in Figure 7—figure supplement 4, the decomposition analysis successfully

identifies the model used in the simulation as having the highest Independence I. Finally, to verify

that the results obtained by analyzing the fluctuations of the division and replication cycles are not

primarily driven by differences in experimental details (such as strains or reporters used to measure

replication initiation), we also applied our decomposition method to a dataset from a study that

appeared in the course of this work (Si et al., 2019). As shown in Figure 7—figure supplement 5,

here again the double-adder model is the most successful at explaining the experimental measure-

ments. In summary, this systematic analysis shows that, within a large class of alternative models, the

double-adder model best captures the correlation structure of both our data and data recently

obtained by another laboratory.

Discussion
Thanks to experimental techniques like the one used here, models of bacterial cell cycle regulation

dating back to the 1960s have been recently re-examined in detail in several studies (Campos et al.,

2014; Tanouchi et al., 2015; Ho and Amir, 2015; Adiciptaningrum et al., 2016; Wallden et al.,

2016; Si et al., 2017; Logsdon et al., 2017; Micali et al., 2018a; Eun et al., 2018; Si et al., 2019).
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Figure 7. Decomposition analysis applied to the division and replication cycles. (A) The tables show the

independence measures I for the top scoring decompositions of the division and replication cycles. In these

tables, each line represents a possible decomposition and its independence I. As there are two ways to see the

cell cycle (replication- and division-centric), we present decompositions for both replication- (left) and division-

centric decompositions (right). In addition, we show the top decompositions both for the correlation matrices of

the experimental data of the growth conditions M9+glycerol (automated analysis) and for the data from the

simulations of the double-adder model (top and bottom rows, respectively). Results for the full list of

decompositions can be found in Figure 7—figure supplement 3. Note that the decomposition analysis clearly

identifies the replication-centric double-adder characterized by Li, a, dLif and dLib as the best decomposition.

The fact that the double-adder decomposition is also top scoring (with I ’ 1) for data from the simulation of the

double-adder confirms that the decomposition analysis works as expected. (B) Correlation matrices for the best

decompositions for replication-centric (left) and division-centric models (right). As in Figure 6A, each matrix

represents one decomposition, and each element of the matrix shows the correlation of the two variables

indicated within it. The level and sign of correlation is given by the color bar. As the lower left and upper right

triangles of the matrices are redundant, we use them to show correlations from both experimental and simulation

data in a single matrix. The lower-left corners bounded by a dotted line contain correlations from experimental

data and the upper-right ones, bounded by a continuous line, from simulation data. The diagonal summarizes the

set of variables. The best replication-centric model (left) has only weak correlations between its variables as

reflected in high independence, while the best division-centric model has a few highly correlated variables leading

to low independence.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Table with source data for replication-centric decompositions of both experimental and simulation

data of Figure 7 and Figure 7—figure supplement 1, Figure 7—figure supplement 2 and Figure 7—figure

supplement 3.

Figure 7 continued on next page
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Although these data have shed important new light on the regulation of bacterial physiology, such

as identifying the adder behavior in cell growth and division, it has remained somewhat unclear to

what extent different models are consistent with the data. In particular, many studies only focus on

certain correlations and dependencies between measurable cell cycle quantities, and these can often

be explained by multiple models. In this study, we have in a first step empirically built a model which

is based on previous ideas and which recapitulates measured cell cycle parameters. This model

makes replication the central regulator of the cell cycle, with each initiation round triggering subse-

quent division and replication events through concurrent adder processes. In a second step, we then

designed and applied a statistical method to determine, within a class of models built on biologically

relevant cell cycle variables, which set of those variables best explains the correlation structure

observed in the measurements. Following this fully independent and more systematic approach, our

empirical double-adder model clearly comes out as the most successful. It should be noted that,

whereas models based on a timer between initiation and division naturally predict the well-known

exponential increase of average cell-size with average growth rate measured in the bulk

(Schaechter et al., 1958; Taheri-Araghi et al., 2017), the double-adder does not require such a

relationship. However, neither is such a relationship inconsistent with the double-adder model. The

difference between a timer and adder model is in the nature of the correlations of different cell cycle

quantities across single cells within one condition, and not in the behavior of their averages across

conditions. Therefore, it is possible to implement the same dependence of average size on

growth rate using different models that have different single-cell correlation structure. In particular,

in order for the average bulk cell-size cell size to grow exponentially with the average bulk

growth rate, it is enough that the average time between initiation and division is independent of

growth rate and this can also be achieved with an adder model. For example, if we imagine that the

initiation to division adder is implemented by the accumulation of a key molecule to a critical

amount, and we assume that the average rate of accumulation of this molecule is independent of

the bulk growth rate, then the average cell-size will grow exponentially with growth rate. At the

same time, within such an adder model the single-cell fluctuations in the added volume will be inde-

pendent of the single-cell fluctuations in growth rate and initiation size, as required by our observa-

tions, and in contrast to the predictions of a timer model, which would predict fluctuations in

growth rate and added volume to correlate positively.

While the division and replication cycles are seemingly coupled, our analysis demonstrates that

two simple adders connected to replication initiation are sufficient to recapitulate both cycles with-

out explicitly enforcing constraints reflecting mechanisms such as over-initiation control by SeqA and

nucleoid occlusion which ensures that division only occurs after chromosome replication is com-

pleted. The initiation-to-initiation adder mimics SeqA activity by creating a refractory period without

initiation, and the initiation-to-division adder ensures that a minimal time is allocated for replication

Figure 7 continued

Source data 2. Table with source data for division-centric decompositions of both experimental and simulation

data of Figure 7 and Figure 7—figure supplement 1, Figure 7—figure supplement 2 and Figure 7—figure

supplement 3.

Figure supplement 1. Correlation matrices for the top nine decompositions of the experimental data.

Figure supplement 2. Correlation matrices for the top nine decompositions of the data from simulations of the

double-adder model.

Figure supplement 3. Full list of independences I for all replication-centric and division-centric models.

Figure supplement 4. Top scoring decompositions for data from simulations of an alternative model.

Figure supplement 4—source data 1. Table with source data for replication-centric decompositions of Figure 7—

figure supplement 4.

Figure supplement 4—source data 2. Table with source data for division-centric decompositions of Figure 7—

figure supplement 4.

Figure supplement 5. Top scoring decompositions for data from Si et al. (2019).

Figure supplement 5—source data 1. Table with source data for replication-centric decompositions of Figure 7—

figure supplement 5.

Figure supplement 5—source data 2. Table with source data for division-centric decompositions of Figure 7—

figure supplement 5.
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to complete. While the simulations might in rare cases generate unrealistic situations, for example if

a large initiation adder is combined with a small division adder leading to premature division, those

clashes seem rare enough to not affect the global statistical behavior of the model. Naturally, the

model would break down and these controls would need to be explicitly included in the case where

cells are subject to stress conditions where these control mechanisms act as fail-safes for example to

ensure that division is delayed if DNA repair is needed. In the course of our study, new research pro-

posed that division and replication cycles are only seemingly connected, and used perturbation

methods to drive cells to states where the uncoupling is revealed (Si et al., 2019). While such pertur-

bation studies are very informative, more work is needed to understand to what extent hidden com-

pensatory mechanisms might be at play when affecting DnaA or FtsZ expression. Also, that study

focuses exclusively on a model which explicitly enforces various correlations between variables unlike

our model which naturally produces such relations. Another recent study (Wehrens et al., 2018)

using a perturbative approach has shown that cells driven to a filamentous state recover normal sizes

through successive single division events seemingly independently from initiation and following an

adder behaviour. As division inhibition also hinders replication related processes such as chromo-

some segregation (Sánchez-Gorostiaga et al., 2016), it is difficult to untangle the different mecha-

nisms that might be at play. Complementing such experiments with a monitoring of replication as

done here would surely be a worthwhile future endeavour, a task though which is beyond the pur-

pose of this study, which tries to clarify the normal growth case.

Interestingly, a double-adder mechanism similar to the one that we propose here has been shown

to explain cell cycle control in mycobacteria (Logsdon et al., 2017). These mycobacteria have a

much more complex cell cycle than E. coli, in particular characterized by a strong asymmetry

between daughter cells and a growth rate almost an order of magnitude smaller than that of E. coli.

Despite those important differences, it was shown that mycobacterial cell cycles exhibit adder

behavior for both division and replication starting at initiation, in a manner highly similar to our

observations in E. coli. This suggests that the mechanism connecting replication and division must

be quite fundamental and independent of the specifics of available genes and their expression.

Although the single-cell observations provide clear indications of which variables are most likely

to be directly involved in the cell cycle control, they of course do not indicate the underlying molecu-

lar mechanisms. However, it is not hard to speculate about possible molecular mechanisms that

could implement the double-adder behavior. As others have pointed out previously (Ho and Amir,

2015), an adder for the regulation of replication initiation can be easily implemented at the molecu-

lar level by having a ’sensor’ protein that builds up at each origin, and that triggers replication initia-

tion whenever a critical mass is reached at a given origin. If this sensor protein is additionally

homeostatically controlled such that its production relative to the overall protein production is kept

constant, then the average volume per origin will also be kept constant across conditions.

It is more challenging to define a molecular system that can implement the second adder that

controls division. The main challenge is that this adder does not run throughout the entire cell cycle,

but only between replication initiation and division. It is well known that division is driven by the

polymerization of the FtsZ ring, which includes a host of other FtsZ-ring associated proteins, and its

progressive constriction. It might seem simplest to assume that the division adder could be imple-

mented directly through FtsZ production, again in the logic of the regulated ’sensor’ mentioned

above. However, this would require FtsZ to be produced and accumulating at the division sites only

from replication initiation to cell division. Although this is conceivable, that is it is known that FtsZ

and other division proteins are heavily regulated at several levels (Dewar and Dorazi, 2000) and

that especially in slow growth conditions its concentration varies during the cell cycle (Männik et al.,

2018), it is hard to imagine how this model could work under fast growth conditions in which there

are overlapping rounds of replication such that FtsZ would be constantly expressed. Moreover

recent data (Si et al., 2019) rather suggest that FtsZ concentration is constant during the cell cycle.

Alternatively, rather than FtsZ production, Ftsz polymerization could be regulated. One remark-

able observation that is well known within the field (Lau et al., 2004; Nielsen et al., 2006) and that

we also observe in our data (see Figure 4—figure supplement 1), is that origins always occupy the

position of future division sites (mid-cell, 1/4 and 3/4 positions etc.) when replication is initiated. This

observation not only suggests that, at replication initiation, some local molecular event occurs that

will eventually trigger division at the same site, but it is also remarkably consistent with the idea of

an adder running only between replication initiation and division. One long-standing idea that is
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consistent with these observations is that some molecular event that occurs during replication initia-

tion triggers the start of FtsZ ring formation, and that the timing from initiation to division is con-

trolled by the polymerization dynamics of the FtsZ ring (Weart and Levin, 2003). At the molecular

level, the common triggering of initiation and polymerization might be explained by the accumula-

tion of acidic phosholipids in the cell membrane precisely at future division sites (Renner and Wei-

bel, 2011) where they probably interact with components of the division machinery. At the same

time those lipids are known to play a role in promoting replication by rejuvenating the initiator pro-

tein DnaA-ADP into DnaA-ATP (Saxena et al., 2013), and might therefore be a ’hub’ coordinating

the two cycles. Finally, it remains to be explained how FtsZ polymerization or pole building could

result in an adder behavior. For that purpose, future experiments should focus on combining the

type of information collected in this study and detailed measures of the dynamics of FtsZ-ring assem-

bly and constriction as done in Coltharp et al. (2016).

Materials and methods

Bacterial strains and media
All strains are derived from the K-12 strain BW27378, a D(araH-araF)570(::FRT) derivative of the Keio

collection background strain (Baba et al., 2006) obtained from the Yale Coli Genetic Stock Center.

This strain was further modified by l-Red recombination (Datsenko and Wanner, 2000) and P1

transduction to result in DaraFGH(::FRT), DaraE(::FRT), DlacIZYA(::FRT). A 250 lacO repeats FROS

array with chloramphenicol resistance was inserted close to the origin of replication in the asnA

gene by l-Red recombination and P1 transduction resulting in strain GW273. The lacO-CmR array

was derived from the original plasmid pLau43 (Lau et al., 2004) by replacing the kanamycin resis-

tance and a series of operators on both sides of it with the CmR gene. For visualization of the array,

GW273 was transformed with plasmid pGW266 expressing a LacI-mVenus fusion, resulting in strain

GW296. The plasmid is derived from the original FROS plasmid pLAU53 (Lau et al., 2004) from

which the tetR construct was removed and the lacI-CFP replaced with lacI-mVenus. For the experi-

ment analyzed automatically, strain GW296 was additionally transformed with plasmid pGW339

expressing FtsZ-mVenus under the control of the araBAD promoter using 0.002% arabinose for

induction, resulting in strain GW339. Expression is tightly controlled by using the approach pro-

posed in Morgan-Kiss et al. (2002).

All experiments were done using M9 minimal media supplemented with 2mM MgSO4, 0.1mM

CaCl2, and sugars (0.2% for glucose and 0.2% for glycerol). In one experiment, the media was sup-

plemented with eight amino acids at a concentration of 5 mg/mL-1: Threonine, Aspagrinine, Methio-

nine, Proline, Leucine, Tryptophane, Serine, Alanine. All experiments were carried out at 37˚C.

Microfluidic device fabrication
Mother Machine experiments were performed using the Dual Input Mother Machine (DIMM) micro-

fluidic design which has been described elsewhere (Kaiser et al., 2018) and is freely available online

(https://metafluidics.org/devices/dual-input-mother-machine/); since no change of conditions was

intended during experiments, the same media was flown at both inputs.

Several microfluidics masters were produced using soft lithography techniques by micro-resist

Gmbh; two masters with regular growth channels of suitable size ( 0.8 mm width � 0.9 mm height for

growth in glycerol, and 1 mm width � 1.2 mm height for growth in glucose) were used for all

experiments.

For each experiment, a new chip was produced by pouring PDMS (Sylgard 184 with 1:9 w/w ratio

of curing agent) on the master and baking it for 4 hrs or more at 80˚C. After cutting the chip and

punching inlets, the chip was bonded to a #1.5 glass coverslip as follows: the coverslip was manually

washed in water and soap, rinsed in isopropanol then water; the chip cleaned from dust using Magi-

cTape, rinsed in isopropanol then water; surfaces were activated with air plasma (40 s at 1500 mm of

Hg) before being put in contact; the assembled chip was cooked 1 hr or more at 80˚C.

Before running the experiment, the chip was primed and incubated 1 hr at 37˚C using passivation

buffer (2.5 mg/mL salmon sperm DNA, 7.5 mg/mL bovine serum albumin) for the mother machine

part and water for the overflow channels.
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Experiment setup and conditions
Bacteria were stored as frozen glycerol stocks at �80˚C and streaked onto LB agar plates to obtain

clonal colonies. Overnight precultures were grown from single colonies in the same growth media as

the experiment. The next day, cells were diluted 100-fold into fresh medium and harvested after 4–6

hr.

The experimental apparatus was initialized, pre-warmed and equilibrated. Media flow was con-

trolled using a pressure controller and monitored with flow-meters, set to run a total flow of

» 1.5 L/min (corresponding to a pressure of » 1600 mbar).

The primed microfluidic chip was mounted, connected to media supply and flushed with running

media for 30 min or more to rinse passivation buffer. The grown cell culture was centrifuged at

4000� g for 5 min, and the pellet re-suspended in a few mL supernatant and injected into the device

from the outlet using the pressure controller. To facilitate the filling of growth channels by swimming

and diffusing cells, the pressure was adjusted in order to maintain minimal flow in the main channel

(loading time » 40 min).

After loading, bacteria were incubated during 2 hr before starting image acquisition. Every 3 min,

phase contrast and fluorescence images were acquired for several well-separated positions in

parallel.

Microscopy and image analysis
An inverted Nikon Ti-E microscope, equipped with a motorized xy-stage and enclosed in a tempera-

ture incubator (TheCube, Life Imaging Systems), was used to perform all experiments. The sample

was fixed on the stage using metal clamps and focus was maintained using hardware autofocus (Per-

fect Focus System, Nikon). Images were recorded using a CFI Plan Apochromat Lambda DM �100

objective (NA 1.45, WD 0.13 mm) and a CMOS camera (Hamamatsu Orca-Flash 4.0). The setup was

controlled using microManager (Edelstein et al., 2014) and time-lapse movies were recorded with

its Multi-Dimensional Acquisition engine. Phase contrast images were acquired using 200 ms expo-

sure (CoolLED pE-100, full power). Images of mCherry fluorescence were acquired using 200 ms

exposure (Lumencor SpectraX, Green LED at 33% with ND4) using a Semrock triple-band emission

filter (FF01-475/543/702-25).

Image analysis was performed using MoMA (Kaiser et al., 2018) as described in its documenta-

tion (https://github.com/fjug/MoMA/wiki). Raw image datasets were transferred to a centralised

storage and preprocessed in batch. Growth channels were chosen randomly after discarding those

where cell cycle arrest occurred in the mother cell, and curated manually in MoMA. An exponential

elongation model was then fitted to each cell cycle, and cycles presenting large deviations were dis-

carded (1–3% of each experiment, see Appendix 1).

For the automated origin detection and tracking, we used custom Python code (Witz, 2019;

copy archived at https://github.com/elifesciences-publications/DoubleAdderArticle) which makes

extensive use of the packages numpy (van der Walt et al., 2011), scipy (Jones et al., 2001), mat-

plotlib (Hunter, 2007), pandas (McKinney, 2010), and scikit-image (van der Walt et al., 2014).

Spots were detected following the method proposed in Aguet et al. (2013). Briefly, amplitude and

background are estimated for each pixel using a fast filtering method and a spot model correspond-

ing to the optical setup. Among the local maxima found in the amplitude estimates, spots are then

selected using a statistical test based on the assumption that background noise is Gaussian. To track

spots, we used the trackpy package (Allan et al., 2018). Cell cycles with incoherent properties (e.g.

missing origin because of a failed detection) were discarded (~14%). The time of initiation was

assigned as the first time point where a track splits into two. For the manual analysis of the other

experiments, the frame showing origin splitting was selected manually.

Using the timing of origin splitting, the corresponding cell length could be determined. All further

variables like dL or dLib are deduced from the primary variables. For the decomposition analysis, a

pseudo-cell cycle was created by concatenating the mother cell cycle from initiation to division with

the daughter cell cycle from birth to initiation (the operation is repeated for both daughters sepa-

rately). The growth rate a for this pseudo-cell cycle was again obtained by fitting an exponential

growth model. All the growth lanes corresponding to a given conditions were then pooled to gener-

ate the various statistics shown in this article.
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The entire analysis pipeline is available as Python modules and Jupyter Notebooks on Github,

https://github.com/guiwitz/DoubleAdderArticle (Witz, 2019).

Simulations
The numerical implementation of the model described in Figure 4 and used in Figure 5 requires

several parameters for each individual cell cycle. To generate those, the following distributions were

extracted from experimental data, and if needed their means and variances were obtained by a fit-

ting procedure:

. The growth rate distributions PðlÞ.

. The growth rate correlation from mother to daughters.

. The length distributions of the two adder processes PðdLibÞ and PðdLif Þ.

. The distributions of length ratios between sister cells to account for imprecision in division
placement PðrÞ.

For the simulation, a series of 500 cells is initialized with all required parameters: initial length L0

taken from the birth length distribution, l ¼ PðlÞ, number of origins nori ¼ 1, and the two adders

dLib ¼ PðlÞ and dLif ¼ PðdLif Þ whose counters are starting at 0. The exact initialization is not crucial

as the system relaxes to its equilibrium state after a few generations. Cells are then growing incre-

mentally following an exponential law, and the added length is monitored. Every time the cell

reaches its target dLif , the number of origins doubles and a new initiation adder is drawn from

PðdLif Þ. Every time the cell reaches its target dLib the cell (1) divides into two cells using a division

ratio drawn PðrÞ, (2) the number of origins per cell is divided by two, (3) a new division adder is

drawn from PðdLibÞ, and finally (4) a new growth rate is drawn from PðlÞ. Each simulation runs for 30

hrs in steps of 1 min. In the end, the cell tracks resulting from the simulation are formatted in the

same format as the experimental data, and follow the same analysis pipeline. The code is available

on Github.

Acknowledgements
This study was funded through the SNSF Ambizione grant PZ00P3-161467 to GW and the SNSF

grant 31003A-159673 to EvN.

Additional information

Funding

Funder Grant reference number Author

Schweizerischer Nationalfonds
zur Förderung der Wis-
senschaftlichen Forschung

PZ00P3_161467 Guillaume Witz

Schweizerischer Nationalfonds
zur Förderung der Wis-
senschaftlichen Forschung

31003A_159673 Erik van Nimwegen

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Guillaume Witz, Conceptualization, Resources, Data curation, Software, Formal analysis, Funding

acquisition, Investigation, Visualization, Methodology, Writing—original draft, Project administration,

Writing—review and editing; Erik van Nimwegen, Formal analysis, Funding acquisition, Methodol-

ogy, Writing—review and editing; Thomas Julou, Resources, Formal analysis, Methodology, Writ-

ing—review and editing

Witz et al. eLife 2019;8:e48063. DOI: https://doi.org/10.7554/eLife.48063 17 of 23

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://github.com/guiwitz/DoubleAdderArticle
https://doi.org/10.7554/eLife.48063


Author ORCIDs

Guillaume Witz https://orcid.org/0000-0003-1562-4265

Thomas Julou https://orcid.org/0000-0001-7123-198X

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.48063.sa1

Author response https://doi.org/10.7554/eLife.48063.sa2

Additional files

Supplementary files
. Transparent reporting form

Data availability

Images of growth channels and MoMA segmentations have been deposited on Zenodo.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Witz G, van Nim-
wegen E, Julou T

2019 Analysis of division and replication
cycles in E. coli using time-lapse
microscopy, microfluidics and the
MoMA software

https://doi.org/10.5281/
zenodo.3149097

Zenodo, 10.5281/
zenodo.3149097

References
Adiciptaningrum A, Osella M, Moolman MC, Cosentino Lagomarsino M, Tans SJ. 2016. Stochasticity and
homeostasis in the E. coli replication and division cycle. Scientific Reports 5:18261. DOI: https://doi.org/10.
1038/srep18261

Aguet F, Antonescu CN, Mettlen M, Schmid SL, Danuser G. 2013. Advances in analysis of low signal-to-noise
images link dynamin and AP2 to the functions of an endocytic checkpoint. Developmental Cell 26:279–291.
DOI: https://doi.org/10.1016/j.devcel.2013.06.019, PMID: 23891661

Allan DB, Caswell T, Keim NC, van der Wel CM. 2018. Trackpy. Zenodo. v0.4.1.
Amir A. 2014. Cell size regulation in Bacteria. Physical Review Letters 112:208102. DOI: https://doi.org/10.1103/
PhysRevLett.112.208102

Amir A. 2017. Is cell size a spandrel? eLife 6:e22186. DOI: https://doi.org/10.7554/eLife.22186, PMID: 28102818
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006.
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the keio collection. Molecular
Systems Biology 2:2:2006.0008.

Campos M, Surovtsev IV, Kato S, Paintdakhi A, Beltran B, Ebmeier SE, Jacobs-Wagner C. 2014. A constant size
extension drives bacterial cell size homeostasis. Cell 159:1433–1446. DOI: https://doi.org/10.1016/j.cell.2014.
11.022, PMID: 25480302

Coltharp C, Buss J, Plumer TM, Xiao J. 2016. Defining the rate-limiting processes of bacterial cytokinesis. PNAS
113:E1044–E1053. DOI: https://doi.org/10.1073/pnas.1514296113, PMID: 26831086

Cooper S, Helmstetter CE. 1968. Chromosome replication and the division cycle of Escherichia coli B/r. Journal
of Molecular Biology 31:519–540. DOI: https://doi.org/10.1016/0022-2836(68)90425-7, PMID: 4866337

Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR
products. PNAS 97:6640–6645. DOI: https://doi.org/10.1073/pnas.120163297, PMID: 10829079

Dewar SJ, Dorazi R. 2000. Control of division gene expression in Escherichia coli. FEMS Microbiology Letters
187:1–7. DOI: https://doi.org/10.1111/j.1574-6968.2000.tb09127.x, PMID: 10828391

Donachie WD. 1968. Relationship between cell size and time of initiation of DNA replication. Nature 219:1077–
1079. DOI: https://doi.org/10.1038/2191077a0, PMID: 4876941

Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N. 2014. Advanced methods of
microscope control using mmanager software. Journal of Biological Methods 1:10. DOI: https://doi.org/10.
14440/jbm.2014.36

Eun YJ, Ho PY, Kim M, LaRussa S, Robert L, Renner LD, Schmid A, Garner E, Amir A. 2018. Archaeal cells share
common size control with Bacteria despite noisier growth and division. Nature Microbiology 3:148–154.
DOI: https://doi.org/10.1038/s41564-017-0082-6, PMID: 29255255

Harris LK, Theriot JA. 2016. Relative rates of surface and volume synthesis set bacterial cell size. Cell 165:1479–
1492. DOI: https://doi.org/10.1016/j.cell.2016.05.045, PMID: 27259152

Helmstetter C, Cooper S, Pierucci O, Revelas E. 1968. On the bacterial life sequence. Cold Spring Harbor
Symposia on Quantitative Biology 33:809–822. DOI: https://doi.org/10.1101/SQB.1968.033.01.093

Witz et al. eLife 2019;8:e48063. DOI: https://doi.org/10.7554/eLife.48063 18 of 23

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://orcid.org/0000-0003-1562-4265
https://orcid.org/0000-0001-7123-198X
https://doi.org/10.7554/eLife.48063.sa1
https://doi.org/10.7554/eLife.48063.sa2
https://doi.org/10.5281/zenodo.3149097
https://doi.org/10.5281/zenodo.3149097
https://doi.org/10.1038/srep18261
https://doi.org/10.1038/srep18261
https://doi.org/10.1016/j.devcel.2013.06.019
http://www.ncbi.nlm.nih.gov/pubmed/23891661
https://doi.org/10.1103/PhysRevLett.112.208102
https://doi.org/10.1103/PhysRevLett.112.208102
https://doi.org/10.7554/eLife.22186
http://www.ncbi.nlm.nih.gov/pubmed/28102818
https://doi.org/10.1016/j.cell.2014.11.022
https://doi.org/10.1016/j.cell.2014.11.022
http://www.ncbi.nlm.nih.gov/pubmed/25480302
https://doi.org/10.1073/pnas.1514296113
http://www.ncbi.nlm.nih.gov/pubmed/26831086
https://doi.org/10.1016/0022-2836(68)90425-7
http://www.ncbi.nlm.nih.gov/pubmed/4866337
https://doi.org/10.1073/pnas.120163297
http://www.ncbi.nlm.nih.gov/pubmed/10829079
https://doi.org/10.1111/j.1574-6968.2000.tb09127.x
http://www.ncbi.nlm.nih.gov/pubmed/10828391
https://doi.org/10.1038/2191077a0
http://www.ncbi.nlm.nih.gov/pubmed/4876941
https://doi.org/10.14440/jbm.2014.36
https://doi.org/10.14440/jbm.2014.36
https://doi.org/10.1038/s41564-017-0082-6
http://www.ncbi.nlm.nih.gov/pubmed/29255255
https://doi.org/10.1016/j.cell.2016.05.045
http://www.ncbi.nlm.nih.gov/pubmed/27259152
https://doi.org/10.1101/SQB.1968.033.01.093
https://doi.org/10.7554/eLife.48063


Helmstetter CE. 1974. Initiation of chromosome replication in Escherichia coli. Journal of Molecular Biology 84:
21–36. DOI: https://doi.org/10.1016/0022-2836(74)90210-1

Ho PY, Amir A. 2015. Simultaneous regulation of cell size and chromosome replication in Bacteria. Frontiers in
Microbiology 6:662. DOI: https://doi.org/10.3389/fmicb.2015.00662, PMID: 26217311

Hunter JD. 2007. Matplotlib: a 2D graphics environment. Computing in Science & Engineering 9:90–95.
DOI: https://doi.org/10.1109/MCSE.2007.55

Jones E, Oliphant T, Peterson P. 2001. SciPy: Open source scientific tools for Python.
Kaiser M, Jug F, Julou T, Deshpande S, Pfohl T, Silander OK, Myers G, van Nimwegen E. 2018. Monitoring
single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and
software. Nature Communications 9:212. DOI: https://doi.org/10.1038/s41467-017-02505-0

Koppes LJ, Nanninga N. 1980. Positive correlation between size at initiation of chromosome replication in
Escherichia coli and size at initiation of cell constriction. Journal of Bacteriology 143:89–99. PMID: 6995452

Lau IF, Filipe SR, Søballe B, Økstad O-A, Barre F-X, Sherratt DJ. 2004. Spatial and temporal organization of
replicating Escherichia coli chromosomes. Molecular Microbiology 49:731–743. DOI: https://doi.org/10.1046/j.
1365-2958.2003.03640.x

Logsdon MM, Ho PY, Papavinasasundaram K, Richardson K, Cokol M, Sassetti CM, Amir A, Aldridge BB. 2017. A
parallel adder coordinates mycobacterial Cell-Cycle progression and Cell-Size homeostasis in the context of
asymmetric growth and organization. Current Biology 27:3367–3374. DOI: https://doi.org/10.1016/j.cub.2017.
09.046, PMID: 29107550

Männik J, Walker BE, Männik J. 2018. Cell cycle-dependent regulation of FtsZ in Escherichia coli in slow growth
conditions. Molecular Microbiology 110:1030–1044. DOI: https://doi.org/10.1111/mmi.14135, PMID: 30230648

McKinney W. 2010. Data structures for statistical computing in Python. Proceedings of the 9th Python in Science
Conference 51–56. https://conference.scipy.org/proceedings/scipy2010/mckinney.html.

Micali G, Grilli J, Marchi J, Osella M, Cosentino Lagomarsino M. 2018a. Dissecting the control mechanisms for
DNA replication and cell division in E. coli. Cell Reports 25:761–771. DOI: https://doi.org/10.1016/j.celrep.
2018.09.061, PMID: 30332654

Micali G, Grilli J, Osella M, Cosentino Lagomarsino M. 2018b. Concurrent processes set E. coli cell division.
Science Advances 4:eaau3324. DOI: https://doi.org/10.1126/sciadv.aau3324, PMID: 30417095

Morgan-Kiss RM, Wadler C, Cronan JE. 2002. Long-term and homogeneous regulation of the Escherichia coli
araBAD promoter by use of a lactose transporter of relaxed specificity. PNAS 99:7373–7377. DOI: https://doi.
org/10.1073/pnas.122227599, PMID: 12032290

Nielsen HJ, Li Y, Youngren B, Hansen FG, Austin S. 2006. Progressive segregation of the Escherichia coli
chromosome. Molecular Microbiology 61:383–393. DOI: https://doi.org/10.1111/j.1365-2958.2006.05245.x,
PMID: 16771843
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Appendix 1

Experiments statistics

Appendix 1—table 1. Statistics for all experiments. Glycerol auto is the dataset analyzed

automatically, while Glycerol is the one analyzed manually. Each growth condition represent one

experiment during which multiple positions on the chip where recorded and for which multiple

growth channels were analyzed. The discarded fraction represents cell cycles not following

exponential growth. In the automated analysis (Glycerol auto) an additional 14% of cycles are

discarded because of a failed origin tracking. r stands for Pearson correlation, and the m� d

superscript indicates a mother-daughter correlation. The doubling time (1/l) is obtained by

fitting the distribution of growth rates with a log-normal distribution.

Experiment Discarded % # cell cycles 1=l½min� Adder r l
m�d r Lm�d

b r

Glycerol auto 3.3 3070 86.0 �0.10 0.33 0.45

Glycerol 2.1 810 89.0 �0.07 0.42 0.58

Glucose 2.1 1035 53.0 �0.04 0.47 0.66

Glucose +AA 2.4 1159 41.0 �0.12 0.36 0.48
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Appendix 2

Other models
In this article we have shown that models relying on the concept of initiation mass, as well as

those involving a constant timer from initiation to division are incompatible with

measurements. Still, those models are able to reproduce a wide range of experimental

measurements, and we wanted to understand where they would break. We give here two

examples of such an analysis. In the first case we tried to reproduce the model proposed in

Wallden et al. (2016). This model assumes that cells initiate replication around a specific

initiation mass length Li and then grow for an amount of time depending on growth rate

TCDð�Þ before dividing (Appendix 2—figure 1A). In panels B and C of Appendix 2—figure 1

we show that we are successfully reproducing the model used for example in Figure 6 of

Wallden et al. (2016). The histogram of the number of origins at birth shown in Appendix 2—

figure 1D shows a clear failure of the model a majority of cells in slow growth conditions are

born with an ongoing round of replication in contradiction with experimental data (see e.g.

Figure 3 of Wallden et al., 2016).
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Appendix 2—figure 1. Re-implementation of the model proposed in Wallden et al. (2016) for

three growth conditions. (A) Cells initiation at length Li and grow for a time TCDð�Þ before

dividing. (B) Cell volume at birth and division as a function of growth rate. (C) Cell volume at

birth and division as a function of generation time. (D) Distributions of the number of origins at

birth.

The second model we are investigating here is based on the idea that replication and

division are uncoupled and that the division cycle can be simply modeled as an adder (e.g. as

in Harris and Theriot, 2016). As in our double-adder model, the replication cycle is controlled

by an inter-initiation adder per origin. In very rare cases (0.4%), division happens in a cell with

a single unreplicated origin. To avoid such rare unrealistic events, we condition division on the

presence of two origins. The results are shown in Appendix 2—figure 2. The model

surprisingly reproduces most of the features of the experimental data with one exception: the

initiation to division variable dLib is clearly not anymore an adder.
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Appendix 2—figure 2. Comparison of distributions and correlations for slow growth case

between experimental (M9+glycerol auto) and simulation data from a model combining an

inter-initiation adder and a classic adder dL ¼ Ld � Lb.
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