TABLE 2.
The first set: multi-label learning, five main labels | |||||
Age | Education | CSFC | CSCC | CSOC | |
R | 0.627 | 0.395 | 0.369 | 0.585 | 0.536 |
RMSE | 2.908 | 1.636 | 10.727 | 8.021 | 12.184 |
The second set: multi-label learning, five Supplementary labels | |||||
Grip strength | Reading recognition | Picture vocabulary | VSPLOT | Gender∗ | |
R | 0.701 | 0.522 | 0.555 | 0.376 | 97.6%(ACC) |
RMSE | 8.066 | 9.038 | 7.871 | 4.109 | 0.996(AUC) |
The third set: multi-label learning, ten labels | |||||
Age | Education | CSFC | CSCC | CSOC | |
R | 0.625 | 0.400 | 0.367 | 0.573 | 0.528 |
RMSE | 2.914 | 1.629 | 10.738 | 8.101 | 12.278 |
Grip strength | Reading recognition | Picture vocabulary | VSPLOT | Gender∗ | |
R | 0.704 | 0.519 | 0.546 | 0.382 | 97.8%(ACC) |
RMSE | 8.033 | 9.059 | 7.920 | 4.093 | 0.996(AUC) |
The fourth set: single-label learning, five main labels | |||||
Age | Education | CSFC | CSCC | CSOC | |
R | 0.635 | 0.402 | 0.380 | 0.584 | 0.525 |
RMSE | 2.886 | 1.628 | 10.667 | 8.033 | 12.281 |
∗For gender classification, the classification accuracy (ACC) and the area under curve (AUC) were provided.