
1Scientific Reports |         (2019) 9:18184  | https://doi.org/10.1038/s41598-019-54590-4

www.nature.com/scientificreports

Mapping Knowledge Gaps of 
Mozambique’s Terrestrial Mammals
Isabel Queirós Neves   1,2,3*, Maria da Luz Mathias   2,3 & Cristiane Bastos-Silveira   1,4

A valuable strategy to support conservation planning is to assess knowledge gaps regarding primary 
species occurrence data to identify and select areas for future biodiversity surveys. Currently, 
increasing accessibility to these data allows a cost-effective method for boosting knowledge about a 
country’s biodiversity. For understudied countries where the lack of resources for conservation is more 
pronounced to resort to primary biodiversity data can be especially beneficial. Here, using a primary 
species occurrence dataset, we assessed and mapped Mozambique’s knowledge gaps regarding 
terrestrial mammal species by identifying areas that are geographically distant and environmentally 
different from well-known sites. By comparing gaps from old and recent primary species occurrence 
data, we identified: (i) gaps of knowledge over time, (ii) the lesser-known taxa, and (iii) areas with 
potential for spatiotemporal studies. Our results show that the inventory of Mozambique’s mammal 
fauna is near-complete in less than 5% of the territory, with broad areas of the country poorly sampled 
or not sampled at all. The knowledge gap areas are mostly associated with two ecoregions. The 
provinces lacking documentation coincide with areas over-explored for natural resources, and many 
such sites may never be documented. It is our understanding that by prioritising the survey of the 
knowledge-gap areas will likely produce new records for the country and, continuing the study of the 
well-known regions will guarantee their potential use for spatiotemporal studies. The implemented 
approach to assess the knowledge gaps from primary species occurrence data proved to be a powerful 
strategy to generate information that is essential to species conservation and management plan. 
However, we are aware that the impact of digital and openly available data depends mostly on 
its completeness and accuracy, and thus we encourage action from the scientific community and 
government authorities to support and promote data mobilisation.

Effective conservation planning relies on insightful knowledge and data acquisition about species occurrence 
and distribution1. Primary species-occurrence data across dispersed data sources can be a cost-effective resource 
for boosting knowledge about a country’s biodiversity2. Particularly for poorly documented countries filling data 
gaps is crucial for new and broad insights for biodiversity research and conservation. Research-neglected regions, 
which lack quality information, coincide mainly with the species-rich and developing nations3.

Mozambique, in southeastern Africa (Fig. 1), holds a rich, but poorly documented, biodiversity4,5. The coun-
try’s political instability from 1964 to 1992, due to a long period of war, led to species extirpations and irregular 
migrations, degradation of important ecosystems and a scarcity of biodiversity studies6. Despite recent moni-
toring efforts, mainly in protected areas, and contributions that greatly improved current knowledge on several 
taxonomic groups, there remains a significant lack of knowledge regarding the occurrence and distribution of 
most Mozambican species4,7.

The most recent inventory of terrestrial mammals from Mozambique, which was based on primary species 
occurrence data from several sources, reported a total of 217 species for the country7. The authors detected a 
taxonomic bias in the data towards large mammal groups, with only half of the small mammal species recorded 
during the last two decades.

The extent of biases in primary species occurrence data often results in over-representation of particu-
lar species or localities, concealing the real patterns of species distribution1,8–13. These biases are frequently a 
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consequence of the historical, scientific interest in some areas, such as protected areas, and the inaccessibility 
of the other regions far from roads or river networks14. Biased data, in turn, weakens the utility of the compiled 
species distribution maps, especially for the species rich countries in the countries15,16. In the last decade, to 
overcome these data challenges, several authors made an effort to develop tools to analyse and describe biases 
and knowledge gaps in primary species-occurrence data2,17–20. The premise is that knowledge of data biases and 
uncertainty is fundamental to interpreting the mapped species distribution adequately9,21,22.

Furthermore, the assesment of knowledge gaps from primary species occurrence data to select areas for future 
biodiversity data to select areas for future biodiversity surveys is a useful strategy to support conservation plan-
ning. The evaluation of gaps from primary data can be achieved by calculating inventory completeness (i.e. the 
fraction of species in a given location that has been sampled) and by selecting areas with insufficient sampling and 

Figure 1.  (a) Map of Mozambique, with the indication of the protected areas and the rivers that divide the 
country into three major biogeographical regions (dark line): North Mozambique, Central Mozambique and 
South Mozambique; and (b) Inset with the location of the Republic of Mozambique in the African continent. 
Mozambique is surrounded by six neighbour countries indicated in the figure by a three-letter code: Tanzania 
(TZA), Malawi (MWI), Zambia (ZMB), Zimbabwe (ZWE), South Africa (ZAF), and Swaziland (SWZ). 
Mozambique’s provinces are identified with a 2-letter code: Niassa (Ns); Cabo Delgado (CB), Nampula (Nm), 
Zambézia (Zm), Tete (Tt), Manica (Mn), Sofala (Sf), Inhambane (In), Gaza (Gz), Maputo (Mp). The country’s 
protected areas are indicated with a number: 1. Lake Niassa partial reserve, 2. Niassa national reserve, 3. 
Quirimbas national park, 4. Gilé national reserve, 5. Marromeu national reserve, 6. Mágoè national park, 7. 
Gorongosa national park, 8. Chimanimani national reserve, 9. Zinave national park, 10. Banhine national park, 
11. Bazaruto national park, 12. Pomene national reserve, 13. Limpopo national park, 14. Maputo special reserve, 
15 – Ponta do Ouro national reserve. Protected areas shapefile was downloaded from Biofund platform of 
conservation areas (http://www.biofund.org.mz/en/database/platform-of-the-conservation-areas/).
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that are geographically distant and environmentally different from the well-known areas2,23,24. For understudied 
countries where the lack of resources for conservation is pronounced25, this strategy is particularly beneficial as 
survey effort focused on areas less visited and unique will likely produce new records or new species2,11.

In the present work, we assessed knowledge gaps on terrestrial mammal species from Mozambique aiming 
to provide baseline information for conservation planning. To achieve this goal, we evaluated: (i) the spatial and 
environmental biases of the mammal inventory in Mozambique; (ii) cell-wide inventory completeness, and (iii) 
sites with incomplete sampling that are geographically and environmentally unique. The approach here followed, 
which can be applied to other understudied countries, has the potential to generate reliable biodiversity informa-
tion that can contribute towards effective conservation and management planning.

Results
Data description.  Our analysis was based on data from the most recent inventory of terrestrial mam-
mals reported for Mozambique7. This work compiled primary species occurrence data from several digital and 
non-digital sources of primary species occurrence data, namely: online platforms, museum collections, survey 
reports and scientific literature. The underlying data that supports the validated species checklist comprises a total 
of 14981 records, dated from 1842 to 2018, representing 217 mammal species.

Here, we reduced the inventory’s species occurrence data to unique records to avoid duplication of infor-
mation, and records were aggregated to a 0.25° resolution country-wide grid (see Material and methods). The 
reduction of species occurrence data to unique records resulted in 14201 records of 215 species. Two species did 
not pass the data reduction process because the corresponding records did not contain enough information to 
be allocated to the country grid. These species were the bats Chaerephon nigeriae Thomas, 1913 and Rhinolophus 
rhodesiae Roberts, 1946.

The total number of grid cells across Mozambique that held mammal records was 1014, corresponding to 
83.3% of the country (Fig. 2; Table 1). Most of the inventory data (almost 60%) were collected before the year 2000 
(“old data”). These data correspond to a total of 204 species and are distributed across almost 68% of the country’s 
territory. The primary sources of these old data were literature (56.7%) and natural history collections (43.2%). 
On the other hand, records collected after the year 2000 (“recent data”) included 156 species and covered less 
than 50% of the country’s territory (Table 1). These recent data were mainly derived from survey reports (85.1%), 
followed by natural history collections (10.7%) and literature (4.2%).

Mozambique has a high diversity of terrestrial ecosystems, which according to the most comprehensive syn-
thesis on African habitats by Burgess et al.26 encompasses five biomes and, within the biomes, 13 ecoregions. 
Burgess et al.26 follows the definition of biome and ecoregion by Olson et al.27.

Figure 2.  The number of records of Mozambique’s terrestrial mammals. (a) Visualisation of the number of 
unique records across Mozambique based on a 0.25° resolution grid. (b) Bars are showing the number of unique 
records per mammal group and the contribution of data sources. Mammal groups in the x-axis are identified by 
an “L” for large mammals, “M” for medium mammals, and “S” for small mammals.
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Per ecoregion, our results show a mean number of species of approximately 75.5; ranging from 4 species 
in the Zambezian flooded grasslands ecoregion, which covers less than 1% (0.52 +/− 0.05%) of the country, 
to 168 species in the Southern Miombo woodland ecoregion, which includes more than 16% of the country 
(16.5 +/− 0.19%; Fig. 3). The Zambezian and Mopane woodlands ecoregion also had a considerable number of 
species reported (167 species), as well as the Southern Zanzibar Inhambane coastal forest mosaic ecoregion (157 
species). The Eastern miombo woodlands ecoregion, which covers the most extensive area within the country 
(33.0 + /− 0.05%), had 116 species reported.

Different sampling intensity and methods can influence data bias and gaps28. Overall, mammals, with such a 
wide range in size, can be targeted by many different sampling techniques; from the aerial census for megafauna 
or trapping for smaller species. To capture the potential bias in the knowledge generated by different approaches, 
records were classified according to the corresponding species size, considering the adult average body mass, 
into small mammals, medium mammals, or large mammals (see Material and methods). The most considerable 
portion of the records, approximately 41.2%, pertained to large mammals represented by 29 species distributed 
across ca. 70% of Mozambique’s territory. Large mammals were recorded in most of the ecoregions (Fig. 3). All 
large species were recorded in the Zambezian and Mopane woodlands ecoregion, and most were recorded in 
the Southern Miombo woodlands ecoregion (27 species), and the Southern Zanzibar-Inhambane coastal forest 
mosaic (25 species). Most of these records were obtained from survey reports (64.5%), followed by literature and 
natural history collections (Fig. 2).

Records Species
Cells with 
information

Well-known 
cells

Point-density 
mean

Whole inventory 14201 215 1014 54 109

Large mammals 5847 29 851 27 78.6

Medium mammals 2632 37 605 18 37.3

Small mammals 5722 149 458 42 76.4

Old data 8171 204 826 30 —

Recent data 6030 156 582 23 —

Table 1.  Summary of Mozambique’s terrestrial mammal inventory. For the full inventory, each mammal group, 
and for old and recent data, are shown the number of records, species, and cells with information across the 
country, the number of well-known cells, and the point-density mean. The total number of cells within the 0.25° 
resolution country-wide grid is 1217. Old data refers to data collected before the year 2000; and recent data to 
data collected after the year 2000.

Figure 3.  Knowledge of terrestrial mammals across Mozambique’s ecoregions. The plate “Cells” shows the 
number of cells at 0.25° resolution occupied by each ecoregion, using cell centroid assignment rule. Dark grey 
bars show the proportion of cells in each ecoregion that fall in the knowledge-gap areas. The plate “Species” 
indicates the number of known species in each of Mozambique’s ecoregions. The definition of the country’s 
ecoregions followed Burgess et al.26.
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Medium mammal data corresponds to 18.5% of the inventory, with 37 species registered in almost 50% of the 
territory. Medium mammals were recorded in all ecoregions, with most species documented in the Zambezian 
and Mopane woodlands ecoregion (35 species), and in the Southern Miombo woodlands ecoregion (32 species) 
(Fig. 3). Most of these records (45.3%) were obtained from survey reports, followed by literature and natural 
history collections.

Small mammals make up 40.3% of the records, 149 species catalogued in less than 40% of the country’s ter-
ritory (Table 1). Small mammals were recorded in 12 out of 13 ecoregions in the country, with a considera-
ble number of species recorded in the Southern Miombo woodlands ecoregion (109 species), in the Southern 
Zanzibar-Inhambane coastal forest mosaic (103 species), and in the Zambezian and Mopane woodlands ecore-
gion (103 species; Fig. 3). Most of these records were obtained from natural history collections (59.1%), followed 
by literature (38%; Fig. 2).

Inventory’s record density and biases.  The examination of the biases underlying primary species occur-
rence data can avoid erroneous interpretations of the resultant spatial patterns12. Therefore, firstly, record density 
estimates (RDE) were investigated to understand how the inventory’s records are distributed across the country. 
When considering data across the entire country and all mammal groups, most species occurrence records were 
registered in the central and southern provinces of Mozambique, with a high record density in the Maputo prov-
ince (Fig. 2a; Supplementary Material – Fig. 7). The mean record density was 109 records per 0.25° resolution 
grid cell (Table 1). This unequal distribution of records across the country indicates spatial bias. The bias analysis 
performed allowed for a better understanding not only of which factors may contribute to spatial bias but also 
check whether spatial biases represent environmental biases as well.

To evaluate potential causes of spatial bias in the inventory, we used the following bias factors: Distance to 
protected areas, Distance to main roads, and Distance to province capital cities. Our results indicated an apparent 
over-representation of mammal records in areas close to the protected area (Supplementary Material – Fig. 8). 
On the other hand, areas close to roads and the main cities were under-represented (Supplementary Material – 
Figs. 9 and 10).

To assess whether the inventory’s data covered the country’s environmental conditions, the distribution of 
records across selected environmental variables (annual mean temperature, annual precipitation, and altitude) 
was compared to environmental values from points generated randomly throughout the study area (i.e. back-
ground data). Even though, based on visual inspection, the distribution of records and background data pre-
sented a similar shape for the three variables assessed (Fig. 4); our results indicate climatic bias for the three 
environmental variables, with significant differences between the inventory’s and the background data environ-
mental distributions (Kolmogorov-Smirnov test, KS test, D > 0.063, p < 0.001 in all cases). In general, collecting 
effort was lower than expected in areas of higher annual mean temperature (>24 °C), in areas of higher annual 
precipitation (>1000 mm), as well as in areas with an altitude between 400 and 750 meters (Fig. 4).

Figure 4.  Visualization of the environmental bias in Mozambique’s terrestrial mammal inventory across 
three environmental variables in comparison to background data: (a) Annual precipitation, (b) Annual mean 
temperature, and (c) Altitude. These variables were compiled from the WorldClim database (https://www.
worldclim.org/bioclim).
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With regards to the three mammal groups considered, the density maps showed parallel patterns to those 
found for the full inventory, i.e., high record incidence in central and southern Mozambique. (Supplementary 
Material – Fig. 7). Mean record densities were higher for large mammals (79 records) and small mammals 
(76 records) and, lower for medium mammals (37 records). Records of both large and medium mammal spa-
tial distributions were over-represented in protected areas. Small mammal spatial distribution was slightly 
over-represented in protected areas and strongly over-represented near the main cities and roads.

Regarding the coverage of the country’s environmental conditions by each mammal group data, we observed, 
for the three groups, and with significant differences, substantial departures from background environment dis-
tributions for the three variables (KS test, D > 0.088, p < 0.001).

Inventory completeness and well-known areas.  Inventory completeness for each grid cell was com-
puted by applying the adaptation of the Chao and Jost (2012)29 method as proposed in Stropp et al.11 (see Material 
and methods). “Well-known” areas of the country were established based on the cell-wide inventory complete-
ness. Artifactual values of inventory completeness may be obtained when inventories are based on small sample 
sizes2. Since the sample size was low for several grid cells and to define a more reliable range of completeness 
values, we selected a minimum sample size by inspecting for a monotonic relationship between the number of 
unique records and the number of species per grid cell13, and the relationship between the number of unique 
records and the values of completeness2. Monotonic relationships both between the number of unique records 
and the values of completeness and between the number of unique records and the number of species per grid cell 
were found for values above 40 records, approximately. Accordingly, we restricted “well-known” cells to those pre-
senting more than 40 unique records and values of completeness above 0.7 (Supplementary Material – Fig. 11). 
The spatial distribution of inventory completeness at 0.25° resolution showed that 4.4% (54/1217) of cells are 
“well-known” (Fig. 5). Most of these “well-known” areas are located inside or near protected areas.

For the analysis per mammal group, we determined another minimum sample size by inspecting the relation-
ship between the number of unique records and the values of completeness as previously for the full inventory. 
Following this criterion, and because each of these sets of records encompasses a lower record density per grid 
cell on average, for each mammal group cells were considered “well-known” when they presented more than 20 
unique records and values of completeness above 0.7. The spatial distribution of inventory completeness showed 
that: 2,2% of the country’s cells are “well-known” regarding large mammals, 1,5% for medium, and 3,4% for small 
mammals (Table 1). Shared “well-known” cells between the three groups are located at: (i) Gorongosa National 
Park, (ii) Beira city and (iii) Zinave NP, near the Save River (Fig. 6).

Knowledge gap areas.  Knowledge about species occurrence and distribution, following the rationale of 
the principle of distance-decay of similarity in community composition, is expected to be limited in areas pro-
gressively distant from well-sampled areas11,17. Accordingly, here, knowledge gap areas were defined not merely 
as sites with low inventory completeness but also as sites that are both geographically remote and climatically 
different from the well-known areas2. To find the knowledge gap areas we determined: (i) geographical distances 
from all grid cells in Mozambique to the nearest “well-known” cells; (ii) climatic space based on the bioclimatic 
variables that retained the gradient of variation of the country’s climatic conditions; and (iii) minimum Euclidean 
distances among cells in the computed climatic space.

The selection of the variables that best described Mozambique’s climatic space with minimal multicollinearity 
was computed using a Principal Component Analysis (PCA). The first three components of the PCA accounted 
for 83.8% of the variability of the country’s climatic conditions. Three variables were selected to define the “bio-
climatic space”, one for each component. The more representative and uncorrelated bioclimatic variables30 were 
the mean temperature of the wettest quarter, temperature seasonality, and precipitation of the driest quarter. 
Given the selected variables, Mozambique displays relatively homogeneous climatic conditions. Nevertheless, 
some sites, in northern and southern Mozambique, stand out with unique and diverse environmental conditions, 
such as the area of inselbergs and hills in Zambézia province, the coast of Nampula and Cabo Delgado provinces, 
and along the Limpopo River, Gaza province (Supplementary Material – Fig. 12).

For the whole inventory, the combination of the distance in the “bioclimatic space” with the distance to 
well-sampled areas showed the broadest knowledge gap area located in north-eastern Mozambique (Niassa, Cabo 
Delgado and Nampula provinces), and two smaller knowledge gap areas, one in western Zambézia, at the insel-
bergs area, and the other in the coastal Gaza province, southern Mozambique (Fig. 5). Almost 60% of the Eastern 
Miombo woodlands ecoregion area is within the gap areas in northern Mozambique (58.8 +/− 0.23%). More than 
35% of the Southern Zanzibar-Inhambane coastal forest mosaic ecoregion is within the three identified gap areas 
(35.73 +/− 3.75%; Fig. 3).

For the three mammal size categories, the following knowledge-gap areas were detected: (i) one large area 
shared by coastal Cabo Delgado and Nampula provinces, and two narrow areas; (ii) north of the Niassa prov-
ince; (iii) the inselbergs area at Zambézia province, and (iv) the coastal Gaza province. Data compiled on small 
mammals showed more dispersed knowledge gap areas and an additional location with lacking information was 
detected at the Limpopo NP, Gaza province (Fig. 6).

Considering that in Mozambique the historical data is mainly based on natural history collections originating 
from opportunistic or highly localised expeditions and that, in the last two decades, the sources of data were 
mainly reports of biodiversity surveys focussed on protected areas7, we assumed that different knowledge gap 
patterns might arise for historical and recent data. Thus, it was not only essential to understand the existing bulk 
of knowledge considering the full temporal coverage of the dataset (1842–2018), but also to examine whether and 
how sampling effort presented a different pattern temporally. For this purpose, records were grouped as: (i) “old 
data” if collected before the year 2000, and (ii) “recent data” if collected after the year 2000. Next, we performed 
a comparison of knowledge gaps for these two different temporal windows. The results revealed, as expected, 
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different distribution patterns for old and recent data. For old data, the “well-known” areas are scattered across 
central and southern Mozambique close to the main cities or main roads. For recent data, “well-known” cells are 
all located within protected areas and Mount Namuli.

The map of the geographical and environmental distances relative to “old data” confirms the limited knowl-
edge from northern Mozambique (Fig. 5). The analysis of “recent data” unveiled same additional low-information 
areas: (i) a broad area in coastal Gaza and Inhambane provinces; and scattered sites (ii) along the Chimanimani 
mountains, on the border with Zimbabwe, and (iii) along the left margin of the Zambezi River (Fig. 5).

Discussion
Our study clearly shows that, in Mozambique, mammal records are not equally distributed in space. More pre-
cisely, we found that Mozambique’s mammal fauna is well-known in less than 5% of the territory, with broad areas 
of the country poorly sampled or not sampled at all (Fig. 5). The pattern observed from past and recent data, for 
all mammal groups, indicates that significant areas in northern Mozambique remain in need of further data col-
lection, and data on large and medium mammals are over-represented in protected areas due to biases in census 

Figure 5.  Visualization of the spatial knowledge gap areas on Mozambique’s terrestrial mammals over two 
periods. Knowledge gap areas result from the combination of the climatic and geographical distance to the 
“well-known” cells (N > 40 unique records and Inventory completeness >0.7), at 0.25° resolution. Knowledge 
gaps for old data and recent data were superimposed. Old data refers to data collected before the year 2000, and 
current data to data collected after the year 2000.
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methods. We discuss these findings and, in light of economic growth and conservation concerns, recommend 
some priority areas to improve knowledge about the country’s mammal fauna.

Inventory completeness.  Our analysis exposed that the “well-known” areas in the country are related 
to accessibility and the existence of supporting infrastructures. For data collected before the year 2000, the 
“well-known” areas are located near urban areas and main roads, all in central and southern Mozambique. “Recent 
data” are mostly associated with protected areas across the country (including sites in north Mozambique), which 
are of scientific interest.

During the nineteenth and twentieth centuries, geopolitical interests in southern Africa guided European and 
North American scientific expeditions to preferentially survey the areas surrounding and south of the Zambezi 
River. These circumstances, along with the lack of transport infrastructures in the north, have meant that species 
in Mozambique have mostly been collected from the central and southern provinces. However, in recent years, 
growing political stability along with an increase in northern Mozambique’s accessibility, and political interest in 
biodiversity conservation have boosted monitoring effort, particularly in protected areas, which had a positive 
effect on inventory completeness. These events may explain the patterns detected by our analysis.

Combining the geographical and environmental survey gaps across the country, northern Mozambique 
emerges consistently with several knowledge gap areas. More precisely, the analysis of data collected before the 
year 2000 reveals a vast and contiguous area in the coastal provinces Cabo Delgado and Nampula, which falls 
in the Coastal forest mosaic and Eastern miombo woodlands ecoregions. A further knowledge gap area is a 
smaller area associated with the inselbergs and hills, the “sky island forests” (Mount Namuli, Mount Mabu, Mount 
Chiperone), on the western border of the Zambézia province. Increasing scientific interest in studying northern 
Mozambique’s inselbergs and hills, through various expeditions and surveys (e.g., Mount Mabu, Mount Inago, 
Mount Namuli), led to the description of new species from several taxonomic groups. From these areas with 
unique environmental conditions, new species of reptiles31, butterflies32, bats5 and plants33 have been recently 
described. These findings highlight how diverse and understudied the Afromontane forest is and support the 
rationale that prioritising lesser-known and environmentally unique areas for survey in Mozambique will likely 
locate additional records or species.

Priorities to improve knowledge of mammal fauna from Mozambique.  Increasing accessibil-
ity to primary species occurrence data allows researchers and conservationists to improve knowledge about a 
country’s biodiversity. The terrestrial mammal inventory used in this study relies on species-occurrence data 
collected between the mid-eighteen hundreds and recent years7. Collection dates for records associated with spec-
imens in NHC ranged from 1845 to 2015, and scientific literature from 1985 to 2018. Data from survey reports 
were all published after the year 2000 (2004–2010). For the period 1990–2000, very few records of mammal 
occurrence were available, and very few species were reported. Mozambique experienced critical changes in this 
period, namely, the arrival of peace in the country in 1992, and the country’s commitment to the Convection for 
Biological Diversity (CBD) targets in 1994. These events influenced the amount of biodiversity data available after 
the year 2000, with a peak in species occurrence data from Mozambique detected in 2008, when a country-wide 
wildlife census was carried out34. However, the limited use of science for decision-making and limited knowledge 
about biodiversity and its potential to increase human well-being are considered indirect causes of biodiversity 
loss and habitat degradation in Mozambique by the Ministry of Land, Environment and Rural Development35.

Figure 6.  Visualization of the spatial knowledge gap areas on Mozambique’s terrestrial mammal groups: (a) for 
large mammals, (b) for medium mammals, and (c) for small mammals. Knowledge gap areas result from the 
combination of the climatic and geographical distance to the “well-known” cells (N > 20 unique records and 
Inventory completeness >0.7), at 0.25° resolution. Cells that fit the criterion of well-known grid cells for each 
mammal group are marked with a cross.
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Here, by examining similar and different knowledge gap areas in the past and recent years, we provide baseline 
information for terrestrial mammal species conservation and management plans.

Targeting unknown areas - Knowledge discovery.  A large part of Mozambique remains insufficiently documented 
in terms of its mammal fauna (Figs. 5, 6). The knowledge-gap areas recognised in our study are mostly associated 
with two ecoregions (Fig. 2). The Southern Zanzibar-Inhambane coastal forest mosaic has long been described 
as a poorly known ecoregion regarding its mammal fauna26,36. For Mozambique, our study indicates that 157 
mammal species were reported for this ecoregion (Fig. 2). The Eastern Miombo woodlands ecoregion, the largest 
in Mozambique, is also poorly known regarding mammal occurrence. When compared with Southern Miombo, 
located in southern and central areas of the country, Eastern Miombo woodlands present a lower number of 
species (116 species) than the former (168 species). Henceforward, true species richness may be higher than 
presently estimated, especially in northern Mozambique.

Although the lack of accessibility and infrastructure in the north were partially resolved, the last two dec-
ades of studies on biodiversity were not sufficient to change this pattern of less knowledge for this region. 
Consequently, there is an urgent need to prioritise these areas in future field surveys. It is worth noting that a 
significant part of the knowledge gap falls within the Niassa NR, which reportedly supports the major remaining 
concentrations of carnivores and ungulates in Mozambique34,37. Despite the recent surveys in Niassa NR, none 
investigated small mammal diversity.

Targeting the lesser-known mammal groups.  Overall, less information has been gathered on small and inconspic-
uous fauna, because recent surveys in Mozambique are almost exclusively based on aerial counts, which mostly 
detect the conspicuous medium and large species7,34,38. Accordingly, spatial distributions of large and medium 
mammal records were over-represented in protected areas.

When multiple census methods were used in recent surveys, we observed a shift from gap to well-known 
areas. This scenario occurred in 9% of the country, mainly due to broad surveys taken in Quirimbas NP and 
Mount Namuli7 (Fig. 5), and shows that more complete inventories depend on the inclusion of varied census 
methods to register the presence of mammal groups, which are highly variable in terms of size, behaviour and 
habitat preferences.

For small mammals, well-known areas are scattered across the country and data is biased towards the main 
cities and roads (Figs. 4, 6). Some protected areas present an evident lack of knowledge for this group, with wide 
gaps in Limpopo NP, Niassa NR, and small areas in Maputo Special Reserve. Large and medium mammals are 
well-known groups in the protected areas of southern and central Mozambique. However, in the north, there 
is still a lack of knowledge of these groups in Niassa NR and Quirimbas NP. Increasing the surveys’ taxonomic 
extent inside the protected areas is a resource-efficient way towards the achievement of international commit-
ments such as the CBD’s Aichi targets39,40, namely to protect the complete range of biodiversity present in areas of 
importance for biodiversity (CBD’s Strategic Objective B - Target 11).

Targeting known areas – Spatiotemporal studies.  Our work pinpoints poorly known environmentally different 
areas while recognising similar environmental areas that were regularly visited over time. These areas correspond 
to 14% of the country, mostly across the protected areas (Fig. 6). As examples, Gorongosa NP and Zinave NP are 
well-known areas for the three mammal groups. It is essential to continue to collect data from these sites because 
this will enhance the collective knowledge on biodiversity through retrospective and comparative studies. The 
existence of historical and recent data enables the evaluation of changes in biodiversity and the analysis of driv-
ers of distribution changes41, or the selection of areas of interest for species reintroduction42. For instance, by 
comparing data from a recent survey and an expedition in the mid-1920s, the authors of a study in the Ethiopian 
highlands were able to document shifts associated with climate change in the former ranges of five small mammal 
species over approximately 90 years41.

Our study also detected that, for some areas of Mozambique, the potential of spatiotemporal studies could 
be lost. Over the last two decades, some unique climatic areas in central and southern Mozambique emerged as 
less surveyed. Notably, there was a broad knowledge gap area on the coast of Gaza province (Fig. 6), which was 
recently described as having undergone extensive habitat loss4. Although this finding may be conjectural, an 
effort should be made to avoid the discontinuity of monitoring effort in this area, thus preserving the potential 
for spatiotemporal studies.

Improving knowledge - data mobilisation.  The usefulness of primary species-occurrence data to improve bio-
diversity knowledge can be fully realised by increasing the availability of useful quality data. The previous work 
performed in the compilation, digitalisation, cleaning and validation of the inventory on Mozambique’s mammal 
diversity7 was pivotal to identify survey priorities and to improve knowledge. Nonetheless, it should be noted that 
the identified knowledge gap areas may not solely reflect the lack of collection effort but may also correspond 
to existing information not included or not easily accessible. Thus, besides the enhancement of sampling effort, 
improved access to further biodiversity data, along with the digitisation of natural history collections and better 
overall dissemination of recent internal research will address more complex biological questions and will provide 
the foundation for the effective conservation of biodiversity. This strategy could be an effective way to rapidly 
close gaps and reduce data biases in poorly documented and research-neglected countries40,43.

Biodiversity data.  Filling biodiversity knowledge gaps requires prioritisation of efforts not only to compile 
additional data but also to evaluate and enhance the quality of the data already available and to make it accessible. 
Works from Ballesteros-Meija et al.44, Stropp et al.11, Marques et al.45, and Queirós Neves et al.7 are recent exam-
ples for African countries.
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Many developing countries are understudied and present a severe lack of species-occurrence data43, which is 
worsened by the poor dissemination of these research data. Furthermore, most data on African mammal collec-
tions (~95%) stored in the GBIF platform are provided by European and North American institutions.

Thus, improving knowledge of the biodiversity of poorly documented countries can only be achieved by 
allocating resources to expand and promote national and international initiatives, with a strong emphasis on 
capacity-building of national and local institutions. Positive progress has been made in this direction. For exam-
ple, Biodiversity Information for Development (BID) is a multi-year programme funded by the European Union 
and led by GBIF to increase the amount of biodiversity information available in the nations of sub-Saharan 
Africa, the Caribbean and the Pacific (https://bid.gbif.org). Of the 23 projects financed thus far, Mozambique 
is participating in an “African Insect Atlas”, which aims to unleash the potential of insects in conservation and 
sustainability research (https://www.gbif.org/project/82632/african-insect-atlas).

Conclusion
It is most important to fill knowledge gaps on species occurrence and distribution, especially if the aim is to expand 
the taxonomic extent of conservation planning. A conservation planning based on accurate species occurrence data 
is even more crucial in countries where high poverty rates, sporadic armed conflicts, intensive exploration of natural 
resources and extreme weather events accrue. Deprived of reasonable information regarding species occurrence, it 
is unmanageable to concentrate efforts to preserve diversity and guide conservation actions.

Based on primary species occurrence data, which span the years from 1845 to today, we identified provinces 
in Mozambique that are poorly documented regarding terrestrial mammal fauna (e.g., Niassa, Cabo Delgado, 
Nampula and Tete). These provinces are vastly explored for oil, coal, hydrocarbons and minerals46, presenting 
severe challenges for biodiversity conservation. Moreover, the high population growth observed in the northern 
provinces is associated with agricultural development and habitat degradation47,48. Given that habitat loss is a 
leading cause of biodiversity decline, there is an urgency to study and survey the provinces identified in this study 
since some economic activities, such as mine-exploration and plantation forestry, without proper impact studies 
may lead to irreversible biodiversity loss49,50.

Finally, the assessment of the knowledge gaps from primary species occurrence data showed to be a powerful 
strategy to generate information that is essential to species conservation and management plan, particularly for 
understudied countries.

Material and Methods
Study area.  The Republic of Mozambique, located on the Indian coast of Southeast Africa, holds a vast terri-
tory of more than 800,000 square kilometres (Fig. 1). The climate is generally tropical and dry, but temperature and 
precipitation are highly variable throughout the country51. The country is considered vulnerable to natural disasters 
and currently presents an increasing incidence of flood and drought events52. The centre of the country, recently 
impacted by cyclone Idai, is more prone to floods and tropical cyclones, followed by the south and the north52.

A large part of Mozambique’s topography is characterised by flat terrain extending from coastal lowlands 
in the east to mountain ranges in the west (Fig. 1). The country has a high diversity of terrestrial ecosystems, 
which are, following the African ecoregions defined in Burgess et al.26, represented by 13 ecoregions. The Eastern 
miombo woodlands ecoregion covers a large area of the country, mostly in north Mozambique, followed by the 
Zambezian and Mopane woodlands ecoregion, in central and southern Mozambique, the Southern Miombo 
woodlands ecoregion, in central Mozambique, and the Southern Zanzibar-Inhambane coastal forest ecoregion, 
along most of the coast of the country.

Terrestrial mammal inventory.  We used primary species occurrence data on terrestrial mammals from 
Mozambique compiled and validated7. The authors considered the following sources of species occurrence data: 
(i) natural history collections, mainly data from the Global Biodiversity Information Facility portal (GBIF), (ii) 
survey reports on the main protected areas and other areas of ecological interest; and (iii) literature - including 
the first published species checklist of Mozambican mammals53. Species occurrence data compiled were vali-
dated by thorough data quality assessment and improvements, namely data cleaning, georeferencing and tax-
onomic update. For details refer to7. The compilation generated a species checklist of mammals reported from 
Mozambique (n = 217). Here, we analysed the underlying data that supports this species checklist, holding a total 
of 14981 records (Table 1). Approximately, 34.2% of the records were reported from surveys, 33.1% from natural 
history collections, and the remaining 32.7% from the literature.

The species occurrence data were reduced to unique records to avoid duplication of information. Accordingly, 
each unique record represents a pool of registries from a single species collected in the same locality, by the same 
collector, on the same day. Localities of occurrence were considered identical when latitude and longitude (with 
2-digit precision) coincided.

Data treatment.  Records were aggregated to a 0.25° spatial resolution grid, and the total number of grid 
cells across the country was 1217. This spatial resolution was selected by assessing the balance between the accu-
racy of aggregated data versus the loss of spatial resolution, as in13,23 (Supplementary Material – Fig. 13 shows 
three different data resolutions). All analyses and mapping in this study were carried out in the R programming 
environment54.

To obtain general information on the proportion of each ecoregion cover across the country and the respec-
tively assigned species richness, we extracted the terrestrial ecoregion (and associated biome) at the centroid 
of each 0.25° cell by overlaying the grid on the ecoregions map26. Thus, each grid cell was attributed to a ter-
restrial ecoregion. A sensitivity analysis using other assignment rules was performed (Supplementary Material 
Fig. 14). Even though we observed a slight variation in the number of cells assigned to each ecoregion, which 
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is higher for the ecoregions with smaller cover in the country, the results suggested that the “Cell centroid 
method” is robust for our analysis, with little variation in the final results (Supplementary Material Figs. 14, 
16). The ecoregions and biomes considered for Mozambique in this study followed the work on African ter-
restrial biomes, ecoregions and habitats by Burgess et al.26. We obtained spatial data on ecoregions from the 
World-Wide Foundation Terrestrials Ecoregions of the World dataset (WWF; www.worldwildlife.org/publica-
tions/terrestrial-ecoregions-of-the-world). Also, records were organised according to mammal size taking into 
account adult average body mass: (i) small mammals with an average body mass of fewer than five kilograms55; 
(ii) large mammals with an average body mass over 25 kilograms, and (iii) medium mammals with a body size 
between the previous classes. Most data on species adult average body mass were retrieved from the species traits 
database, PanTHERIA56.

Record density and bias analysis.  Record density estimates (RDE) were determined through point pattern anal-
ysis, as proposed in20. Geographical coordinates of the localities of occurrence represented the “points” in the 
analysis. First, we calculated RDE as the average number of localities per 0.25° grid cell and, subsequently, we 
created density maps using an isotropic Gaussian kernel.

The magnitude of spatial bias in the records was defined by splitting each bias factor into four intervals, using 
the Fisher algorithm, based on the range of the measured distances to the factor analysed57. The Fisher algorithm 
selects classes in which both similar values are grouped, and the difference between classes area is maximized20. 
Hence, “interval 1” represented the area where distances to the bias factor are smallest, while in “interval 4” dis-
tances were highest.

The spatial variables considered as potential bias factors were: (i) distance to protected areas; (ii) distance 
to main roads; and (iii) distance to province capital cities. The bias was quantified for each interval following 
Kadmon et al.20,58:
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where ni is the number of localities of occurrence within a specified interval (i), N is the total number of localities 
of occurrence in the database, and pi is the independent probability that a given locality of occurrence will lie 
within an interval – the Kadmon’s bias index.

The Eq. (1.1) is derived from a normal approximation to the binomial distribution. Thus, since the value of the 
index is distributed like a standard normal variable (Z), the bias becomes statistically significant for values greater 
than 1.64 (at α = 0.05). Hence, for each interval of distances to the bias factors, bias values greater than 1.64 
characterise over-represented areas, that is areas with more localities of occurrence than expected from a random 
sampling design. On the other hand, bias values less than –1.64 show under-sampled areas. The Kadmon’s bias 
index (p) was estimated by generating the same number of random replacement points (i.e. localities of occur-
rence) as in the inventory and calculating the fraction of points on each interval. The formulation of random 
points and the estimation of the bias index were repeated 100 times, and bootstrap statistics and confidence 
intervals were calculated.

Subsequently, we assessed whether the localities of occurrence of the inventory’s unique records covered the 
country’s environmental conditions randomly. The environmental bias factors analysed were: (i) annual mean 
temperature, (ii) annual precipitation; and (iii) altitude. These three variables were compiled from the Worldclim 
database30. The bias was evaluated by comparing the distribution of the localities of occurrence to the distribution 
of the background environment for each variable. The background environment was based on randomly gener-
ated points (with replacement) across the study area. Next, for both sets of points, we extracted the corresponding 
values of the selected bioclimatic variables. Those values were then compared using the Kolmogorov-Smirnov test 
(KS). The KS assesses the null hypothesis that the frequency distribution of two samples is drawn from the same 
continuous distribution59. The KS D-statistic was used as an index of congruence between the localities of occur-
rence and the background environment60. The KS was computed using the ks.test function (R package: dgof).

Spatial distribution of inventory completeness and “well known” cells.  Inventory completeness was computed 
for each grid cell. The method applied was proposed by Stropp et al.11, and is an adaptation of the Chao and Jost 
(2012)29 method; given by:
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where Ci = estimated inventory completeness; ni, f1i, f2i, = number of observations/specimens, singletons and dou-
bletons found in grid cell i. Ci ranges from zero to one, with one indicating a complete inventory.

Two additional approaches to calculating inventory completeness were tested: the inventory completeness 
based on Sousa-Baena et al. (2014) and species accumulation curves as in Yang et al. (2013). However, the adapted 
Chao and Jost (2012) method was the only one that resulted in a monotonic relationship between inventory com-
pleteness and the number of records (Supplementary Material – Fig. 11).

We analysed the cell-wide inventory completeness to define the “well-known” areas of the country. Since the 
sample size was small for several grid cells, we obtained artefactual high values of completeness. To define a more 
reliable range of completeness values we selected a minimum sample size looking for a monotonic relationship 
between the number of unique records and the number of species per grid cell13, and between the number of 
unique records and the values of completeness2.
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Knowledge-gap areas.  The knowledge-gap areas were defined as areas with insufficient sampling and that are 
geographically distant and climatically different from the well-known areas. Diverse studies followed this ration-
ale2,23,24. Thus, firstly, we determined the geographical distances from all grid cells in Mozambique to the nearest 
“well known” cells.

Secondly, we selected the bioclimatic variables that retained the gradient of variation of the country’s climatic 
conditions. Climatic space was characterised in terms of the most representative and uncorrelated variables of 
the 19 bioclimatic variables of the WorldClim database30 for Mozambique. WorldClim’s variables are based on the 
average monthly temperature and rainfall registered from 1970 to 2000. The selection of the variables that best 
described the climatic space with minimal multicollinearity was computed using a Principal Component Analysis 
(PCA). We selected first the number of principal components required to account for 80% of the total explained 
variance. Then, we chose bioclimatic variables that contributed most to each principal component dimension 
with minimal correlation to one another.

Thirdly, we determined the environmental distances to the well-known cells by calculating the minimum 
Euclidean distances among the country’s cells in the computed climatic space. Next, the geographical and envi-
ronmental distances were scaled from 0 to 10 and multiplied to produce a map of “space and environment 
uniqueness” creating a parallel view of the environmental distances from well-known cells.

Finally, we considered as knowledge-gap areas the sites of “space and environment uniqueness” that showed sev-
eral adjacent cells with distance values above the third quantile in the range of distances to the “well-known” areas.

Further, we performed a comparison of knowledge gaps for two different temporal windows. Records were 
grouped as: (i) “old data” if collected before the year 2000, and (ii) “recent data” if collected after the year 2000. 
To inspect changes in the spatial patterns of the knowledge gaps between the two temporal windows, we super-
imposed the gaps obtained with data collected before the year 2000 and the following two decades. Additionally, 
to identify the ecoregions within knowledge gap areas and to determine their proportion of cover, we intersected 
the knowledge gap areas with the ecoregions map and extracted for each ecoregion the number of cells with their 
centroid within the gap areas.

Data availability
The datasets generated during and/or analysed during the current study are available in the “Mendeley data” 
repository, DOI: 0.17632/9bkjv99bdk.1.
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