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Abstract

Translating recent advances in abdominal aortic aneurysm (AAA) growth and remodeling (G&R) 

knowledge into a predictive, patient-specific clinical treatment tool requires a major paradigm shift 

in computational modelling. The objectives of this study are to develop a prediction framework 

that 1) first calibrates the physical AAA G&R model using patient-specific serial computed 

tomography (CT) scan images, 2) predicts the expansion of an AAA in the future, and 3) 

quantifies the associated uncertainty in the prediction. We adopt a Bayesian calibration method to 

calibrate parameters in the G&R computational model and predict the magnitude of AAA 

expansion. The proposed Bayesian approach can take different sources of uncertainty; therefore, it 

is well suited to achieve our aims in predicting the AAA expansion process as well as in 

computing the propagated uncertainty. We demonstrate how to achieve the proposed aims by 

solving the formulated Bayesian calibration problems for cases with the synthetic G&R model 

output data and real medical patient-specific CT data. We compare and discuss the performance of 

predictions and computation time under different sampling cases of the model output data and 

patient data, both of which are simulated by the G&R computation. Furthermore, we apply our 

Bayesian calibration to real patient-specific serial CT data and validate our prediction. The 

accuracy and efficiency of the proposed method is promising, which appeals to computational and 

medical communities.
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I. Introduction

An abdominal aortic aneurysm (AAA) is an enlarged localized volume in the lower part of 

the aorta, which supplies blood to a large part of the body (see Fig. 1). Enlargement of the 

aorta by more than 50% of its normal diameter is defined as an aortic aneurysm. The vast 

majority (over 90%) of aortic aneurysms occur in the abdominal region, specifically the 

infrarenal aorta [1]. In general, an aorta with a diameter larger than 3 cm is considered an 

aneurysm.

A ruptured aneurysm can cause life threatening internal bleeding. If ruptured, patient 

mortality rates are greater than 80% [2]. Depending on the size and rate of growth, treatment 

of an AAA may vary from watchful waiting to emergency surgery. Once an AAA is found, 

doctors will closely monitor the AAA so that surgery can be planned if it becomes 

necessary. Since either open or endovascular repair (EVAR) of small AAAs (< 5.5 cm) can 

result in peri-operative deaths (4.4% with open repair and 1.0% with EVAR) [3], performing 

unnecessary surgeries increases patient risk. A thorough understanding of the expansion and 

rupture of AAAs is thus needed in order to minimize unnecessary patient risk. While 

significant advances have been made in the management of AAA patients [4], this disease 

still carries a high mortality rate. During the last decade, bio-chemo-mechanical studies have 

been integrating computational modeling with increased understanding of the expansion and 

weakening of aneurysms, [5], [6], [7], [8]. Recently, this computational platform, called a 

growth and remodeling (G&R) model, has been developed and incorporated with patient-

specific anatomical information, which aids in treatment planning on a per-patient basis [9], 

[10]. Those models developed the G&R model to take into account both elastic degeneration 

and stress-mediated collagen turnover during AAA development using finite element 

analysis (FEA). The G&R models were validated through using human aortic mechanical 

tests that characterize material properties and serial image data of one patient (both non-

aneurysmal and aneurysmal aortas) [9] [11]. A coupled simulation of G&R with 

hemodynamics was conducted for studying its effects on AAA expansion [12], [13]. 

Geometric, kinetic and material parameters for AAA expansion can help to predict intrasac-

pressure dependent vascular adaptation after endovascular repair [14], [15]. A patient-

specific distribution of aortic wall properties has been investigated from open surgery and 

ultrasound imaging [16], [17]. Recently, a phenomenological model (without bio-chemo-

mechanical considerations) has been proposed to predict AAA shapes and their quantified 

uncertainties [18].

Translating recent computational advances into a predictive tool for individualized clinical 

treatment, however, requires a major paradigm shift due to the incompleteness of the G&R 

model, limited information, and uncertainty associated with clinical measurements with 

regard to each individual patient. In this study, with a small set of real follow-up image data 

from patients, we develop a computational-statistical method to predict AAA expansion 

utilizing a simple initial elastin damage and a set of selected internal key parameters of a 

G&R model. Most importantly, the associated uncertainty in the prediction propagated from 

various sources of uncertainty, needs to be correctly quantified. For example, the G&R 

model’s internal parameters need to be carefully adjusted according to patient-specific data, 

e.g., serial computed tomography (CT) images, in order to make better prediction and so be 
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useful for clinical decisions. The aims of this paper are to develop a framework that 1) first 

calibrates the physical AAA G&R model using patient-specific serial CT scan images, 2) 

predicts the expansion of an AAA in the future, and 3) quantifies the associated uncertainty 

in the prediction. To achieve our aims, we perform Bayesian calibration [19] of our 

computational AAA G&R model. In particular, Bayesian calibration will be used to 

incorporate the computational G&R model, patient-specific data (e.g., CT scan images), and 

various uncertainties as well as to compute the uncertainty level of the prediction on the 

AAA expansion. In other words, the measurement from the patient was utilized to 

“calibrate” parameters in the G&R computational model and to update the prediction of 

AAA expansion. There are growing interests in patient-specific modeling [20]–[22] and in 

applying Bayesian calibration. The use of patient-specific models using Gaussian process 

regression can outperform population-based models for vital-sign forecasting using time 

series of patient vital signs [22].

To the best of our knowledge, we are the first to apply the Bayesian calibration method to 

the AAA G&R computational model. We aim to make the G&R computational model viable 

to aid clinicians in decision making. Hawkins-Daarud et al. [23] used a Bayesian framework 

to address questions on validation, model selection, and uncertainty quantification for tumor 

growth. Biehler et al. [24] presents an uncertainty quantification framework based on multi-

fidelity sampling and Bayesian formulations and analyzes the impact of the uncertainty in 

the input parameter on mechanical quantities typically related to abdominal aortic aneurysm 

rupture potential. In contrast to discrete model candidates for model selection in [23], we 

consider a statistical model for the true physical process by introducing two Gaussian 

random fields [25] for the G&R computational model and the inadequacy of the model. We 

adopt a Bayesian calibration technique proposed in [19] to calibrate parameters in the G&R 

computational model and predict the AAA expansion.

The contributions of our paper are as follows. First, we formulate the Bayesian calibration of 

our AAA G&R computational model taking into account model inadequacy, prior 

distributions of model parameters [26], measurement errors, and most importantly, patient-

specific serial CT scan images. Next, we demonstrate how to achieve the proposed aims by 

solving the formulated Bayesian calibration problem using a simulation study and real data 

analysis. In particular, we compare and discuss the performance and computation time under 

different sampling cases for the computational model output data and (synthesized) patient 

data, both of which are synthesized by the G&R computation. We apply our Bayesian 

calibration to the real patient-specific CT data and validate our prediction, showing the 

effectiveness of our approach to the computational science and medical communities in 

aiding decision making.

The organization of the paper is as follows. Section II introduces the AAA G&R model, the 

quantity of interest in making prediction, and the full statistical model with hyperparameters 

for Bayesian calibration. In Section III, we discuss assumptions for priors and then provide 

the posterior and predictive distributions under the Bayesian framework. Section IV 

describes the design of the in silico simulation study with synthetic observation data and a 

case study with real patient data. In Section V, we present the results of the Bayesian 

calibration for both simulation and real data cases. Finally, we provide some discussions and 
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concluding remarks in Section VI. In what follows, we introduce all the G&R and statistical 

models needed in our Bayesian calibration.

II. Methods

A. AAA G&R computational model

The Bayesian calibration framework includes a computational G&R model of AAA as a 

data input, where the detailed computational G&R model was described in Zeinali-Davarani 

et al. [28]. Our computational G&R model has three parts: constitutive relations of intrinsic 

material behavior, a stress-mediated production function, and a damage function. To 

describe material behavior, we assume that the aorta is comprised of three stress-bearing 

constituents, viz. elastin, collagen fiber families, and vasoactive smooth muscle cells. The 

G&R model then uses a constrained mixture approach that homogenizes the three structural 

constituents and simulates AAA expansion by a finite element method. The constrained 

mixture approach is described in Fig. 2.

Each constituent, in addition to its contribution to the construction and strength of the 

artery’s wall, has its own individual properties. The population-based material parameter 

distributions of abdominal aortas obtained from ex vivo tests of human tissues [29] was 

given by Seyedsalehi et al. [26]. The stress-mediated production functions connect the 

stress-state of the artery to changes of the mass rates with a stress-mediated feedback 

approach. Moreover, in the G&R model, the AAA is initialized by imposing damage 

function to the elastin of normal aorta. The initialization is supported by the previous study 

[30], which shows that one of the main features of AAA is the elastin reduction. The study 

[11] elaborates that the degradation of elastin can directly form patient-specific shapes of 

aneurysms. On the other hand, the other factors, such as alteration of intrinsic material 

parameters [16], disturbed collagen production [31] and hemodynamics [32], are taken as 

the minor reason of initialization of AAA, and are considered as modeling errors in our 

approach.

The damage function takes into account elastin and vasoactive smooth muscle, therein 

elastin plays a key role in the mechanical behavior of aorta. Elastin contributes resilience 

and elasticity to the aortic tissue; but when the person’s age is advanced, elastin cannot be 

replaced. For an AAA, the localized dilation of the aorta is initiated by the degradation of 

the elastin. This degradation will reduce the amount of elastin, leading to the weakening of 

the wall. The damage will result in the increase of the diameter and wall stress of the 

aneurysm. The increase of the stress in constituents results in an increase in the 

accumulation of collagen and smooth muscles as a way to compensate for the elastin’s loss 

and decrease stress in the wall. All the relations and details of the model have been 

previously reported by Zeinali-Davarani et al. [34] and Kwon et al. [14]. In the current study, 

we decided to use the 2D axisymmetric G&R model for our Bayesian calibration. As 

discussed, the elastin damage in the aortic wall initiates the growth of the aneurysm. Here 

we define the initial elastin’s damage function as
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d(s) = θ1 exp − s − α 2

2θ2
2 , (1)

where s is the coordinate defined on the centerline. g(s) = 1− d(s) is the ratio of remaining 

elastin to the initial amount at s. The damage function in (1) contains two parameters of 

interest {θ1,θ2} to be calibrated from the real data and another quantity α that is identified 

via CT images without Bayesian calibration. They have their own specific effects on the 

shape of the damage function and thus on the stress-stretch and geometrical state of the 

AAA at a given time.

In particular, θ1 is a scaling factor with θ1 ∈ [0,1). An increase in θ1 toward 1 will increase 

the degradation of elastin and thus increase the dilatation of the artery. θ1 = 0 means no 

degradation; hence, the artery will retain its initial state. α corresponds to the location on the 

centerline at which the maximum damage occurs, so it is relatively easy to be estimated 

from the CT images compared to θ1 and θ2. In particular, the location of the maximum 

diameter would be approximately close to the location of the maximum damage; hence, we 

estimated α by finding the location of the maximum diameter using the CT images. The 

modeling errors due to α-approximation will be considered as our model inadequacy, which 

will be a part of the statistical model in our Bayesian calibration. Thus, we fix α on an 

appropriate value obtained from CT images directly a-priori and focus on calibration of θ1 

and θ2 in a Bayesian way.

B. Quantity of interest (QoI) for AAA G&R

The quantity of interest (QoI) of AAA G&R is what we want to predict in AAA growth in 

the future. The selection of the QoI will let us subsequently determine the statistical models 

and investigate the associated uncertainties. In this study, we truncate patient’s scan images 

into the sections that range from the aortic bifurcation point to the lower renal branch. For 

each section, a centerline is generated by the maximally inscribed sphere method in the 

AAA 3D images [35]. The radii of the inscribed spheres r, which are selected as the QoI, are 

given at the axial position (or height) along the centerline s and at the time t. Figs. 3a and 3b 

show inscribed spheres and the resulting centerline, respectively, for a given 3D point cloud 

sampled from CT scan image data from a patient. This QoI selection is consistent with 

medical practice in which the diameter of the AAA is used as an important decision variable 
[2], [36]. To align serial geometries of the same patient, we assume that QoIs with the same 

height correspond to the same point on the aorta, albeit scanned at the different time. Fig. 4 

shows the QoIs of Patient 1 prepared for the Bayesian calibration procedure, from scan 

images of Patient 1 taken at 4 time points in series. Bayesian calibration combines the QoIs 

and the simulation data to calibrate the selected parameters in the computational model. In 

this paper we consider the following questions: Can we predict the radius vs. height profiles 

for CT scan images 3 and 4 in the future given CT scan images 1 and 2 in Fig. 4? What is 

the uncertainty associated with such prediction? The answers to the those questions using 

the proposed Bayesian calibration method for this particular patient-specific data set shown 

in Fig. 4, are given in Section V-B as a part of the real data study case.
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C. Calibration model

Let ζ(x) be the QoI of the true AAA G&R process, the input variable of which is denoted by 

x and defined as x = [t s], where t is the time and s is the height coordinate on the centerline 

as illustrated in Fig. 3b. Suppose that we have n observations. To model possible observation 

error, e.g., resolution and segmentation errors in CT scan images, we consider the noisy 

observations as follows.

zi = ζ xi + εi,  ∀i ∈ 1, ⋯, n , (2)

where the measurement error, i.e., the difference between the observation and the true 

process is denoted by εi. We further assume that each εi is independent and identically 

distributed (i.i.d.) as 𝒩(0, λ). We denote the QoI of the G&R computational model output at 

x as r(x,θ), where θ is called a set of calibration parameters, or calibration inputs. In the 

G&R computational model for the AAA expansion, damage parameters serve as calibration 

parameters that are patient specific for the AAA growth, i.e., the calibration parameters are θ 
= [θ1 θ2] defined in Section II-A.

Given the available QoI of the G&R computational model, we model the true process as

ζ xi = r xi, θ + δ xi , (3)

where δ(·) is a model inadequacy function, i.e., model error, which is independent of the 

computational outputs. It is natural to assume the true AAA expansion process ζ(x) cannot 

be fully described by the computational model, therefore we introduce δ(x) to represent the 

discrepancy in (3).

By combining (2) and (3), we have

zi = r xi, θ + δ xi + εi, (4)

which gives a calibration model that relates G&R computational outputs with the true 

process and the observations. The Bayesian calibration method [19] we adopt in this paper 

introduces Gaussian process priors for the computational model and the model error in order 

to calibrate θ and predict the QoI. Fig. 5 shows the flow-chart for Bayesian calibration. The 

regular Bayesian analysis just includes one data source as its input. Our Bayesian calibration 

model integrates two data sources (i.e., computational data and real CT image data as shown 

in Fig. 5) to implement predictions. The statistical models in Fig. 5 are further assumed to 

follow Gaussian processes, which will be discussed in the next section.

D. Statistical models

Let 𝒢𝒫(m( ⋅ ), k( ⋅ , ⋅ )) be the Gaussian process (GP) with the mean function m(·) and the 

covariance function k(·, ·). A GP is flexible and popularly used as a prior model for 

functional prediction [37], [38]. We introduce GPs as prior beliefs for the G&R 

computational model and the model inadequacy, respectively by
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r(x, θ) 𝒢𝒫 m1(x, θ), k1 (x, θ), x′, θ′ ,
δ(x) 𝒢𝒫 m2(x), k2 x, x′ . (5)

Gaussian processes combine the flexibility of being able to model arbitrary smooth 

functions, with the simplicity of a Bayesian specification that only requires inference over a 

small number of hyperparameters [37]–[40]. The QoI for AAA G&R is a simple bell curve 

shape as in Fig. 4. Following the theoretical rationale [40], we used a mixture of 3 Gaussian 

processes (computational model, model inadequacy, and observational error) to model the 

QoI. We believe that our application (i.e., simple curve shape) is well suited for the 

assumptions and our corresponding model, QoI, and measurement errors can be realizable 

from the Gaussian processes in (5). One can make a distributional assumption other than 

Gaussian to be more flexible, but performance can be hindered by computational 

complexity.

We use a linear combination of basis functions to form a general mean structure. Hence for 

(5), we have m1(x, θ) = h1(x, θ)β1
T and m2(x) = h2(x)β2

T, where ()T is the transpose operator. 

The mean function of the model error m2 is linear in time t and location s. The coefficients β 
= [β1 β2] are hyperparameters in a Bayesian context.

The covariance functions use the squared exponential functions as follows.

k1 (x, θ), x′, θ′ ; Ψ1 = σ1
2exp − x − x′ Ωx

2 − θ − θ′ Ωθ
2 ,

k2 x, x′; Ψ2 = σ2
2exp − x − x′

Ωx
⋆

2 ,

where x − x′ Ω
2 : = x − x′ Ω x − x′ T is the weighted norm of (x − x′) by Ω. Weights of Ωx, 

Ωθ and Ωx
⋆ are all diagonal matrices. ψ = [ψ1 ψ2]denotes the hyperparameters with

Ψ 1 = vec Ωx
Tvec Ωθ

Tσ1
2 T, Ψ 2 = vec Ωx

⋆ Tσ2
2 T

, (6)

where vec(Ω) vectorizes the diagonal entries of Ω. ψ1 contains hyperparameters of r(·, ·) in 

(5). ψ2 contains hyperparameters of δ(·) in (5). Note that k1 is a multiplicative kernel. The 

correlation is large when x − x′ Ωx
2 + θ − θ′ Ω

2  is small.

III. Bayesian Analysis For Calibration

This section outlines our Bayesian approach. More technical details can be found in the 

supplement of this paper.
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A. Joint likelihood

We define θ* = θ1* θ2*  as calibration inputs and x* as variable inputs of the computational 

model. Let N be the total number of pairs of variable and calibration inputs. We further 

define the computational model output vector (Fig. 5) as y = y1 ⋯ yN
T ∈ ℝN × 1 and the 

corresponding input matrix as

Xc = x1*, θ1*
T , ⋯, xN* , θN*

T T
∈ ℝN × 4 .

The Gaussian process prior on the computational model then gives y 𝒩 H1 Xc β1
T, V1 Xc .

Let n be the number of real observations and z = z1 ⋯ zn
T ∈ ℝn × 1 be the set of real 

observations (Fig. 5) corresponding to the variable input matrix Xo = x1
T, ⋯, xn

T T ∈ ℝn × 2. 

To calibrate θ from the observations, we augment variable inputs Xo with θ such that Xo(θ) 

= [(x1,θ)T,⋯,(xn,θ)T]T. From the calibration model, we then have

z 𝒩 H1 Xo(θ) β1
T + H2 Xo β2

T , λIn + V1 Xo(θ) + V2 Xo ,

where In is the n×n identity matrix.

We combine the computational model outputs and observations, d = yT zT T ∈ ℝ N + n × 1, 

which we call a data vector.

d = y
z

𝒩 md(θ), Vd(θ) . (7)

B. Calibration

To estimate (θ,β,λ,ψ) under the Bayesian framework, we consider the following prior 

distributions and assumptions.

A.1 β1 and β2 have non-informative priors, i.e., p(β1,β2) ∝ 1.

A.2 θ is independent of the other parameters.

A.3 θ follows a normal distribution.

A.4 ψ1 and ψ2 in (6) follow lognormal distributions.

A.5 log(λ) has a non-informative prior, i.e., p(log(λ)) ∝ 1.

Note that based on A.1 and A.2, we obtain the joint prior distribution in the following form 

p(θ,β,λ,ψ) ∝ p(θ)p(λ)p(ψ). For A.3, we use the sample mean and variance of the 

calibration parameter inputs that were used to generate computational model outputs for the 
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normal prior density. A.4 guarantees that ψ1 and ψ2 in (6) are positive values in the 

calculation since they are all hyperparameters in covariance functions. Together with the 

prior specification given above, the full joint posterior distribution of θ,β,λ,ψ given d, i.e., 

p(θ,β,λ,ψ | d) can be found. In this form, β is integrated out easily, while λ and ψ are 

estimated by maximizing conditional posterior distributions p(ψ1 |y) and p(λ,ψ2 |d,ψ1), as 

proposed by Kennedy and O’Hagan (2001) [19]. Having estimated λ and ψ and plugging 

them into p(θ | λ,ψ,d), we obtain the posterior distribution of the calibration parameter θ to 

be

p(θ |λ , Ψ , d) ∝ p(θ)|Vd(θ)|
− 1

2 |W(θ) |
1
2

× exp − 1
2 (d − H(θ)β(θ))TVd(θ)−1(d − H(θ)β(θ)) .

(8)

and use (8) to make an inference of θ (Fig. 5).

C. Prediction

We introduce variable inputs X p = xn + 1
T , ⋯, xn + m

T T ∈ ℝm × 2 to be used for prediction. The 

corresponding prediction of the QoI at given variable inputs Xp is denoted as 

P = P1⋯Pm
T ∈ ℝm × 1. For quality of the prediction, we can consider variable inputs in Xc 

that cover Xp.

Under the Bayesian framework, a prediction can be made using the predictive distribution of 

the (unobserved) true process ζ(x) given full data d. First we obtain the distribution of ζ(·) 

conditional on θ, λ  and Ψ , which is also normal. Therefore, its mean function is given by

𝔼(ζ(x) |θ, λ , Ψ , d) = h(x, θ)T β(θ) + v(x, θ)TVd(θ)−1(d − H(θ)β(θ)) . (9)

Additionally, its covariance function can be found

cov ζ(x), ζ x′ |θ, λ , Ψ , d . (10)

We can then obtain the predictive distribution of ζ(x) given d, λ  and Ψ  by integrating θ out 

from p(ζ(x) |θ, λ , Ψ , d) with respect to the posterior distribution of θ given in (8). From (9) 

and (10), we obtain the predictive expectation and variance of ζ(·) evaluated at inputs Xp as 

follows (Fig. 5):

𝔼 ζ Xp |λ , Ψ , d = 𝔼θ 𝔼 ζ Xp |θ, λ , ψ, d , (11)

and

var ζ Xp |λ , Ψ , d = 𝔼θ var ζ Xp |θ, λ , ψ, d + varθ 𝔼 ζ Xp |θ, λ , ψ, d , (12)

Zhang et al. Page 9

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ζ(Xp) = [ζ(xn+1) ⋯ ζ(xn+m)]T. We then obtain the prediction and its variance using 

the Markov Chain Monte Carlo (MCMC) technique (see more details in the supplemental 

document).

IV. Data

We consider two studies. In the in silico study case, we use the G&R computational model 

of the AAA expansion to generate synthetic observations in addition to producing 

computational model outputs. In this case, we know the realized true process along with the 

parameters that generate it for validation. In the second case, we use real data sets, i.e., 

observations from three sets of patient specific CT scan images. The G&R computational 

model is used only to obtain computational model outputs in this real-world data study. 

When implementing Bayesian analysis, we standardize all the inputs x, θ and outputs y, z to 

stabilize computation.

A. In silico simulated study

For our in silico study, we generate r(x,θ) from the G&R computational model. To validate 

our approach, we realize and set patient specific values on the calibration parameters (say 

θ0) for the synthesized true process so that we evaluate the estimated calibration parameters. 

Recall that for the damage function, we need to set θ1, θ2, α to produce the G&R 

computational model outputs. For the simulated observation case, we set θ1 = 0.65, θ2 = 6 

and α = 3.1. Thus, we have θ0 = [0.65 6] for the true process. For the variable inputs x = [t 
s], we consider 8 equally spaced s from 0 to 9 cm and a time step of 5 days, which are fixed 

throughout the study. The time duration is 7 years, but several different choices of sampling 

times are considered. Note that when we implement Bayesian calibration, the values of the 

QoI (the radius with respect to the centerline) are standardized as well so that its mean is 0 

and its variance is 1.

Once we obtain a realization of r(x,θ0), we add model and observation errors to get the final 

observations. The model error, δ(x), is realized from the model assumption (5) with β2 = 

[0.001 0.001], ω21 = 1, ω22 = 1, and σ2
2 ∈ 0.005, 0.001 . Then the standard deviation of 

model error δ(x) on each height at each time is about {0.071, 0.032}. The observation error 

ε is generated from 𝒩(0, λ) with λ = 0.001, i.e., ε 𝒩 0, 0.0322 . The standard deviation of 

standardized computational outputs r is 1. To generate simulated observations, we add a 

model error process of 7.1% or 3.2% (with respect to r) and an observation error process of 

3.2%. We chose these values for the model and observation errors in order to produce a data 

set that best illustrates the effects of different noise levels and sampling schemes.

We also need computational model outputs at various combinations of variable inputs and 

calibration inputs. For calibration inputs, we consider θ = [θ1 θ2] ∈ {0.5,0.65,0.8} × 

{2,6,10} so that there are total 9 combinations of θ1 and θ2. For variable inputs, s will be 

considered at 8 equally spaced values from 0 to 15 cm. For time t, we consider three 

different scenarios to see the effects of different time resolutions. With two choices of σ2
2, 

there are a total of 6 different scenarios. Table I gives the label of each scenario. Further 
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details of each scenario are given in Table II. With three cases of sampling time grids and the 

two levels of σ2
2, we want to investigate the behavior of interaction between the 

computational model and Bayesian calibration. In Case 1, computational model inputs have 

a sparse time grid while those in Case 3 have a denser one. In Case 2, the computational 

model inputs do not cover the full time range we want to predict while those in Case 1 and 

Case 3 do.

We note that variable inputs and calibration inputs for the proposed Bayesian calibration are 

standardized in the actual implementation so that we can assume the realized calibration 

inputs are centered at zero. We then use 0.3 as prior means of θ1 and θ2 (away from the 

zero) to investigate the robustness of prior distributions. In addition, we consider 0.1 for 

prior variances of θ1 and θ2. The same setting for the prior of θ1 and θ2 is used later in the 

real observation case. Note that the normal prior can be used for θ1 that is constrained to the 

interval [0,1]. As θ1 was standardized (mean is 0, standard deviation is 1), the range of θ1 

becomes [−1.3,1.3] based on the parameter values we use. We set the prior of mean at 0.3, 

and the variance of prior at 0.1 (standard deviation is 0.32). According to the empirical rule, 

99.7% of the samples from the prior will lie in the interval [−0.66,1.26] which contains in 

the interval [−1.3,1.3].

B. Real observation case

For the real observation case, we consider 4 serial CT scan images of Patient 1 as shown in 

Fig. 1. This particular patient’s CT scan examination spans a period of 3 years. For each 

image, we measured the corresponding radius (QoI) at each height on the centerline as 

illustrated in Fig. 4 using the maximally-inscribed sphere method developed in [35]. From 

the preliminary study of the damage shape with respect to the CT scan images, we selected 

α = 3.1 for (1) a-priori.

In addition, we selected the reasonable range of the calibration parameter θ a-priori to 

produce comparable computational model outputs for the particular observations (Fig. 4). 

More specifically, as prior information to determine the range of the calibration parameter θ, 

we fit the diameter of the computational model outputs to the diameter calculated from CT 

scan images using fminsearch in MATLAB (Mathwork, Natick, USA) and found the 

optimum value to be [θ1 θ2] = [0.2 0.9]. From this information, we consider θ = [θ1 θ2] ∈ 
{0.05,0.2,0.35} × {0.7,0.90,0.99}. For these 9 combinations of θ, we run the G&R model to 

produce the computational model outputs. More details for this real observation case are 

given in Table II. Aforementioned are for the set-ups of patient 1. We follow the same 

scheme to generate observations from 4 serial CT scan images of patients 2 and 3. For 

patient 2, we found α = 1.9 and we assumed that θ = [θ1 θ2] ∈ {0.055,0.065,0.075} × 

{0.65,0.75,0.85}. For patient 3, we found α = 1.3 and we assumed that θ = [θ1 θ2] ∈ 
{0.265,0.305,0.345} × {1.75,2.05,2.35}.

V. Results

In this section, we present results of the Bayesian calibration method on simulated 

observations and real observations as described in Section IV.
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For simulated observations, means and standard deviations of relative errors across locations 

at different times are provided in Table IV. We gauge relative errors R = [R1⋯Rm]T over the 

height of the AAA that are calculated as

Ri =
Pi − T i

T i
, ∀i ∈ 1, ⋯, m , (13)

where T = [T1 ⋯ Tm]T is the realized true process for the simulated observation case that is 

described in Section IV-A. Correspondingly, 95% credible bands with true processes are 

presented in Fig. 6.

For the real observations, the prediction and credible band graphs are given together in Fig. 

8, Fig. 10 and Fig. 11. Since only observations are available for these cases, relative errors 

for prediction are calculated by replacing {Ti} in (13) with the observations (i.e., noisy true 

values).

A. Results from simulated observation cases

In AAA clinical management, typically physicians use maximum diameters in cm and 

classify AAA patients by the maximum diameter. Therefore, we provided the predicted 

maximum diameter and its prediction error (i.e., prediction minus observation) in Table III. 

Among all the cases, the result of Case 3b outperforms all the others as it gives the smallest 

prediction error. Besides, we calculated log predictive likelihood for different cases. 

Compared with Case 1 and Case 3, Case 2 did not have G&R model information at years 6.5 

or later to predict at years 6.5 and 7. Therefore, the log predictive likelihood of Case 2 is 

much smaller than the other two cases. The result is consistent with our findings that Case 2 

has the lowest prediction performance.

Relative errors in (13) (Table IV) are used for scientists and engineers to perform analytical 

comparison of prediction performance. From Table IV and Fig. 6 of the simulation study, we 

observe the following findings. Prediction quality improves when more computational 

model outputs are used for calibration. When we consider different sampling time 

resolutions, prediction quality monotonically improves from Case 1 (coarse resolution) to 

Case 3 (fine resolution). Smaller model errors (Cases 1b, 2b, and 3b) provide better 

prediction results. Compared to Cases 1a, 2a, and 3a, prediction quality from Cases 1b, 2b, 

and 3b is better. As one can expect, prediction quality decreases at the year for which the 

computational model outputs or observations are not available for calibration. For example, 

at years 4.5, 5, and 5.5, the errors between the true processes and predictions are more 

pronounced in Case 1a since both computational model outputs and observations are not 

available at those years. In particular, predictions at years 6.5 and 7 for Case 2 are the worst 

in terms of relative errors. Such results are reflected in wide credible bands as well. A 

possible reason is that calibration for Case 2 did not have information at years 6.5 or later to 

predict at years 6.5 and 7. Recall that computational model outputs are up to year 6 and 

observations are up to year 4. On the other hand, calibration for Case 1 has computational 

model outputs at year 6 to predict at years 4.5, 5 and 5.5. This result suggests that we can 

use computational model outputs at future times during calibration for better prediction. In 
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this regard, results from Case 3 are better than Cases 1 and 2. However, more computational 

model outputs in the calibration process implies higher computational burden.

From the Bayesian calibration, we have posterior samples of calibration parameters as well 

as hyperparameters. For the simulated observation case, true values of parameters (values 

that were used to generated the data are actually close to the prior mean) are known so that 

we can compare the performance of Bayesian calibration for various simulation scenarios. 

The priors and posteriors (calibrated estimates) of θ1 and θ2 for each case are provided in 

Table V. Corresponding figures of comparison between priors and posteriors are shown in 

the supplemental document.

Comparing the posteriors of θ1 and θ2 in all cases, we clearly notice that the posteriors of 

Case 3 have the sharpest peaks around the true values, which can be utilized as point 

estimators. As shown in Table V, the posterior estimates of θ1 and θ2 in Case 3b are the 

closest to their true values among all cases. This also illustrates that more information from 

computational model outputs can give more accurate estimates of the calibrated parameters. 

Consequently, better estimation of calibrated parameters is likely to give us better quality of 

predictions.

Robustness to prior selection: To investigate the impact of different priors on 

Bayesian calibration, we compare the results of Case 2b and Case 2c, where Case 2c is the 

same as Case 2b except the prior variances of calibration parameters are 10 times larger.

The posteriors of θ1 and θ2 for Case 2c cover the prior mean values, but they have larger 

posterior variances than those from Case 2b due to the larger prior variances. We see that the 

95% credible bands (Figs. 6d and 7b) are similar even though their prior variances are quite 

different. This can be seen also in the predictions and relative errors (e.g., supplemental 

document). This implies that our Bayesian calibration method is robust to such changes in 

priors. Therefore, we may use a diffuse prior that can cover all the possible values of 

parameters θ by learning the statistical information from the background and the 

computational model. One can choose the priors for the real observation case in a similar 

way.

B. Results from real observation case

In this section, we discuss the calibration results from real observations of patient 1 using 

CT images 1–4 as shown in Fig. 4, i.e., CT images taken at 0, 1.2, 2.3, and 3.2 years, 

respectively. To generate computational model outputs to be used for calibration, we 

consider the inputs Xc for a computational model as follows. Eight heights uniformly 

ranging from 0 to 8.2 are chosen. For calibration parameter, θ1 is chosen from 

{0.05,0.2,0.35} and θ2 is chosen from {0.7,0.90,0.99}. The computation takes 30 minutes. 

The G&R computation has been coded and implemented using MATLAB R2012a on an 

Intel Core i7 3770 3.4 GHz Processor with 12 GB of RAM. Table V shows the estimates of 

all calibration parameters. The prior means of θ1 and θ2 are 0.25 and 0.858, and their prior 

standard deviations are 0.96 and 0.062, respectively. The resulting posterior means of θ1 and 

θ2 from Bayesian analysis are 0.322, and 1.147, and their standard deviations are 0.09 and 

0.508, respectively.
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We withhold observations for the last two years during the calibration procedure in order to 

validate our approach by comparing predictions on the last two years (CT images 3 and 4, 

taken at 2.3 and 3.2 years, respectively). In contrast to the simulation study, we compare the 

results with observations (noisy true values) since the true process is not available in the real 

observations. The difference between the true process and the observation (the measurement 

error) is estimated to be 𝒩(0, 0.01) from the real observation data used for Bayesian 

calibration as shown in Table II. There are some larger discrepancies in the lower part of 

predictions at 3.2 years, which can be shown in terms of relative errors. Most of the relative 

errors are less than 5%. Besides, Fig. 8a shows how close the Bayesian calibration model 

predicts the observation (i.e., noisy true) values. From Fig. 8b, we also find that only one 

observation value lies outside of the credible bands. These results support that our approach 

has a capability to predict AAA expansion using real data.

C. Comparison with a baseline model

We performed Gaussian process (GP) regression as a baseline model to demonstrate the 

effectiveness of our proposed approach. This baseline model was trained and performed 

using GPML package [41] in MATLAB 2018. The covariance was set as an ARD squared 

exponential covariance (i.e., covSEard). The results are presented in Tables VI and VII, and 

Figs. 8 and 9. Our Bayesian calibration outperforms GP prediction in terms of prediction 

errors (Table VI) as well as relative errors (Table VII), especially in a long time prediction 

horizon. This is due to the fact that GP prediction does not take into account the G&R 

model, therefore, it does not have predictive capability in the future time horizon. In 

addition, our Bayesian calibration updates calibration parameters of the G&R model in 

Table V and other uncertainties (Fig. 5), while GP prediction neglects them. In results, under 

GP prediction, credible bands are not predicted precisely as shown in Fig. 9(b). More 

comparisons against GP prediction are given in the supplemental document.

D. Insights from three real data cases

To get more insights from multiple patient cases, we also run our model on patients 2 and 3 

(Table VI and Table VII). Both patients 1 and 2 have better prediction performance than 

patient 3 (Figs. 8, 10 and 11). In particular, for patient 3, the growth (to the right of the 

maximal point) is much faster, which may be due to the longer time horizon (8.5 and 9 

years) as compared to patients 1 and 2. Our Bayesian calibration method accommodates this 

phenomenon appropriately. The credible bands of patient 3 are wider as well predicted (Fig. 

11). In the elastin’s degradation function, an increase in θ1 will inflate the damage, thus 

accelerate the growth of aneurysm. θ2 controls the area under degradation, so an increase in 

θ2 will increase the area of aneurysm. As shown in Table V, patient 2 has the smallest 

posterior mean values, i.e., predictions (θ1,θ2) = (0.07,0.716) while patient 3 has the largest 

values (0.308 and 1.882), which matches well with that AAA enlargement of patient 3 

increases with a larger magnitude and the AAA of patient 2 increases with a smaller 

magnitude. This trend can be seen in Figs. 10 and 11. Our Bayesian calibration takes into 

account this growth scheme and uncertainties. For other results of patients 2 and 3, please 

see the supplemental document.
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VI. Discussion And Conclusion

From prediction graphs of Case 3 in the supplement document, we notice that the diameters 

of proximal and distal ends of the true line at year 7 tend to be smaller than the previous 

ones. When the AAA is gradually expanding, the end of both regions can be axially 

compressed, which means the radii of the two ends are often contracted. The computational 

model successfully captures this phenomenon. Currently we are studying serial images of 

abdominal aortic aneurysms, registered with the vertebral column. We speculate that the 

renal vein and artery, superior mesenteric artery, and iliac bifurcation can serve as an anchor 

(both serial and circumferential directions at the superior and inferior boundaries) to the 

infrarenal AAA during expansion. Hence, it may be possible that the physical constraints of 

the tethering of those vessels provide a strong confinement, or an anchor at the region of the 

aorta. During the AAA expansion, the volume of the AAA’s sac will gradually increase 

while stretching mostly in the circumferential direction and slightly in the axial direction 

simultaneously. Hence, because of the AAA expansion and the confinement in axial 

direction, the neck and distal part of aorta (from renal branches to the AAA’s sac) will be 

compressed in the axial direction. Using the 3D growth and remodeling simulation, Zeinali 

et al. (2012) [10] show the local change in the stress distribution, in which the stress of the 

sac is increased but the neck’s stress is decreased.

Recall that we estimated α a-priori before Bayesian calibration since we assume that the 

peak location of the future AAA and its overall geometry do not change significantly from 

the previous scans. As illustrated in the real observation case, the AAA peak location and the 

aneurysm shape did not significantly change during the follow-up images, which support our 

approach.

Estimates of β11 (the coefficient for time t) are always positive, which means the radii of 

AAAs increase in time due to AAA expansion. Estimates of β12 (the coefficient for θ1) are 

also positive in all cases, which means the QoI, i.e., the radii of AAA increases as θ1 

increases. This can be explained by the damage function (1). The QoI increases while the 

elastin contents decreases as the amplitude of the damage function (e.g., θ1) increases. 

Estimates of β13 (the coefficient for θ2) are negative in the Patient 1 case while all β13’s are 

positive in the simulation cases. This could be due to the fact that θ2 values are largely 

different between real and simulation observations. On the other hand, the estimates of β21, 

β22 and σ2
2 in all cases are small. This implies that the computational model could explain 

most of the linear and covariance structures of the true process.

The results from the simulation case study suggest that Bayesian calibration may be used to 

combine the computational model, prior and uncertainty models, and real observations to 

predict the QoI at future times or at unobserved locations. The computational model output 

data provide a deterministic trend of the expansion process, which is modeled by a Gaussian 

process. Additionally, computational model discrepancies obtained from real observations 

are modeled by another Gaussian process. When we have more information from the 

computational model (in the form of finer grids for inputs Xc), we achieve lower prediction 

errors, and the posteriors of parameters θ1 and θ2 are more likely to concentrate on their true 

values as illustrated in our simulation results. We also find that posteriors and predictions 
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from our approach are robust to the selection of priors for θ1 and θ2. In the real observation 

case of one patient, the results of Bayesian calibration indicated that the predictions are 

reasonably good when compared with the unused last two observations. Most of the unused 

observations match reasonably well with predictions and lie inside the 95% credible bands. 

The model and the observation errors collectively capture the structure of the true process in 

a consistent manner from a Bayesian perspective.

From our various case studies, we believe that our Bayesian calibration process has high 

capability of predicting complex G&R AAA processes. As compared with GP prediction 

with a set of real serial observations, we show that our Bayesian calibration outperforms GP 

prediction in prediction capability. This demonstrates that the additional complexity of 

Bayesian calibration is warranted by improved performance over a less complex method. We 

also analyze the results of our Bayesian calibration on three real data cases and show an 

insightful trend on calibrated model parameters. However, there is a need for validating our 

approach with a large number of real observation cases to evaluate its performance and 

efficacy in a clinical sense. We believe that for given past CT images of a patient, Bayesian 

calibration can help to guide the scheduling of future CT scans according to predictions with 

the credible bands.

A. Limitations

Limitations exist in our G&R simulations. First, one time initial damage of elastin in the 

focal lesion is considered to be over-simplified and compound effects (e.g., local 

hemodynamics, intraluminal thrombus, and axial or bending stretch) are not taken into the 

AAA growth mechanism. Second, values of material parameters were chosen by using only 

population-based values (Seyedsalehi et al. [26]) in contrast to those of patient-specific. 

Finally, there are various sources of errors in identifying axial location and diameter 

measurements from image segmentation, 3D reconstruction and registration processes (e.g., 

the smoothing effects, alignment of centerlines at different time points) that might affect the 

performance of the Bayesian calibration. Despite of the various limitations, our current study 

with multiple of real data sets showed promising results of Bayesian calibration compared to 

a naive GP prediction since our approach takes into account both the computational G&R 

model and its model inadequacy (5) along with various uncertainties. With better 

understanding of various compound effects on damage and remodeling mechanism, the 

Bayesian calibration will be further improved to be a reliable clinical tool in future.

B. Future work

As future work, we plan to consider complicated damage functional shapes with more 

parameters as well as asymmetric AAA expansion in a 3D space. We plan to investigate how 

to deal with high-dimensional calibration parameters when various compound effects and 

complex functions are used for damage and the rate of mass production. Finally, we will 

investigate how to incorporate other available patient-specific data for Bayesian calibration 

of a particular patient case.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
AAA location and serial CT images. (a) The location of an AAA is indicated by an arrow, 

while the cyan color coated region on the left indicates the inferior vena cava vein. (b) Four 

serial AAA CT images 1, 2, 3, and 4. Information on registration of CT scan images can be 

found in [27].
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Fig. 2. 
The constrained mixture approach is illustrated for three main constituents of aortic wall, 

elastin, collagen and smooth muscle cells for modeling AAA growth. The G&R model is 

implemented in a 2D finite element method (FEM) and computationally generates an AAA 

from an initial healthy aorta to its growth by prescribing a elastin damage profile and by 

utilizing the stress-mediated G&R at every FEM elements [33].
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Fig. 3. 
Inscribed spheres and center lines. (a) An inscribed sphere with point clouds from the CT 

scan images. (b) A center line generated by inscribed spheres.
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Fig. 4. 
Radius vs height coordinate on the centerline measured from CT scans of Patient 1 over the 

surveillance period. The lines from bottom to top represent images 1, 2, 3, and 4, 

respectively.
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Fig. 5. 
The flow-chart of Bayesian calibration. Statistical models (4) and (5) are combined by 

computational data y and real data z to produce the joint likelihood. The posterior 

distribution of θ in (8) can then be used to predictive mean (11) and predictive variance (12) 

of the QoI.
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Fig. 6. 
3D 95% credible band of predictions. The blue stars denote the true values lying inside the 

credible band. The red marks denote the true values lying outside the credible band.
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Fig. 7. 
Predictions and credible bands for Case 2c.
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Fig. 8. 
Predictions and credible bands for Real observation of Patient 1.
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Fig. 9. 
GP Predictions and credible bands for Real observation of Patient 1.
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Fig. 10. 
Predictions and credible bands for Real observation of Patient 2.
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Fig. 11. 
Predictions and credible bands for Real observation of Patient 3.
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TABLE I.

Differences in Xc and σ2
2 for simulation cases

sampling time in Xc σ2
2 = 0.005 σ2

2 = 0.001

every 2 years Case 1a Case 1b

every 1.5 years Case 2a Case 2b/2c

every 1 year Case 3a Case 3b
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TABLE V.

Prior and posterior distributions of θ1 and θ2

Case θ1
prior (mean, std

1
) θ2

prior (mean, std) θ1
post (mean, std) θ2

post (mean, std)

1a (0.678,0.035) (6.050,0.105) (0.686,0.010) (6.052,0.003)

1b (0.668,0.023) (5.912,0.147) (0.671,0.007) (5.908,0.007)

2a (0.681,0.035) (6.072,0.105) (0.690,0.003) (6.074,0.003)

2b (0.672,0.024) (6.013,0.080) (0.676,0.005) (6.013,0.002)

3a (0.669,0.016) (5.997,0.056) (0.672,0.002) (5.997,9 · 10−4)

3b (0.660,0.010) (6.003,0.040) (0.661,8 · 10−4) (6.003,5 · 10−4)

2c (0.665,0.032) (5.992,0.115) (0.669,0.008) (5.992,0.004)

Patient 1 (0.250,0.096) (0.858,0.062) (0.322,0.090) (1.147,0.508)

Patient 2 (0.065,0.008) (0.750,0.082) (0.070,0.005) (0.716,0.053)

Patient 3 (0.305,0.033) (2.050,0.245) (0.308,0.027) (1.882,0.105)

1
std denotes the standard deviation.

θ1
prior and θ2

prior
 denote priors of θ1 and θ2.

θ1
post

 and θ2
post

 denote posteriors of θ1 and θ2.
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