
ARTICLE

Multimodal image registration and connectivity
analysis for integration of connectomic data
from microscopy to MRI
Maged Goubran1,8*, Christoph Leuze1,8, Brian Hsueh2,3,8, Markus Aswendt4,8, Li Ye2,3, Qiyuan Tian 1,5,

Michelle Y. Cheng4, Ailey Crow3, Gary K. Steinberg4, Jennifer A. McNab 1, Karl Deisseroth2,3,6,7 &

Michael Zeineh 1*

3D histology, slice-based connectivity atlases, and diffusion MRI are common techniques to

map brain wiring. While there are many modality-specific tools to process these data, there is

a lack of integration across modalities. We develop an automated resource that combines

histologically cleared volumes with connectivity atlases and MRI, enabling the analysis of

histological features across multiple fiber tracts and networks, and their correlation with

in-vivo biomarkers. We apply our pipeline in a murine stroke model, demonstrating not only

strong correspondence between MRI abnormalities and CLARITY-tissue staining, but also

uncovering acute cellular effects in areas connected to the ischemic core. We provide

improved maps of connectivity by quantifying projection terminals from CLARITY viral

injections, and integrate diffusion MRI with CLARITY viral tracing to compare connectivity

maps across scales. Finally, we demonstrate tract-level histological changes of stroke through

this multimodal integration. This resource can propel investigations of network alterations

underlying neurological disorders.
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Mapping neural networks is essential for understanding
the functional signals underlying behavior and cogni-
tion1. For example, ischemic stroke is currently viewed,

in part, as a disease of brain connectivity, as the region directly
impacted by the infarct precipitates network-wide deficits in
connected brain regions2. Previous studies have reported that,
following cortical stroke, secondary remote degeneration can
occur in connected regions such as the thalamus in the sub-
sequent days and weeks3–6, which negatively affects functional
outcomes7–9. Understanding how cellular changes evolve in
connected regions is critical for understanding the progression of
pathology and therefore for developing targeted interventions for
stroke.

Examining the connections of these networks across the scales
of measurement should enable the delineation of changes specific
to disease states. Large-scale efforts are mapping rodent, primate,
and human neural networks at both microscopic10,11 and mac-
roscopic levels12,13, employing three-dimensional (3D) histology
(e.g., clearing techniques), serial two-dimensional (2D) histology
(e.g., connectivity atlases), and noninvasive in vivo imaging
(e.g., diffusion magnetic resonance imaging (dMRI)). Recent
advances in clearing techniques, such as CLARITY14–17, 3DISCO/
iDISCO18,19, CUBIC20, and others21,22, enable the mapping of
tracers, cell distributions, and processes in intact tissue. Tracing
experiments with high-throughput serial 2D sections have been
used to create connectivity atlases10,11. At the macroscopic scale,
dMRI can noninvasively image larger fiber pathways across the
brain and map changes associated with disease23. These approa-
ches generate large datasets that require analysis tools to distill
information about neural networks. While multiple approaches
exist to process data from individual modalities, all of these
require modality-specific expertise, and integrating across mod-
alities presents a compound challenge.

First, existing pipelines for clearing techniques (Supplementary
Table 1) employ segmentation of cellular features and registration
to atlases to perform regional and whole-brain analyses such as
cell counting24–28 but do not integrate with connectivity atlases
and thus cannot readily assess changes across neural networks. In
the context of disorders that involve disruption of neural net-
works, such as stroke, this lack of integration limits hypothesis-
free assessments of upstream and downstream effects on con-
nected regions across the brain. Similarly, quantifying histological
features along individual fiber tracts within any particular net-
work remains largely intractable, prohibiting the assessment of
tract-level effects in disease.

Second, existing pipelines cannot systematically synthesize
findings between 3D histology features and noninvasive in vivo
imaging (e.g., MRI). Such a synthesis could identify and validate
noninvasive imaging-based biomarkers to investigate within-
animal longitudinal effects, which is not feasible using temporally
sparse histological data. For example, direct comparison of his-
tological features could reveal whether diffusion and relaxometry
signal changes in MRI are due to demyelination, inflammation,
edema, or other cellular processes. Moreover, such multimodal
comparisons allow for the validation of lower-resolution imaging
modalities. Putative tracts identified through dMRI tractography
could be validated using virally labeled axonal fibers (observed
with sub-micron resolution).

To address these opportunities, we present the Multimodal
Image Registration And Connectivity anaLysis (MIRACL) pipe-
line. This automated, open-access resource enables the co-
registered analysis of both macroscopic in vivo imaging as well
as microscopic imaging of cleared tissue. Through direct inte-
gration with connectivity atlases in the standard Allen atlas
reference frame, MIRACL can investigate pathological features
spanning multiple networks based on study-specific lesion maps.

Our resource further allows analyses of histological and imaging
features along fiber pathways to discern tract-level alterations
(Fig. 1, Supplementary Table 1). Integration of computed tomo-
graphy (CT), structural, dMRI29, and quantitative MRI30,31

supports the translation to in vivo measurements and localization
of effects to specific brain regions. By combining in vivo and
ex vivo dMRI, CLARITY viral tracing, and the Allen connectivity
atlas, we can further inform and validate in vivo diffusion
tractography.

We test MIRACL in multiple applications in the context of
assessing global structural and network changes following
ischemic stroke. First, we analyze group-wise cellular changes at
the acute stage of experimentally induced stroke and correlate
them with in vivo imaging. Second, we assess the effects of stroke
on areas structurally connected to the ischemic core. Third, to
enhance the accuracy of connectivity mapping (i.e., defining the
strength of connections), we develop a method to compute
connectivity based on terminating projections from CLARITY
viral injections. Fourth, to compare connectivity maps at different
scales, we investigate the medial prefrontal cortex (mPFC) pro-
jections by contrasting dMRI, CLARITY-optimized viral tracing,
and a connectivity atlas. Finally, we use ultra-high-resolution
dMRI tractography and projections from CLARITY viral tracing
to identify tract-level changes resulting from stroke.

Results
Experimental procedures, design, and validation. The presented
suite combines developed and existing analysis techniques and
algorithms to integrate these multiple modalities and enable the
investigation of pathological and tract-level effects on connected
brain regions spanning multiple networks. For the mouse brain,
we employed the widely used Allen Regional Atlas (ARA),
including comprehensive ARA histologic images (Nissl staining),
fine structure labels, and connectivity atlas11, though the pipeline
can also accommodate other atlases for different species. We
illustrate our pipeline’s capabilities using a model of ischemic
stroke, a disorder in which a focal lesion can cause network-wide
effects. We used 20 male Thy1-yellow fluorescence protein (YFP)
mice, which brightly labels layer-specific motor and sensory
neurons and axons32. Ten mice underwent transient middle
cerebral artery occlusion (MCAO) and 10 littermates served as
controls. All the stroke mice and 3 of the control group under-
went in vivo MRI scanning (24 h after stroke) with high-
resolution structural imaging, T1 and T2 mapping (quantitative
maps of MRI relaxation times), and diffusion tensor imaging
(DTI). The mouse brains were then extracted, immersed in an
iodinated solution to enhance tissue contrast, and imaged ex vivo
in a micro-CT. Following tissue clearing, the whole cleared mouse
brains were scanned using a light-sheet microscope. To perform
more detailed scanning of the stroke core (the area of infarcted
tissue with acute ischemia), the brains were cut into coronal slabs
(2–3 mm thick), and the slab with the core was further stained for
propidium iodide (PI, a small nuclear marker) and scanned at a
higher resolution (2.49 μm in-plane) on a confocal microscope. PI
was chosen to complement the relatively sparse Thy1-YFP
labeling for defining the stroke core since it is a more sensitive
nuclear label (Supplementary Movie 1).

For an integrated analysis of multimodal data, precise image
registration is essential, which is challenging because of stark
differences in contrast across modalities, as well as tissue
deformation after stroke and clearing. Indeed, registration of
our cleared mouse stroke brains using available registration
software yielded suboptimal results (Supplementary Fig. 1),
prompting us to develop a workflow designed with both
biologically and technically induced tissue deformation in mind.
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We developed and optimized fully automated registration
workflows based on the deformable B-spline algorithm imple-
mented in ANTs33 to accurately map MRI and CT, as well as
CLARITY whole brain and sections to the ARA space (Fig. 2a–c,
Supplementary Fig. 2; “Methods—Registration”). To ensure
an accurate part-to-whole registration for CLARITY sections,
we developed a recursive, similarity-based algorithm to search
the corresponding whole-brain CLARITY volume and find the
segment that corresponds best to the desired input section. The
algorithm relied on a pyramid scheme using a sliding window
with decreasing increments (“Methods—Registration, CLARITY
sections’ registration”). We validated our registration workflows
using manually placed landmarks (average of 30/mouse) on
anatomical regions of interest (including striatum, hippocampus,
thalamus, and cortex) from all modalities and obtained an
average target registration error (TRE) for all 10 stroke mice of
130 ± 40 μm (mean ± standard deviation) and 418 ± 257 μm for
CLARITY to ARA and in vivo MRI to ARA, respectively (Fig. 2d,
Supplementary Fig. 2; “Methods—Registration and Segmentation
validation”). The improvement in registration accuracy of the
CLARITY data when employing deformable fields in addition to
affine transformations demonstrate that the registration proce-
dure accounts for the tissue deformations that arise during the
clearing process (Fig. 2d). Similar registration fidelity was
qualitatively found in suboptimal CLARITY data (e.g., due to
noisy microscopic data and volumes with large intensity
inhomogeneity; Supplementary Fig. 2, Supplementary Movie 2).
Furthermore, our registration workflow demonstrated similar
fidelity on other freely available sample clearing data generated
with other clearing techniques, including iDISCO+ and CUBIC,
as well as serial two-photon stacks (Supplementary Fig. 3).

While the transformed MRI maps such as relaxation or
diffusion maps already contain parameter information in all
(larger) ARA regions, CLARITY cellular features require
segmentation for the extraction of quantitative metrics, such as
cell number. We built optimized segmentation workflows that
incorporate image pre-processing and morphological analysis
algorithms implemented in ImageJ including 3D filters from the
3D Image Suite34 and a 3D watershed-based algorithm from the
Morphological Suite35. In addition, we developed an automated,
fast (through parallel computation) feature extraction algorithm
that computes 3D cellular features including count, density, and
volume from the segmented images (“Methods—Segmentation”)
(Fig. 2e–h, Supplementary Fig. 4). We also build tools to
summarize the segmentation results per registered Allen labels
and generate voxelized feature heat-maps, enabling detailed single
subject and group analyses. We validated our segmentation
protocols using manually labeled Thy1-YFP neurons as ground
truth in the cortex from 3 independent counts for control mice
(Supplementary Fig. 4), achieving a specificity of 95.8 ± 3.1% and
a detection rate of 91.7 ± 6.9% (“Methods—Registration and
segmentation validation”).

Linking macroscopic with microscopic imaging of acute stroke.
To determine imaging signatures of focal cellular changes after
acute stroke (24 h post-stroke), we first compared group-level
heat-maps for Thy1-expressing neuron (YFP) counts and cell
nuclei (PI) with MRI measures (Fig. 3a). For MRI metrics, we
quantified on relaxometry (T1 and T2) maps, which represent
signal decay or relaxation times, and diffusion maps (mean dif-
fusivity (MD) and fractional anisotropy (FA)), which characterize
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Fig. 1 MIRACL enables the interrogation of brain pathways and cellular features across modalities. The resource integrates CLARITY data in the
microscopic domain (top left) with macroscopic in vivo and ex vivo imaging data, such as structural MR, diffusion MR, and quantitative MR relaxometry
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the rate of diffusion and degree of unidirectional restriction/
hindrance in water movement. These voxelwise YFP and PI heat-
maps showed cell loss in the caudoputamen (CP) and overlying
sensory and motor cortex, with corresponding T2 and MD heat-
maps showing in vivo changes to the same regions. To further
assess inter-hemispheric differences within the stroke mice, a
label-wise paired t test was calculated between ipsilesional (same
side as stroke) and contralesional hemispheres in each ARA
region for CLARITY cell counts and MRI measures (Fig. 3b). The
pipeline accounts for the relatively lower resolution of MRI by
grouping ARA labels to their “grand-parent labels” according to
the ARA ontology hierarchy (e.g., the grand-parent label of layer
1 of the primary somatosensory nose area is the primary

somatosensory area; Supplementary Fig. 1f). Both YFP and PI
showed decreases in cell counts ipsilateral to the stroke in parts of
the secondary somatosensory (p < 0.005 for YFP, p < 0.001 for PI
using paired t test) and motor cortices (p < 0.01, p < 0.01). PI
changes were both of greater magnitude and extent than YFP,
spanning large cortical and subcortical areas such as the CP (p <
0.001 using paired t test), owing to more extensive PI labeling.
The most prominent changes in T2 and MD were also in
somatosensory (p < 0.01 for T2, p < 0.001 for MD using paired
t test) and primary motor cortices (p < 0.01, p < 0.025 using
paired t test). MD changes, known to be more sensitive to acute
ischemic stroke, also encompassed subcortical regions such as the
CP (p < 0.001), matching the changes on PI.
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Fig. 2 Validation highlighting MIRACL’s registration and segmentation accuracy. a High fidelity of CLARITY registration to the Allen Regional Atlas (ARA).
Left: Coronal view of an ARA Nissl histology slice. Center: CLARITY auto-fluorescence channel of a representative stroke mouse registered to the ARA.
Right: The same auto-fluorescence channel with overlaid label outlines (R–L: right–left, S-I: superior–inferior). b Axial and coronal views of a Thy1 yellow
fluorescence protein (YFP) imaging volume (green) registered to the ARA template (grayscale) and an axial view of another registered CLARITY dataset
with (right) and without (left) ARA labels. c Coronal views of three Allen-registered in vivo MR images (a control mouse, a striatal stroke mouse, and a
cortico-striatal stroke, respectively). All mice in this study were scanned 24 h after stroke. d Low root mean squared error (RMSE) between transformed
manually placed landmarks on the native MRI and CLARITY imaging volumes and ARA manually placed landmarks. Center line of box plot represents the
median, bounds represent the first and third quantiles, and whiskers represent the lowest and highest datum within 1.5× the interquartile range of the lower
and upper quantiles. e Segmentation results for nuclei using propidium iodide (PI) stain. Coronal view of a PI stroke brain and its corresponding
segmentation image (scale bar: 400 µm). Inset (right) shows a zoom-in view on cortex ipsilateral to the stroke with individually segmented cells shown in
random colors overlaid on the original PI image (scale bar: 100 µm). f Segmentation results for layer-specific neurons using Thy1-YFP (YFP). Coronal view
of a Thy1-YFP stroke brain and its segmentation image (scale bar: 400 µm). Insets (right) show zoom-in views on the cortex contralateral to the stroke
(orange box) and cortex ipsilateral to the stroke (blue box) (scale bars: 50 µm). g Zoom-in on YFP results with segmentation overlaid on raw images, and
3D rendering of YFP raw and segmented neurons. h 3D rendering of an original YFP volume with a 5-µm isotropic resolution (left) and examples of
voxelized segmentation results (where the segmentation images are summarized at lower resolutions in the Allen space) at 25 µm in two- and three-
dimensions (scale bar: 600 µm).
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We performed voxelwise nonparametric Spearman’s rank
correlations to quantify the relationship between CLARITY (PI)
measurements and in vivo MRI (T1/T2/FA/MD) (Fig. 3c, red=
inside the stroke core, blue= outside, voxel size= 25 µm). An
inverse correlation was found for T2 (rs=−0.26, p < 0.001 using
Spearman’s rank correlation), T1 (rs=−0.37, p < 0.001), and
weakly with FA (rs=−0.14, p < 0.001 using Spearman’s rank
correlation), i.e., higher T2/T1/FA values were measured in
regions of lower PI density associated with cell loss and cytotoxic
edema. In contrast, MD, a measure of overall diffusivity in a voxel,
correlated positively with PI density (rs= 0.36, p < 0.001 using
Spearman’s rank correlation), indicating restricted diffusion when
cell counts were decreased. Ex vivo CT, after immersion in
iodinated contrast, demonstrated a modest inverse correlation
between quantitative Hounsfield units and PI density (rs=−0.14,
p < 0.01 using Spearman’s rank correlation), representing expected
enhancement of the regions of infarction. The significant
correlations between quantitative imaging and CLARITY-based
histology, along with the registration and segmentation validation
experiments, support the accurate translation captured by this
resource from the microscopic to the macroscopic scale.

Distant cellular changes in the acute phase after stroke.
Network disturbances outside the stroke core may reflect a
fundamental tenet of the diaschisis theory that functional changes
occur between focal ischemic lesions and intra- and inter-

hemispheric connected regions36,37. To evaluate the potential
effects of the primary stroke on regions distant from the stroke
core, segmented PI stains were warped into the Allen atlas
resolution by down-sampling and convolution (Fig. 4a, voxelized
segmentation). We normalized cell density for each Allen label
per mouse by the average cell density of control mice for that
label. To visually depict cell degeneration, this normalized density
was inverted (where brighter means more cell degeneration,
Fig. 4a, right panel). A stroke mask was manually delineated in
each mouse using the T2-weighted MR images. Since the stroke
lesions are heterogeneous in volume, we created a stroke inci-
dence map (i.e., the incidence of a voxel being present in the
stroke lesion across mice in the cohort). This was achieved by
warping the individual stroke masks to Allen space and summing
them to produce this incidence map. The stroke mask with an
incidence of >50% was chosen for the analysis of effects outside
the stroke core (Fig. 4a, dotted black outline). Substantial cell
degeneration was detected with PI within the stroke mask, most
prominently in the CP, with a mean of 31% decreased density.

To interrogate cellular alterations in regions remote from but
structurally connected to the infarct, we developed an automated
tool to assess cellular features across neural networks (“Methods—
Connectivity analysis”). Here we employed the Allen connectivity
atlas11, which has been constructed from 469 injection experi-
ments of adeno-associated virus (AAV) vectors from defined
regions and cell types. By using a recursive hierarchical query of
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the injection site and its parent labels through interfacing with the
Allen connectivity software, the pipeline automatically extracted
the efferent targets from respective viral tracing experiments for
the largest 50 ARA labels within the 50% incidence stroke mask
(Fig. 4b, ≥5 affected mice, cyan mask with dotted black outline).
The efferent targets for each injection were filtered to exclude
children labels of the injection site as well as major parent labels
(e.g., isocortex) and then ranked by strength of connection
(projection volume normalized by volume in injected structure,
with the top five targets/five labels shown in the middle panel of
Fig. 4b). For each label in the stroke mask, we computed and
plotted PI cell density (normalized to controls) in all of its
connected targets (Fig. 4b right panel). We found numerous
regions inside the ischemic lesion, including the CP, piriform area
(PIR), and field CA1 of the hippocampus, with major projections
to target regions with cellular alteration outside of the lesion
(salmon-colored bars in Fig. 4b, Supplementary Fig. 5a). After
careful exclusion of all targets with even minimal presence within
the stroke mask of any mouse, several areas present as clearly
affected and separate from the infarct (Supplementary Fig. 5b),
demonstrating that cellular alteration is already observed in
several areas highly connected to, but not within, the ischemic
core. These changes at an early 24-h time point may be attributed
to a vascular basis (i.e., microinfarcts not detectable by MRI or

conversion of penumbra at the time of imaging to infarct at the
time of sacrifice).

To investigate not only the targets with cellular alteration but
also their networks, the 50 most common targets for these 50
ARA labels within the stroke mask were also computed (top
10 shown in Fig. 5b). To interactively examine highly connected
regions (hubs), the pipeline can display the connectivity
information for these 50 stroke labels and their targets as a
network graph (Fig. 5c) labeling region inside and outside the
stroke or a connectogram (Supplementary Fig. 8) by ordering all
regions according to their Allen hierarchy and depicting
connections colored by injection site, weighted, and thresholded
by the strength of connection (Top 25 shown in Fig. 5c). For these
MCAO mice, this included several hubs involving striatal,
somatosensory, and parahippocampal networks (Fig. 5c, Supple-
mentary Fig. 8).

To further validate that our pipeline can detect cellular changes
in connected regions secondary to connectivity to the stroke core,
we employed histology data from 5 additional stroke mice that
underwent MCAO and were sacrificed at day 15 post-stroke
(“Methods—Histological validation”). 2D histological sections
were examined at the thalamic–hippocampal level with: (1) CD68
to identify inflammatory cells (activated microglia and macro-
phages), (2) microtubule associated protein 2 (MAP2) to define
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areas of neuronal loss, and (3) 4′,6-diamidino-2-phenylindole
(DAPI) for nuclear labeling (Supplementary Fig. 6a). We
employed landmark-based registration to warp the Allen atlas
labels to histology sections from a corresponding atlas section at
the same depth (Supplementary Fig. 6b). Stroke masks of the
infarct lesion were manually delineated on the histology sections
using the available stains (Supplementary Fig. 6c). Our pipeline
automatically identified regions outside of the stroke core, with
significantly reduced ipsilesional MAP2 staining across the mice,
including the retrosplenial area (RSP), arcuate hypothalamus
nucleus, lateral hypothalamic area, and PIR–amygdalar area;
which are not commonly part of the primary injury areas of this
MCAO model (Supplementary Fig. 7a, b). These cellular changes
in the top identified regions were further confirmed indepen-
dently through visual inspection of the histological sections
(Supplementary Fig. 7c). The top identified regions, several of
which were revealed in our CLARITY-based stroke analysis, had
large afferent projections from common stroke regions (Supple-
mentary Fig. 7d), validating that our pipeline can identify cellular
changes secondary to stroke in the highly connected regions.

Automated resolution of axonal projection terminals. Although
connectivity atlases based on discrete 2D high-throughput serial
sections (such as the Allen atlas) can determine the projection
pathway from an injection site, it is challenging to distinguish
passing fibers from synaptic endpoints, making determination of
fiber tract termination difficult11. In contrast, CLARITY-
optimized viral tracing may enable the estimation of the num-
ber of terminating fibers within a brain structure in addition to
the number of fibers passing through it through a 3D structure
tensor analysis (STA) (“Methods—Structure tensor analysis and
Projection terminals analysis”).

We chose to study the mPFC, which is associated with several
cognitive functions such as reward, fear, and addiction that may
be served by unique networks, since the connectivity to this hub
has been elucidated using a variety of data39–41. To obtain
CLARITY-based tracts, we performed focal stereotactic injections
of AAV expressing an axon-filling fluorescent protein28 in the
right prelimbic area (PL) of the mPFC in three mice (“Methods—

CAPTURE labeling”). Tract terminal maps from our CLARITY
mPFC injections were generated by computing the number of
STA-based streamlines ending in a voxel and the number of
terminating streamlines summed per registered atlas label,
resulting in a map of terminal zones (endpoints) (Fig. 6a, fourth
panel; “Methods—Projection terminal analysis”). To interrogate
projection terminals outside the immediate vicinity of the
injection (i.e., avoiding proximal connections and/or tracer
spill-over), the injection site and nearby structures were isolated
through a connected components analysis, which labels neigh-
borhoods of adjacent voxels that share the same set of intensity
values. Masking the largest component (corresponding to the
seed and nearby regions) leaves visible long-range tracts with
terminals remote from the seed region (Fig. 6a, far right panel).

We filtered STA-based tractography results (Fig. 6b) by
identifying tracts that pass through or terminate in several
inclusion masks (Fig. 6c): (1) regions with many terminating
fibers, for example, the nucleus accumbens (ACB) and the ventral
tegmental area (VTA), as well as (2) regions with numerous
passing fibers and relatively few terminating projections, such as
the anterior cingulate area (ACA). In both cases, the terminals
map showed the fibers connecting to the inclusion mask and
filtered out long-range fibers passing through it (Fig. 6c, black
arrowheads), suggesting an improved specificity for connectivity.

In order to directly compare the connectivity results between
techniques, we graphically depicted Allen connectivity, CLARITY-
passing projections, and CLARITY-terminating projections as
interactive computational network graphs, with the injection site
at the center and target structures as linked circular nodes (circles
representing brain regions) (Supplementary Fig. 9a). CLARITY-
passing projections were computed based on average tract density
within an ARA region, while CLARITY terminal maps were
computed based on the number of terminating fibers within the
same ARA region. Larger nodes (circles) and thicker links (lines)
both depicted stronger connections. We extended this visualiza-
tion tool so that it can also be used to represent whole-brain
connectivity, such as the entire Allen connectivity atlas (Supple-
mentary Fig. 9c, Supplementary Movie 3).

We compared our tract density network graph derived
from CLARITY streamlines without filtration of passing fibers
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(Supplementary Fig. 9a, middle panel), with the graph represent-
ing projection density from the PL area of the Allen connectivity
atlas (Supplementary Fig. 9a, left panel). An overlap of 74% was
found between the top 50 ranked targets by relative connectivity
strength of the two methods (Supplementary Fig. 9b). We then
compared to our graph based on projection terminals instead of
passing fibers (Supplementary Fig. 9a, right panel), demonstrating
an expected decrease in connectivity strength for the corpus
callosum, which should not have terminating fibers. While this
was manually corrected in the Allen connectivity atlas by
removing signal from larger white matter fiber bundles, our
terminal analysis automatically filters not only these larger
bundles but all bundles of the passing fibers. For example, ACA
(a structure without a known key functional role in the mPFC
network) seems to be highly connected to the mPFC in the
CLARITY graph without filtration of passing fibers (rank 3), but
after terminal analysis, it showed a much lower connectivity
strength (rank 54). Conversely, VTA is a known node important
to the mPFC network39; however, its rank order is relatively low
in Allen connectivity (rank 65). In the CLARITY network graph
without filtration, the VTA is modestly higher (rank 39), but after
terminal analysis it is much higher (rank 3). A similar effect was
observed for ACB (Supplementary Fig. 9a). Similarly, while the
CLARITY graph based on passing fibers suggested a much
weaker connection between mPFC and ACB (rank 34), the graph
based on terminal analysis revealed a higher number of fibers
terminating in this key node (rank 12). Overall, the top
projections based on CLARITY projection terminals match well
some of the projections described in the reward and addiction
networks39–41.

Integrating dMRI, CLARITY, and the Allen connectivity atlas.
To further study the mPFC network at multiple scales in a
common space, we produced connectivity maps by combining

dMRI tractography, CLARITY-optimized viral injection experi-
ments, and the Allen atlas of connectivity (Fig. 7a). At the mac-
roscopic scale, tractography based on diffusion MRI provides an
estimation of the most prominent fiber pathways, although vali-
dation of these tracts has not been fully achieved. At the micro-
scopic scale, individual tracer injection experiments with 3D or
2D histology may offer a gold standard. However, they are limited
in their ability to investigate numerous pathways simultaneously
in a single mouse13. There is also considerable variance due to
differences in tracer type, injection volume, and injection sites.

We relied on our ultra-high-resolution ex vivo dMRI scan to
evaluate dMRI-based connectivity of the mPFC. We employed
both (1) deterministic tractography using the diffusion tensor
model, which computes only the primary water diffusion
orientation in a given voxel42, and (2) probabilistic tractography
as described before. Tracking parameters were kept constant
between the tracking methods. To compare with CLARITY viral
tracing, we reconstructed fiber tracts from CLARITY data
through STA from our mPFC injections. Using our registration
tools, we directly compared both dMRI and STA with the Allen
mouse brain connectivity atlas11.

The diffusion model and tracking algorithm selected for
analysis had a strong impact on correspondence between dMRI
fiber tractography and both STA-CLARITY and the Allen
connectivity atlas. The deterministic tensor and probabilistic
constrained spherical deconvolution (CSD) fiber tracking demon-
strated mPFC projections traveling to and crossing the ACB, as
well as fibers joining the corticospinal tract (CST) and traveling
caudally to the brain stem (Fig. 7b). Probabilistic CSD tracking,
but not deterministic tensor, was able to resolve mPFC fiber
bundles branching to the mediodorsal nucleus of the thalamus,
which was observed in our CLARITY viral tracing and the Allen
atlas (Fig. 7c, yellow arrow). Probabilistic CSD tract density
showed a good agreement with projection density of the Allen
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brain atlas and the average of our segmented CLARITY viral
tracings, with voxel-wise Spearman’s correlations of rs= 0.31
(p < 0.0001) and rs= 0.35 (p < 0.0001), respectively (Supplemen-
tary Fig. 10). Probabilistic CSD also showed a strong qualitative
agreement with similar comparisons based on alternative
probabilistic tracking algorithms described in the literature43

(Supplementary Fig. 11a). Deterministic CSD was intermediate
between deterministic DTI and probabilistic CSD, capturing fiber
bundles not seen on deterministic tensor tractography (Supple-
mentary Fig. 11b, c) but with less extensive branching fibers than
probabilistic CSD.

Comparing probabilistic CSD with both CLARITY and the
Allen connectivity atlas, we found projections branching from the
CST and crossing the striatum in both CLARITY and
probabilistic CSD but not visible in the Allen connectivity atlas
(Supplementary Fig. 10, white arrowheads). Overall, comparison
of the average of our 3D viral tracings with the Allen connectivity

atlas revealed a good correspondence (rs= 0.46, p < 0.0001 for
Spearman’s correlation), with several prominent bundles (corti-
cospinal, cingulum) common between both tracing experiments
(Supplementary Fig. 10—middle panel, Supplementary Fig. 11b).
We also observed projections that were only visible in their
entirety in the CLARITY experiments, specifically an axon bundle
diverting at a sharp angle near the VTA from a laterally directed
mPFC bundle, heading toward ventromedial thalamus (Supple-
mentary Fig. 10, yellow arrowheads)28. This multi-scale approach
can serve as a target toward validating and improving in vivo
tracking algorithms and parameters.

Thy1-YFP tract-level changes in the MCAO stroke model. We
sought to integrate our tract-based tools with our stroke data in
order to investigate stroke effects along major tracts in addition to
remote regions of interest in our murine model. To define the
tracts at high resolution, we performed an ultra-high-resolution
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ex vivo dMRI scan on one wild-type mouse. We then performed
registrations between this dMRI scan and the same target Allen
space where our stroke CLARITY data was warped. This enabled
us to use our ex vivo dMRI acquisition to generate multiple fiber
tracts within our stroke and control mice. Along these tracts, we
quantified Thy1-YFP intensity in order to measure changes in
cellular and fiber density (“Methods—Tract-level analysis”). An
example region with tracts originating in the cortex and crossing
the stroke is the mPFC.

We thus used the mPFC as a seed region for tractography and
selected two bundles: (1) mPFC tracts to the VTA (henceforth
named VTA tracts), crossing the CP and joining the CST, which
qualitatively intersected the stroke core and would be expected to
show changes (Fig. 8a, b); and (2) mPFC tracts to the RSP (RSP
tracts), joining the cingulum bundle, as control tracts which would
not be expected to show changes (Fig. 8b). We performed
probabilistic tractography using a CSD model, which models
several fiber populations in each voxel (iFOD2 from MRtrix3)44,45.
VTA tracts demonstrated significantly decreased Thy1-YFP values
in the ipsilateral hemisphere (as compared to the contralateral

hemisphere) in stroke but not in control mice (Fig. 8c top row,
mean asymmetry for stroke= 27.1%, control= 11.8%, p ≤ 0.0001
using two-sample t test, example tract profiles for stroke and
control mice in Supplementary Fig. 12). On a per mouse basis, 9/9
mice showed an asymmetry greater than the control average
asymmetry. RSP tracts did not demonstrate a hemispheric
difference in both groups (Fig. 8c bottom row, stroke= 14.9%,
control= 15.7%, p= 0.856 using two-sample t test). On a per
mouse basis, 3/9 mice showed an asymmetry greater than the
control average asymmetry. Integrating dMRI with CLARITY and
fiber quantification tools thus not only depicts changes to nodes
through a label-based analysis but also changes along fiber tracts
through a tract-based analysis.

It is unknown whether all tracts identified via probabilistic
dMRI represent true axonal projections. To further investigate
and validate these tract-level changes, we thus performed the
same experiment based on tracts (extracted using STA) observed
directly in higher-resolution viral tracing data (Supplementary
Fig. 13a, b; “Methods—Tract-level analysis”). To obtain
CLARITY-based tracts, we again used our mPFC injections.
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Similar to our dMRI findings, we observed significant changes in
Thy1-YFP expression between the two cohorts along medial
prefrontal tracts traversing the striatum (p= 0.00017) that would
otherwise be difficult to detect with a region of interest (ROI)-
based approach (Supplementary Fig. 13c, d, example tract profiles
for stroke and control mice in Supplementary Fig. 13e). These
findings highlight the potential of our resource to probe
differences in features parametrized along fiber tracts between
cohorts or perform unbiased automated projection mapping in
defined activated states.

Discussion
MIRACL is an automated pipeline that allows for multimodal
interrogation of brain connectivity by coupling imaging of cleared
volumes (using CLARITY or other clearing techniques) with MR/
CT and the Allen atlas. We applied this general-purpose tool in
an experimental stroke model and demonstrated group-wise
alterations on both microscopic and macroscopic scales, with a
strong correspondence between MRI and cellular changes in the
region of ischemia. This analysis further demonstrated wide-
spread acute cellular changes in regions strongly connected to the
stroke area. In addition, we demonstrated histological changes
along fiber tracts through the integration of dMRI and CLARITY.
We improved the automated assessment of connectivity from
CLARITY viral injections by computing maps of projection
terminal zones, which more accurately match known patterns of
connectivity. Finally, we integrated dMRI and CLARITY-
optimized viral tracing with the Allen connectivity atlas in a
standard reference frame. Through investigating the fiber bundles
emanating from the mPFC across these three modalities and
comparing them head-to-head, we found important differences
between fiber tracing techniques, suggesting that CLARITY-
optimized viral tracing may serve as a direct validation technique
for diffusion tractography.

In our experimental stroke model, the artery occlusion leads to
cell death primarily in the somatosensory cortex and striatum46.
On the microscopic level, we detected the most prominent loss of
Thy1-YFP neurons in layer 5 of the somatosensory cortex, a
region delineated on T2-weighted images as part of the stroke
lesion (Fig. 3c). CLARITY PI staining revealed that several areas
connected to the stroke core, some remote to the lesion, were
affected at the acute stage (Fig. 4b–d). At the macroscopic level,
quantitative T2 values in the stroke region were substantially
increased while MD values were decreased (Fig. 3c, d) due to a
shift in water composition (e.g., the bound versus free water
ratio), changes due to cytotoxic edema, and relative volume dif-
ferences of intracellular and extracellular spaces47. The stroke
mask used for CLARITY analysis was based on the hyperintense
area in the T2-weighted MRI, which is expected to correspond to
histology-based lesion at that time point48,49. Future studies will
benefit from novel immunolabeling protocols applicable for the
whole brain to include commonly used injury markers such as
glial fibrillary acidic protein to visualize the formation of the glial
scar around the ischemic tissue.

While our registration workflows produced accurate mapping
both qualitatively and quantitatively (Supplementary Fig. 9),
residual registration errors may still introduce variance. Our
segmentation workflow included pre-processing steps and mor-
phological operations to correct for possible inhomogeneities or
artifacts in the PI stain. Parent labels of the Allen atlas were
employed so that the connectivity analysis was robust toward
residual inhomogeneities and artifacts within smaller labels.
Future studies using MIRACL will integrate functional imaging
and higher-resolution in vivo dMRI on a larger cohort of animals
at both early and late time points post-stroke to further

investigate the spatio-temporal effects in remotely connected
regions and discern the nature of these cellular modulations.

Standard slice-based connectivity analyses are fundamentally
limited: regional connectivity is often based solely on whether
tracer or fiber tracts are visualized in a region (which necessarily
includes fibers of passage), but it is more relevant to determine
where neuronal fibers originate and synapse (terminate).
Although larger white matter bundles have been manually
removed as sources of passing fiber signal in the Allen con-
nectivity atlas, there are many regions where fibers pass through
gray matter without terminating. To address this issue of passing
versus terminating fibers, we have demonstrated an automated
technique to assess connectivity based on presumed projection
terminals using CLARITY-optimized tracing, STA-based tracto-
graphy, and atlas registration (Fig. 6, Supplementary Fig. 9).
Incorporating projection terminals may be a more accurate
method to assess connectivity strength as demonstrated for the
mPFC. This algorithm is dependent on the accuracy of fiber
orientation extraction and tractography stopping criteria, as well
as intrinsic projection signal in the volume. We relied on the
primary orientation of the structure tensors and the fiber
assignment by continuous tracking (FACT) algorithm50 for our
STA-based tractography. Future work modeling multiple fiber
orientations with STA on tracing data should allow for more
sophisticated models of fiber architecture. These models would
enable the implementation of thresholds based on fiber orienta-
tion distributions for determination of tract terminals, in addition
to the currently used tract curvature, providing more accurate
estimates of tract endpoints. While our presented viral tracing
experiments employed cytoplasmic enhanced green fluorescence
protein (EGFP) AAV tracers, future work can further validate
connectivity strength by direct electrophysiological studies or by
employing a synaptic tracer like synaptophysin-EGFP-expressing
AAV.

While other pipelines exist to compare across connectomes at
different levels using graph theory and topology measures51,52

(Supplementary Table 1), our pipeline incorporates study-specific
data with atlases to compare viral tracing or dMRI with atlas
connectomes. It also enables extraction of connectivity from 3D
cleared tissue through tact tracing with STA. Using our tools, we
compared connectivity between modalities at varying resolutions
by transforming dMRI, CLARITY-optimized viral tracing, and a
connectivity atlas into a common space (Fig. 7, Supplementary
Fig. 10). Although the main fiber bundles emanating from the
mPFC were concordant among these modalities, several differ-
ences were present between deterministic tensor, probabilistic
CSD dMRI tractography, and CLARITY tracing, with CSD hav-
ing the best histological correspondence. Some tracts detected
with dMRI (such as those branching from the cingulum bundle to
the lateral posterior end of the RSP) were not observed in viral
tracing experiments. This could represent retrograde fiber pro-
jections to the mPFC, possibly because dMRI is inherently
bidirectional, whereas AAV viral injection-based CLARITY is
efferent. Injection sites of our CLARITY experiments, and hence
the STA-based tractography seed region, have also overlapped
with regions of the mPFC other than PL. While STA has lim-
itations, our STA maps accurately reflect connectivity known by
entirely different methods (e.g., electrophysiological recording)39.
Moreover, tract density images computed from CLARITY data
were the result of 3D STA-based tractography and hence can
produce more accurate representations of the fiber anatomy in all
three dimensions, in contrast with density images acquired from
the connectivity atlas that are generated through signal detection
of 2D thin-section slices with a z-sampling of 100 µm53.

While label-based analysis is useful for identifying regional
differences, it may not be optimal for changes along fiber tracts
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traversing specific paths in the brain. Investigating whole-brain
histological changes across any chosen major tract of the mouse
brain is one of the hallmarks of our tools, enabled by integrating
dMRI, CLARITY, and fiber quantification techniques. We
employed a high-resolution ex vivo MRI dataset to assess acute
stroke changes along mPFC tracts terminating in VTA (joining
the CST and crossing the striatum) and RSP (joining the cingu-
lum bundle in the cortex). Through analysis of hemisphere
asymmetry in Thy1-YFP labeling (image intensity) across these
tracts, we found cellular and fiber density changes in the VTA
tracts but not the control RSP tracts (when comparing stroke and
control mice) (Fig. 8, Supplementary Fig 12). A more extensive
analysis of tract-level changes is needed to determine the spatio-
temporal effects of diaschisis on fiber tracts extending beyond the
stroke core.

The presented resource enables high-fidelity 3D mapping of
networks and cellular changes at the microscopic scale and their
integration with in vivo connectivity maps and imaging metrics.
Our application to stroke shows promise for discerning network
alterations secondary to infarction at a cellular level across the
brain. The improved modeling of connectivity based on
CLARITY viral tracing enabled by our pipeline coupled with
in vivo imaging has the potential to become a standard platform
for assessing networks under experimental modulations. This tool
is designed to harness information from large-scale projects and
derive statistically relevant findings to answer specific questions
about disease state and noninvasive biomarkers. MIRACL is
readily applicable to a wide variety of neurological disorders,
systems, and animal models and is adaptable to future evolutions
of atlases and imaging methods.

Methods
We describe below the animals and their manipulations; the in vivo and ex vivo
imaging; CLARITY staining and microscopy; CAPTURE viral labeling; MRI, CT,
and microscopy image processing; registration and segmentation; statistical ana-
lysis; feature extraction based on connectivity, dMRI tractography and CLARITY-
STA tractography; and finally fiber terminal analysis.

Animals and materials. All experiments were conducted in compliance with
animal care laws and institutional guidelines, approved by the Stanford Institu-
tional Animal Care and Use Committee, and in accordance with the guidelines
from the NIH. We used n= 10 Thy1-YFP (line-H) mice, 8–10 weeks old (B6.Cg-
Tg(Thy1-YFP)15Jrs/JC57BL/6J, Jackson Laboratory) and n= 10 wild-type litter-
mates in the control group. All of the mice underwent light-sheet imaging of Thy1-
YFP. Three of the 10 control mice underwent in vivo MRI and PI staining. Mice
were housed under a 12:12 h light:dark cycle with food and water available ad
libitum.

Transient MCAO. Mice were kept anesthetized during surgery with 2–3% iso-
flurane in air. Body temperature, heart rate, and respiration were monitored every
15 min and kept in physiological range. The common carotid artery area was
exposed and a silicon rubber-coated filament of size 7–0 (Doccol Corporation,
Sharon, MA, USA) was inserted through the left internal carotid artery until the
approximate branch of the left middle cerebral artery and left in place for 30 min to
block blood flow. Subsequently, the suture was removed to allow reperfusion and
wounds were sutured. To allow recovery from surgery, mice were administered
with 0.01 mg/kg buprenorphine and 0.9% saline subcutaneously. Saline (25 µL/g
body weight) was given subcutaneously 24 h later in order to help prevent dehy-
dration due to reduced mobility.

In vivo MRI. At 24 h after MCAO, mice were scanned on a 7-T animal MRI
scanner (Agilent Technologies/Bruker) using a millipede coil. The animals were
anesthetized with 2% isoflurane in air and fixed on a cradle to immobilize the head.
Body temperature was maintained at 37 °C using constant air flow and the anes-
thetic concentrations were adjusted based on the respiratory rate.

A T2-weighted FSE (fast spin echo) sequence with echo time/repetition time
(TE/TR)= 40/2500, a slice thickness= 0.5 mm, and 0.1172 × 0.1172 mm in-plane
resolution was performed to get a high-resolution structural image of the brain. A
T2 map was acquired using a 2D SE (spin echo) sequence with TEs= 12.1 ms, 24.3
ms, 36.4 ms, 48.5 ms, TR= 3500 ms, slice thickness= 1 mm, 0.5 mm gaps between
slices, and 0.078 × 0.078 mm in-plane resolution. The T2 values were fitted using an
in-house Matlab (MathWorks, Inc.) script. Keeping the same geometry, a T1 map

was acquired with a FSE-IR (fast spin echo with inversion recovery) sequence, TE/
TR= 7.2/5000, and inversion time= 200, 400, 800, 1600, 3200 ms. The T1 values
were fitted using a Matlab script54. A higher-order shim (third) was performed to
optimize magnetic field homogeneity in order to minimize imaging artifacts for the
dMRI scan. The dMRI scan consisted of an EPI (echo planar imaging) sequence
with bipolar diffusion gradients, TE/TR= 16.3/1200, 4 averages, 0.1172 × 0.1172
mm in-plane resolution, 1 mm slice thickness, 5 mm gap between adjacent slices, 3
b= 0 images, and 18 linear-independent diffusion directions with b= 1000 s/mm2.

Ex vivo CT. A high-resolution ex vivo contrast-enhanced CT was acquired for all
mice after immersion in an iodinated contrast agent (Omnipaque®, GE-Health-
Care) on a MicroCAT II micro-CT scanner (Siemens Preclinical Solutions), using
the following parameters: X-ray voltage 48 kV and anode current 200 µA, and a
0.6° rotation step throughout 198°, with a resulting isotropic voxel size of 18 µm.

Ex vivo high-resolution MRI. A high-resolution ex vivo structural and diffusion
MRI scan were performed of an excised control mouse brain (not part of the
previous control cohort). The structural scan was a T1-weighted FLASH (fast low
angle shot) sequence with TE/TR= 20/42.9, 8 averages, and 100 µm isotropic
resolution. The diffusion scan had TE/TR= 28.8/500 ms, 200 µm isotropic reso-
lution, 70 b= 0 scans, 150 directions with b= 1000 s/mm2, 230 directions with
b= 2000 s/mm2, 270 directions with b= 4000 s/mm2, and 350 directions with
b= 8000 s/mm2.

Tissue clearing. CLARITY was performed as previously described15,28. Briefly,
paraformaldehyde (PFA)-fixed brains were transferred into a CLARITY monomer
solution consisting of 1% Acrylamide, 0.125% Bis-Acrylamide, 4% PFA, and
0.025% VA-044 initiator in 1× phosphate-buffered saline (PBS) for 3 days at 4 °C,
polymerized by degassing and incubating at 37 °C for 3–4 h, and cleared passively
in 4% Sodium Dodecyl Sulfate for 3 weeks at 37 °C in a 50-mL falcon tube. Samples
were then washed with PBS+ 0.1% Triton-X (PBST) for 2–3 days and placed in
RapiClear (SunJin Labs) 12 h prior to imaging.

Staining and microscopy. Light-sheet imaging: Whole-brain images were acquired
with an Ultramicroscope II (Lavision Biotec). Samples were mounted to a custom
3D-printed holder using RapiClear Mounting Gel (SunJin Lab). They were securely
mounted to the holder after mounting gel solidified (~5 min at 4 °C). Mounted
samples were imaged inside an imaging chamber filled with 150 mL of RapiClear
(reusable by periodical filtering). Samples were left in the imaging chamber for
20–40 min before imaging to allow the equilibrium of imaging solution. Brains
were imaged using a ×2/0.5 NA objective at ×0.6 zoom. Multi-color imaging was
enabled by setting filters to a supercontinuum white laser (NKT photonics).
Samples were imaged with two light sheets (NA= 0.144) illuminating from both
sides of the sample. Z-step was set to 5.16 µm (at ×0.6 zoom). Five horizontal focal
points were set to each imaging plane for creating a homogeneous field of view.
Following imaging, the samples were returned to PBST and sectioned at
approximately 2–3 mm for confocal imaging with a razor blade.

Confocal imaging: Cleared tissues (2–3 mm coronal sections) were incubated in
PI solution (Cell Signaling Technologies) for 2–3 days, returned to PBST, incubated
in RapiClear CS for 1 day, and mounted using a Wilco dish. The tissues were then
imaged using an Olympus FV1200 system equipped with a ×10 water-immersion
objective (numerical aperture: 0.6; working distance: 3 mm; step size, 5 µm).

CAPTURE labeling. Tissue clearing and whole-hemisphere light-sheet imaging
were performed as described in the tissue-clearing section. Virus axonal labeling
was performed according to the CAPTURE method28. Briefly, n= 3 wild-type
C57BL/6 mice (from JAX) were injected with a 1 µL AAV8-CaMKIIa-EYFP-NRN
in area PL within the right mPFC (AP= 2.0, L= 0.3, V= 2.5 mm). After injection,
the mice were returned to their home cages for 4 weeks to allow the full expression
of fluorophores. For light-sheet microscopy, all raw images were acquired as 16-bit
TIFF files. The raw images were further processed by blind 3D deconvolution using
AutoQuantX3 (Media Cybernetics) before STA.

Whole-brain CLARITY image registration to ARA. The goal of the registration
procedure is to have seamless mapping between MRI/CT, CLARITY, and ARA.
This was achieved by computing whole-brain CLARITY to ARA transformations
(CLARITY-ARA), and MRI to ARA transformations (MRI-ARA). Within
CLARITY, stains of sections of the CLARITY volumes were registered to the
whole-brain CLARITY, then easily to ARA. Similarly with MRI, all MR images
were registered to the whole-brain T2-weighted images, which were themselves
registered to the ARA.

To perform accurate mapping between CLARITY and the ARA, we developed
specialized workflows optimized for multi-modal registration of clarified data,
based on tools from ANTs33 (http://stnava.github.io/ANTs/). The workflows
included preprocessing, brain extraction, intensity correction, orientation
estimation, and registration initialization, as well as optimized similarity metrics
and optimization and regularization parameters for the multi-stage, multi-
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resolution registrations. The following describes the preprocessing and registration
protocols of whole-brain CLARITY to ARA templates.

To facilitate nonlinear registration of CLARITY to the ARA space, an
autofluorescence channel was acquired, which provides detailed anatomical
information and sufficient contrast, as well as a clear brain outline (Fig. 2a). The
resultant transformation matrices and deformation fields were then applied to the
remaining CLARITY channels (Fig. 2b). The CLARITY autofluorescence channel
(594 nm) tiff data were first converted to an image volume of nifti format. During
conversion, CLARITY data were downsampled by a factor of ×5. The input image
was then intensity corrected using the nonparametric N4 bias field correction
algorithm55 in order to eliminate non-uniformities (inhomogeneities) and shading
artifacts. We then smoothed the image using a median filter with a radius of three
voxels. The dataset was also masked using a series of thresholding, erosion,
connected components analysis, and dilation steps to remove any outlines
produced during microscopy not belonging to the brain. Finally, the processed
input image was oriented to the “standard” orientation matching the ARA template
to maximize similarity between the two volumes.

Image registration between the autofluorescence CLARITY volume and ARA
template relied on intensity-based alignment. The ARA 25 µm template was chosen
as the reference image for the registration steps and the ARA 25 µm labels were
subsequently warped and up-sampled to CLARITY full-resolution, native space.
The registration parameters were chosen after testing a large parameter space and
qualitative assessment of the fidelity of the alignment for multiple datasets by visual
inspection of overlaid images, utilizing the same parameters across all mouse
brains. To visualize registration results, we constructed look-up tables (LUT) for
use in the open-source ITKsnap (http://www.itksnap.org) and Freeview (Freesurfer)
(https://surfer.nmr.mgh.harvard.edu) software, so that registered label information
(name and id) is displayed where the user interactively moves the cursor
(Supplementary Fig. 1d). The first registration step was an initial alignment using
the antsAffineInitializer tool from ANTs33, with a search factor of 1 degree (search
increments), a search around the principal axis of 1 radian, and a local
optimization of 500 iterations run at each search point. The second registration
step consisted of an intensity-based b-spline, three-stage registration with
increasing degrees of freedom of their transformations, encompassing (a) a rigid
6 degrees of freedom (DOF), (b) an affine (12 DOF), and (c) a non-rigid
(deformable) b-spline symmetric normalization (SyN) stage, each consisting of a
multi-resolution approach with 4 levels. We employed the mutual information
(MI) similarity metric for the rigid and affine stages, using a spline distance of 26,
32-bins for histogram sampling, a convergence tolerance of 1e−10, and Gaussian
regularization of the deformation fields. We utilized cross-correlation (CC) for the
deformable stage56, with a radius of 2 mm and a gradient step length of 0.1. The net
product of the registration is a transformation that performs bidirectional warping
of images to and from the CLARITY native space, to and from ARA templates, and
labels.

CLARITY sections’ registration. In order to register the 2–3 mm CLARITY
sections (that comprise approximately quarter of the whole brain) to the ARA
template, we first registered the YFP channel of each section to the whole-brain
YFP then utilized the warping of the whole brain to the ARA. We developed a
recursive search algorithm to search the CLARITY volume using a pyramid
approach and find the segment that corresponds best to the desired input section.
Specifically, the whole-brain image was cut into multiple segments (based on the
input section size) and the mean squared difference was computed as a similarity
measure between each of these digitally extracted segments and the input cut
section. Then five rounds of recursive search were performed where different
segments were extracted around the initial segment with the highest similarity. The
extraction was performed using a sliding window with decreasing increments. The
final extracted segment with highest similarity to the cut section was set to be 15%
larger than the section to account for matching errors at the section boundaries. A
standard b-spline registration with a rigid, affine, and deformable stages was
subsequently run using the matched segment as a reference image. This was fol-
lowed by warping the CLARITY sections (both YFP and PI) to the ARA template
using the part-to-whole as well as CLARITY to ARA deformation fields. The
resampling was performed in one step by combining all the respective transfor-
mations and deformation fields.

In vivo and ex vivo imaging registration to ARA. All in vivo MRI sequences were
registered, using an affine transformation, to the structural T2-weighted scan
(0.1172 × 0.1172 × 0.5 mm resolution) to account for any movement during the
scanning session. The reference T2-weighted sequence was in turn registered to the
25 µm ARA template to warp all quantitative maps to ARA space. A similar pre-
processing and registration protocol to the CLARITY-ARA (described in previous
section) was used for the MRI mapping. The main differences included a skull-
stripping step for MRI, exclusion of the initial antsAffineInitializer registration step
(due to the improved match of histogram statistics), a smaller number of histogram
bins (8) for MI in the rigid step, and the use of the CC similarity metric in the affine
registration step. Furthermore, a radius of 8 was used for CC in the multi-reso-
lution, symmetric b-spline deformable stage. All in vivo MRI maps were co-
registered to the highest-resolution structural MRI volume (in this case, the T2-
weighted sequence) and warped to ARA space by employing deformation fields

between the ARA 25 µm template and structural MRI data (Fig. 2c). The same
steps were employed to register our ex vivo CT data.

Segmentation and feature extraction. We developed 3D segmentation protocols
for both types of data (channels) we acquired: a sparse neuronal segmentation
protocol for YFP and a nuclear version for PI. The segmentation protocols were
implemented as Fiji (ImageJ, https://fiji.sc) macros and included three main stages,
image pre-processing to highlight features, a simple 3D segmentation to produce
initial markers, and a Watershed marker-controlled segmentation to produce final,
high-quality segmented images. Pre-processing consisted of background removal
employing a rolling of radius 50, histogram normalization to first slice of the stack
to deal with intensity inhomogeneity across slices, contrast enhancement, 3D
median filtering to remove noise with a radius of 2 pixels34, computation of a local
threshold using the Phansalkar method with a radius of 15 pixels, and finally
computation of 3D local minima using a radius of 2 pixels. We then computed a
simple 3D segmentation with thresholding to filter out large objects, as imple-
mented in the 3D Image Suite34. A marker-controlled 3D Watershed segmentation
was subsequently employed, as implemented in the Morphological Suite35. The
algorithm simulates flooding from input markers by transforming the input image
to a topological surface. The median filtered image was used as the input image, the
segmentation of the local minima as markers, and the local threshold as a mask
image. The segmentation protocol was implemented such that its results do not
rely heavily on input parameters like filtering radii. Parameter tuning for back-
ground removal, local thresholding, and filtering was performed by visual
inspection between original images and segmented cells. For the PI channel, a
similar protocol was employed for segmentation, without median filtering due to
the much higher density of cells.

To summarize our segmentation results in ARA space and generate CLARITY
heat-maps for MRI correlation, a down-sampling method was used to transform
our full-resolution segmentation results into the 25- µm resolution space. The
segmentation volumes (multi-label segmented cells or nuclei) were first convolved
with a spherical kernel with a radius of 5 µm (with an area representing a voxel in
ARA space). Then the number of labels (cells or nuclei) in each convolved sphere
averaged as a voxel in the voxelized map. Feature extraction was performed on the
voxelized map in 3D and was summarized by ARA region/label. Cell counts, cell
densities, and volume statistics of the CLARITY stains were computed. Extraction
of region properties was performed in Python using the skimage module; the joblib
and multiprocessing modules were used for parallel computation. Parameter
extraction was performed as well for imaging modalities, specifically in vivo
diffusion and relaxometry MRI and ex vivo CT, averaged within warped ARA
labels in native MRI and CT space.

Registration and segmentation validation. To validate the accuracy of our
CLARITY-ARA and MRI-ARA registration protocols landmarks were manually
placed on anatomical regions by one author (Supplementary Fig. 1b). Landmarks
were placed on native volumes of all modalities prior to any transformations. These
landmarks were chosen so that they are clearly visible on both modalities and that
they are well distributed within the volume (Supplementary Fig. 1b, c). An average
of 30 landmarks were placed per volume for all ten stroke mice in the cohort. The
landmarks were then transformed using the transformations and deformation
fields computed during registration. A TRE was computed by averaging the root
mean squared error between the sets of warped landmarks for all mice (Supple-
mentary Fig. 1b, c). Landmark placement and TRE computation were performed in
3D Slicer (https://www.slicer.org). To further test our pipeline, we utilized our
registration protocol on a very noisy CLARITY dataset and volumes with large
intensity inhomogeneity. The algorithm still produced adequate accuracy by visual
assessment (Supplementary Fig. 1a). We also tested our registration protocol on
different datasets, not included in our study cohort, and found it to produce very
accurate alignment (Supplementary Fig. 1a). For segmentation validation, specifi-
city was defined by the percentage of cells correctly detected: True positive/(True
positive+ False positive) and detection rate was defined as the percentage of
ground-truth cells detected: True positive/(True positive+ False negative). Num-
bers were means of three independent counts from cortical regions of control
Thy1-YFP mice (Supplementary Fig. 4c).

Statistical analysis. Heat-maps of all imaging parameters and CLARITY features
were generated by computing the sum of squares across all registered images
(mice) per modality in the ARA space. To assess within-modality effects, Student’s
paired t tests (two sided) were performed between the ipsilateral and contralateral
hemispheres of each modality and within each ARA label across all stroke mice. To
visualize the results, the color (intensity value) of each ARA label represented the
p value of its respective t test to reflect the significance of the difference between
hemispheres within the label for a specific modality (Fig. 2c). For assessing multi-
modal correlations between imaging and CLARITY, voxel-wise Spearman rank
correlations were performed between the PI cell count heat-map and imaging
parameters across all voxels in the imaging volume (Fig. 2d). For the CT–PI
correlation, we normalized by the contralateral side and excluded the ventricles
with very dense iodinated contrast. Similarly, voxel-wise Spearman correlations
were performed to assess the correspondence between CSD tractography and the

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13374-0 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5504 | https://doi.org/10.1038/s41467-019-13374-0 | www.nature.com/naturecommunications 13

http://www.itksnap.org
https://surfer.nmr.mgh.harvard.edu
https://fiji.sc
https://www.slicer.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


segmented signal projection maps from the CLARITY viral tracing and the Allen
connectivity atlas of the efferent mPFC projections (Fig. 3, Supplementary Fig. 12a,
b). The maps were smoothed prior to registration using a Gaussian kernel with a
standard deviation of one voxel, to account for registration errors. No additional
data replications were performed. Statistical analyses were performed in Python
(v. 2.7) using the scipy, statsmodels, and scikit-learn modules.

Connectivity analysis. We sought to determine the regions connected to the
tissue affected by stroke to begin interrogation into network effects of infarct.
The stroke regions were first manually delineated for all mice on our highest-
resolution images, the in vivo T2-weighted images that clearly delineate stroke at
this 24-h time point. The segmented masks were then warped, using the nearest
neighbor interpolation, to ARA space by employing deformation fields from our
MRI-ARA registration. To compute stroke incidence maps, which quantifies the
number of times an ARA voxel is delineated as a stroke, the warped masks were
binarized and added together in ARA space. The stroke mask with the most
cortico-striatal overlap (dashed black outline in Fig. 4b) was chosen as ROI for
the connectivity analysis. All the ARA labels within the chosen mask were
extracted and sorted by volume. For the analysis presented in the figures, we
limited the visualizations to the largest 50 labels within the ROI. A search was
then implemented to check if an injection experiment in the Allen connectivity
atlas11 was performed with each of the 50 labels as an injection site. The wild-type
strain (C57BL/6J) was chosen to constrain the search. For each label without an
injection experiment, its parent labels were searched until an injection experi-
ment was found. A query was then performed using the Allen Brain Institute
connectivity API (http://help.brain-map.org) to extract structural connectivity
information for each injection site. Structural connectivity was sorted by nor-
malized projection volume (projection volume normalized by volume in injection
structure) at the target structure from the injection. In order to focus on more
detailed mid-ontology-level structures, we excluded major labels with ontology
graph depth <5 and graph order <6. Children labels of an injection site were
removed from the target list. To summarize the connectivity of the stroke region,
a projection density map was computed with data for every injection site (label)
presented as a row and decreasing connectivity of target structures by normalized
projection volume from left to right (Fig. 3b, center panel). Finally, to elucidate
networks and connectivity trends of the stroke region we computed the most
common targets of the 50 labels and generated a connectivity matrix, as well as a
connectogram of injection sites within the ischemic lesion and their common
targets (Fig. 4, Supplementary Fig. 8).

Cellular degeneration along connectivity tree. In order to assess cellular
degeneration in remote areas to the stroke region, computed cell densities for
stroke mice (using parent labels of the Allen atlas) were first normalized in relation
to the average cell density of the control mice (per label). The reciprocal was
computed, and this reciprocal was overlaid on the ARA labels, with increasing
opacity of the ARA labels corresponding to decreasing cell densities (Fig. 3a—right
panel). After computing the connectivity analysis and projection density map of
the stroke area, we wanted to determine the relationship between cellular degen-
eration and connectivity away from the ischemic core. We utilized the connectivity
information of the stroke ROI extracted in the previous section, and for each of the
target structures of each injection site (label) we computed its normalized cell
density (normalized by the control mice). We then split the ipsilateral targets (and
their cell densities), presented as blue bars in Fig. 4b and Supplementary Fig. 5a. A
mean cell density was computed for the ipsilateral structures and each structure
with a cell density lower than two standard deviations from the mean was high-
lighted (salmon-colored bars). Each of the target structures with lower cell density
was automatically identified from the ARA ontology graph to emphasize remote
regions with increased cell degeneration that are highly connected to the ischemic
lesion. To further investigate cellular degeneration within connected targets outside
the stroke region, we performed an additional analysis where only mice with
strokes equal to or smaller than (in volume) the 50% incidence map were included.
Target structures with overlap with a stroke mask of any mouse were excluded.
Similar to the previous analysis, graphs of normalized cell density were computed
for targets (outside the stroke mask) connected to regions within the stroke mask
(Supplementary Fig. 5b).

Histological validation. Mice were sacrificed on postnatal day 15 and perfused
transcardially with ice-cold PBS followed by 3% PFA. Brains were removed and
cryo-protected overnight in a 20% sucrose/3% PFA solution. After the brains sank
to the bottom, they were frozen on dry ice and stored at −80 °C until sectioning.
Thirty-micrometer-thick sections were cut using a cryostat and kept at −20 °C in
an antifreeze solution (30% ethylene glycol and 30% glycerol in PBS). For staining
with two primary antibodies, sections were processed with the following steps: first
washed in PBS, next incubated with pre-heated 0.1 M sodium citrate at 60 °C for
20 min for antigen retrieval. After that, sections were transferred to a blocking
solution (10% normal animal serum, 1% bovine serum albumin in 0.3% PBS-triton
X) for 1 h and incubated in a solution of primary antibodies for CD68 (1:500,
Abcam ab53444) and MAP2 (1:200, D5G1, Cell Signaling Technology, Danvers,
MA, USA) diluted in the blocking solution overnight at 4 °C. The next day, sections

were washed in 0.3% PBS-triton X and incubated with secondary antibodies (1:500,
Alexa fluor 546, Invitrogen A11081 for CD68; and 1:500, Alexa fluor 488, Invi-
trogen A32731 for MAP2) diluted in the blocking solution at room temperature for
2 h. DAPI (1:2000) was added during the last 5 min of the secondary antibody
incubation. Sections were then washed in PBS, mounted, and coverslipped. Infarct
lesion area was identified by CD68-positive activated monocytes/macrophages. We
confirmed that CD68-positive areas matched the MAP2-negative areas (neuronal
loss) (Supplementary Fig. 6a). Images were captured using a CCD camera at ×10
magnification (AxioCam MRm; Carl Zeiss AB, Switzerland), the Axio Imager M2
(Carl Zeiss AB, Switzerland), and the MBF software Neurolucida (MBF Bioscience,
Williston, VT, USA). Stroke lesion quantification analyses were performed on
coronal sections at the thalamo-hippocampal level (range: 1.3 mm to 2.1 mm
posterior to Bregma). For alignment of the original histology image and ARA, the
corresponding ARA 25 µm image was selected and scaled to the histology pixel
dimensions manually. Landmark-based 2D image registration was performed in
3D Slicer (v4.6.2, http://www.slicer.org) using the thin-plate spline algorithm,
modified from Ito et al.57. A set of 20–30 landmarks (fiducials) were placed on the
moving (ARA) and fixed (histology) image to allow precise registration (Supple-
mentary Fig. 6b). The resulting transformation was applied to the ARA template
and labels. Registered images (ARA, ARA labels, microscopy channels) were
combined as a stack in ImageJ (v1.5k, https://imagej.nih.gov/ij/). A manually
defined lesion mask drawn using the available stains to identify stroke-affected
ARA regions for each mouse (Supplementary Fig. 6c). MAP2 expression was
quantified in the registered ARA regions from histological sections and a paired t
test was performed (between ipsilateral and contralateral hemispheres) for the top
15 regions with low ipsilateral MAP2 across the cohort (Supplementary Fig. 7b).
Afferent connectivity for the regions with significantly lower MAP2 ipsilaterally
was automatically extracted from the Allen connectivity atlas. Briefly, a query was
performed using the Allen Brain Institute connectivity API (http://help.brain-map.
org) to extract afferent structural connectivity information for each identified
region from histology (regions were defined as “target” structures in the con-
nectivity search). Structural connectivity was sorted by normalized projection
volume (projection volume normalized by volume in injection structure) at the
target structure from the injection. In order to focus on more detailed mid-
ontology-level structures, we excluded major labels with ontology graph depth <5
and graph order <6. We focused on the afferent connectivity to the top five regions
highlighting large projections from stroke regions (specifically from CP and CA1)
(Supplementary Fig. 7d). These projections (emanating from CP and CA1) and the
identified target regions from histology were rendered (visualized) in the Brain
Explorer software (https://mouse.brain-map.org/static/brainexplorer).

3D structure tensor analysis. We adapted the classic texture analysis technique
called STA, from 2D to 3D, to recover local fiber orientations and reconstruct
computational models of fiber bundle trajectories from image intensity gradients28

(http://capture-clarity.org/).
For each voxel, the local fiber orientation was first estimated as the tertiary

eigenvector (i.e., with the smallest eigenvalue) of a structure tensor38,58–60, which
was defined as:

Sw pð Þ ¼
Z Z Z

R3

w rð ÞS0 p� rð Þdr ð1Þ

where p and r represent spatial locations, w is a Gaussian weighting function with
standard deviation σg, S0 is a symmetric second-moment matrix derived from
image intensity gradients:

S0 pð Þ ¼
Ix pð Þð Þ2 Ix pð ÞIy pð Þ Ix pð ÞIz pð Þ

Iy pð ÞIx pð Þ ðIy pð ÞÞ2 Iy pð ÞIx pð Þ
Iz pð ÞIx pð Þ Iz pð ÞIy pð Þ Iz pð Þð Þ2

2
664

3
775 ð2Þ

where Ix, Iy, and Iz are the gradients of image volumes I along each of the x, y, and z
axes (a marker of the edges of fiber tracts), computed by convolving I with three 3D
first-order derivative of Gaussian filters of standard deviation σdog61. Parameters σg
and σdog need to be adjusted accordingly based on the signal-to-noise ratio and
imaging resolution of CLARITY images. Structure tensors were computed using
Matlab (MathWorks, Inc.).

A deterministic FACT tractography algorithm50 was then employed to
propagate streamlines from a “seed” region through the recovered vector field of
voxel-wise STA-derived fiber orientations and terminates if a streamline makes a
sharp turn (angles larger than a prescribed threshold αthresh= 35°) or extends
outside of the masked brain region. In regions of low fluorescent staining, the
structure–tensor orientation becomes noisy, resulting in sharp streamline turns,
and a streamline cutoff via our threshold, thus the angular threshold effectively
serves as an analog of an FA threshold for DTI tractography in order to terminate a
streamline.

Tract-level analysis. In order to assess tract-level effects of stroke on CLARITY,
all the whole-brain Thy1-YFP data (nine stroke and nine control mice) were
warped to the ex vivo dMRI space (utilizing combined mapping to Allen space and
ex vivo MRI). We first warped all the whole-brain Thy1-YFP data (stroke and
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control mice) to the dMRI space. Thy1-YFP volumes (for both stroke and controls)
were flipped left–right and warped again using the same deformations in order to
assess hemisphere differences with the same fiber tracts. Seeding again at the PL
region, we employed the iFOD2 probabilistic tractography algorithm to track two
pathways: (1) mPFC streamlines to the VTA, crossing the CP and joining the CST,
and (2) mPFC streamlines to the RSP, joining the cingulum bundle. Tracking
parameters were the same for both tracts, with a 0.2 fiber orientation distribution
(FOD) threshold, angle threshold of 35°, and a maximum number of
5000 streamlines. Thy1-YFP values were sampled along the two tracts for both
groups (stroke and control) and both hemisphere (with left–right flipped images
used to compute contralateral tract profiles). Tract profiles were generated by
averaging values for every ten adjacent streamlines for mouse (and hemisphere).
Mean Thy1-YFP hemisphere absolute percent difference was computed for each
group (stroke and control) and a two-sample Student’s t test was performed to
assess the significance between groups for each tract.

A similar tract-level analysis was performed using STA-based tracts from a
CLARITY-optimized viral injection (described in the “CAPTURE labeling”
section). The whole-brain Thy1-YFP data (stroke and control mice) were registered
and warped to the CLARITY space. They were also flipped left–right and warped
again using the same deformations in order to assess hemisphere differences with
the same fiber tracts. We then extracted mPFC streamlines to the VTA, crossing
the CP and joining the CST, by employing STA and seeding at the PL region (as
described in the “3D structure tensor analysis” section). Similar to the tract-level
dMRI analysis, tract profiles were computed for STA streamlines and a two-sample
Student’s t test was performed to assess the significance between mean Thy1-YFP
percent difference of both hemispheres for both groups (stroke and control).

Projection terminal analysis. Subsequently to performing fiber reconstruction
through STA of cleared virus injection data, tract terminal (end-points) maps were
generated, by computing the number of terminating tracts per voxel. The viral
tracer expression highlights the full extent of pathways in 3D, and signal intensity
diminishes at projections terminals, which can be captured computationally. A
tractography algorithm (analogous to tractography based on dMRI)23 was used to
connect these local fiber orientations and generate streamlines. These 3D recon-
structions graphically depict tracts between a starting region, or seed region
(analogous to an injection site), and a target region, producing long-range fiber
pathways. At the termination of a tract, diminished signal results in a loss of
reliable local fiber orientation detected by STA maps. This leads to sudden tran-
sitions in the fiber orientation and sharp turns in streamlines that exceeded typical
curvature thresholds, resulting in the termination of tracking.

We relied on tract coordinates and mapping tools as implemented in theMrtrix3
software (http://www.mrtrix.org). In addition, we employed warped ARA labels
based on the CLARITY-ARA transformation to compute terminal zones per mid-
ontology anatomical labels from mPFC injections. These labels were created at mid-
ontology level to focus on detail structures in the connectivity analysis. The
streamline tractography results were then filtered by major labels involved in the
mPFC network based on tract density maps from our previous analysis, for example,
the ABC, VTA, and ACA. For each label, two sets of streamlines were computed by
using it as an inclusion mask, identifying both (a) passing fibers through the
structure and (b) fibers terminating within the structure. To highlight the differences
of computing connectivity based on the two approaches (passing and terminating
fibers), we summarized the connectivity results as computational network graphs
(Fig. 6, Supplementary Fig. 11). Summarized data from tract density and tract
terminal maps (i.e., the number of terminals) per ARA labels were thresholded by
connection strength and transformed to connectivity matrices for visualization.
Connectivity values from terminal maps were scaled for a comparable visual
representation to the tract density map. We employed network graphs from the
Python client of the Lightning visualization framework (http://lightning-viz.org/).
Data from a wild-type PL injection experiment of the Allen connectivity graph was
extracted and compared to our CLARITY network graphs. The projection density
map was summarized per labels, thresholded by connection strength, and
transformed to a connectivity matrix for visualization. The employed framework
enables the generation of interactive web visualizations (Supplementary Fig. 11).

dMRI tractography and comparison to Allen connectivity. To warp the ARA
labels for tractography seeding and connectivity analysis, the high-resolution,
structural ex vivo T1 FLASH was registered to the ARA 25 µm template using the
MRI-Allen registration module of the pipeline (described above in “Whole-brain
CLARITY image registration to ARA”). A deformable registration step between the
structural MRI and the S0 (isotropic) diffusion image was performed using ANTs33.
Deformation fields from both registrations were employed to warp ARA labels to
the ex vivo diffusion space in a single step. The PL was then thresholded to be used
as a seed for all the following DTI experiments. The raw diffusion data were first
corrected for eddy distortions by registering each diffusion direction to the b0
image, using the eddy tool62 from FSL image analysis suite (https://www.fmrib.ox.
ac.uk/fsl). The diffusion tensors from the standard diffusion model were then
computed. For CSD-based methods, a response function was estimated and then
used a kernel to compute an FOD per voxel. We performed three tractography
experiments each with a different tracking algorithm using MRtrix3 (http://www.
mrtrix.org). The number of output streamlines was set to 500,000 for all the

experiments. The first tracking algorithm used was FACT50, a deterministic
approach based on the diffusion tensors and principal eigenvectors. We chose an
FA-stopping threshold of 0.2, a maximum angle between steps of 25 degrees, and a
step size of 0.01 was used. The second method was SDstream45, a deterministic
CSD-based algorithm that utilizes the FOD information for tractography. A FOD
amplitude cutoff of 0.2 was chosen. The last tracking experiment employed a
probabilistic algorithm (iFOD2) that integrates over the FODs to compute fiber
streamlines45, for which we used a FOD cutoff of 0.2. To compute a projection
density image from tractography streamlines, tract density imaging (TDI) was used
to produce a map where every voxel value corresponds to the number of
streamlines passing through the voxel63. A tract density image was generated for
the probabilistic tractography results (iFOD method) on a higher-resolution grid
(25 µm) to match the ARA resolution.

To compare our diffusion tractography to the Allen connectivity atlas, the TDI
map was then warped to ARA space using the transformations and deformation
fields of the diffusion to ARA registration performed earlier. We then utilized the
Allen Brain Institute connectivity API to query and download a projection density
image of an experiment with the PL as an injection site. The experiment with the
highest injection site tracer volume (0.14 mm3) for the wild-type C57BL/6J mouse
line was chosen (exp. # 157711748). The injection had an overlap of 53% with the
PL and 42% with the infralimbic area, corresponding to similar injections in our
CLARITY viral tracing experiments. To automate this procedure, we have added a
function in the presented pipeline, whereby a user specifies the desired injection
site (label) and the script outputs the projection density image, connected labels (by
id and acronym), and a projection map (similar to those presented in Fig. 5) for
that injection experiment.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
A subset of the datasets generated and analyzed during the current study will be released
as examples with the pipeline, and more are available upon request.

Code availability
We have made our pipeline open access for the community. It is freely available at:
https://miracl.readthedocs.io. It is implemented in a modular fashion with many well-
documented core modules (functions) that can be executed as command-line tools or
graphical user interfaces (GUIs), including registration, connectivity analysis,
segmentation, label operations, workflows, visualizations, and statistics (Supplementary
Fig. 14). We compiled thorough documentation with help functions for all commands,
which is attached as supplementary material (MIRACL documentation).
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