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Abstract: In this study, we aimed to design a coil sensor prototype capable of detecting metallic
area loss based on numerical simulations using the magnetic flux leakage (MFL) method. Unlike
previous numerical simulation-based studies, which are only conducted to obtain the MFL itself, the
main objectives of this study were (1) to acquire the induced current in the coil sensor and (2) to
optimize the apparatus based on a time-dependent numerical analysis. As a result, the optimum
values of parameters in magnetizing and sensing units were obtained numerically. A magnetic sensor
prototype was then fabricated using the optimum parameters obtained by numerical parametric study.
Finally, experimental validation tests were conducted on a solid steel rod specimen with a stepwise
cross-sectional reduction flaw. It was observed that numerical simulation had approximately 91%
precision compared to the experimental test. The results reveal that application of a realistic numerical
simulation of an MFL coil sensor can probably provide essential information for MFL-sensor fabrication
and allows for preventive measures to be taken before manufacturing failure or defect misdetection.

Keywords: magnetic flux leakage; coil sensor; numerical analysis; parametric study;
non-destructive test

1. Introduction

To assess the integrity of structures, structural health monitoring (SHM) for metal members,
such as pipelines in the oil and gas industry, load carrying cables in bridges, lifts, cranes, etc., is an
essential task and must be done regularly to eliminate any chance of structural failure and economic
loss [1]. For instance, the current transport system for oil–gas products is a pipeline which requires
routine inspections due to the presence of humidity and underground pressure, because any metal
losses, cracks, and corrosions may cause an accident. Therefore, pipelines must always be functional
while being completely sound and intact [2,3]. Steel cables are the main load-carrying elements in an
enormous number of machines and structures. Although steel cables and ropes are designed to have
high strength, cross-sectional damage and internal breakage and cracks can still occur during their
service life and may compromise the entire structural integrity [4]. However, these types of damages
are not easily detected by the naked eye and visual inspections (e.g., internal breakage of cable in
cable-stayed bridges) [5]. Hence, demand for SHM using non-destructive testing (NDT) methods
has increased significantly. Currently, there are a variety of conventional methods which are being
applied based on non-destructive SHM principles such as visual inspection [6], magnetic flux leakage
(MFL) [7,8], eddy current sensing [9,10], acoustic emission [11–15], and guided wave [16–18], among
other techniques.

Traditionally, in the MFL method, the axial component of the magnetic flux density is used, which
causes misdetection in the case of axial cracks. Liu et al. [19] proposed a circumferential excitation
method to detect axial defects in pipelines. Also, they investigated the influence of a crack’s geometry
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(i.e., depth, width, and length) on the output signal. Li et al. [20] proposed a numerical simulation of
the MFL inspection system for variety of inspection velocities and defect depths. In the 2D numerical
simulation, the MFL was obtained by a reference line located right above the defect.

Jiang Xu et al. [21] investigated damage detection in artificially defected steel cables using both
the MFL and magnetostrictive guided waves (MGWs) methods. They showed that the MFL method is
capable of detecting internal damage (i.e., breakage and cross-sectional damage) for accessible parts of
the specimen, while the MGW method can accurately detect unreachable defects such as breakage
inside an anchor of a bridge cable. Johannes Atzlesberger et al. [22] tried to detect medium-size
artificial defects in ferromagnetic specimens using MFL principles and a giant magnetoresistive (GMR)
sensor. According to their experimental results, accurate detection, even in the case of small blemishes,
was observed. Jianbo Wu et al. [23] mentioned that most of the conventional MFL sensors have
an inevitable unwanted lift-off due to the non-ferromagnetic support layer between specimen and
sensor. Consequently, by replacing this non-ferromagnetic support layer with a ferromagnetic one, they
observed that the output signal of the detected leakage had a higher amplitude in comparison with
conventional support. Runchuan Xia et al. [24] focused on corrosion detection using both experimental
tests and a novel numerical formulation combined with a logistic curve in the case of self-magnetic
flux leakage (SMFL) in the steel strand. Liu Xiucheng et al. [25] identified both surface and internal
flaws in steel cable experimentally using a biased pulse magnetic field. In their approach, a tunnel
magnetoresistive (TMR) sensor and a pair of coils sensors were implemented to detect surface and
internal defects, respectively. Before conducting experiment, a conceptual numerical simulation was
performed as well. In order to have an efficient magnetizing unit in a sensor probe, Wu et al. [26]
optimized the magnetizing unit of an MFL sensor based on finite element analysis (FEA). In their 2D
numerical simulation, the magnetic flux density was obtained using a cut-line which is representative
of a TMR sensor. Further on, an experimental apparatus was made, and its performance was evaluated.
However, in their numerical model, an actual sensor was not simulated and, more importantly, the
parameters of the sensing unit were not optimized as well. To evaluate any changes in an MFL signal
caused by the geometry of the magnetic circuit, Jaimes Saavedra et al. [1] performed a preliminary
parametric simulation based on the MFL method. They concluded that, by increasing the thickness and
reducing the length of the yoke, greater density flux leakage will be acquired. However, in their study,
only a few parameters with a few corresponding values were considered and simulated, while other
variables such as the strength of the generated magnetic field, sensor lift-off (i.e., the reference line’s
lift-off in this study), etc., were disregarded. In order to address the lift-off issue caused by swinging in
on-line monitoring of ferrous cables, Sun et al. [27] developed an open magnetic probe and compared it
with a conventional magnetic yoke setup. To optimize the proposed magnetic apparatus, a simplified
numerical simulation was conducted. However, in the numerical simulation, a sensing unit was not
modeled and only the magnetic flux density was acquired using a reference line as the main goal of the
numerical model.

The main objectives of previous studies related to damage detection using the MFL technique
were to acquire the MFL signal only. To achieve this goal, a defected specimen was simulated in a
simplified numerical model which, instead of defining the actual geometry of the sensor alongside its
properties, a reference line as a representative of the sensor was defined in the air boundaries. As a
result, a conventional numerical method can only obtain an MFL signal.

Moreover, possessing an optimized test setup is a necessary condition prior to conducting any
experiment. Instead of performing experiments to obtain optimum values for critical parameters
of a magnetic probe which is a substantially time-consuming process, numerical simulations are
a good alternative. In previous numerical studies, due to the omission of the coil sensor in the
numerical models, simplified parametric optimization was only focused on the magnetizer unit and
supporting yokes.

Therefore, in this study, a parametric optimization using a precise numerical analysis was
proposed. Instead of defining a reference line, actual geometry of the coil sensor along with its
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properties were defined. To acquire the induced voltage in the coil sensor corresponding to the MFL, a
time-dependent analysis was performed. Furthermore, to provide an optimized magnetic test setup,
it was decided to optimize the variables which were expected to have the most significant effects on
the output signal. Thus, the optimum value of the variables, such as the required length of magnets,
ferromagnetic handle’s length, magnitude of the magnetic flux density, coil sensor’s lift-off, permanent
magnet’s lift-off, and number of wire loops in the coil sensor, were acquired based on the precise
numerical simulation.

2. Principle of MFL Sensing for Metal Damage Detection

One of the conventional NDT methods is the MFL method. This method is capable of detecting
surface and internal damage such as breakage, corrosion, and cross-sectional damage [25]. The MFL
technique includes a magnetizing unit, a ferromagnetic specimen, and a sensing unit to detect flux
leakage from a specimen. Coil and hall-effect sensors are the sensing elements which generally identify
cross-sectional loss and surface defect, respectively. When a defect-free specimen is being inspected
with this method, due to the greater specimen’s relative permeability than air, magnetic flux will not
leak from the surface of a specimen. On the other hand, when a damaged specimen is being inspected,
magnetic flux will leak from a flaw (e.g., crack or discontinuity). Depending on the type of defect,
this flux leakage can be detected by either coil or hall-effect sensors. Figure 1 illustrates the MFL
phenomenon for both defect-free and stepwise cross-section loss specimens. Magnetic flux can be
generated by either a permanent magnet or solenoid. Also, according to the principles of the MFL
method, a specimen must be saturated [2,8,23]. To provide a strong magnetic field for magnetizing
a specimen, both the number of coil turns and the amplitude of the current (either AC or DC) must
be large enough. Despite the fact that the coil sensor can generate a uniform magnetic field, due
to the high temperature and requirements of a strong power source, a permanent magnet is a good
alternative, as it is a self-sustaining source of strong magnetic field.
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Figure 1. Magnetic flux leakage (MFL) phenomenon: (a) flawless specimen; (b) defected specimen.

Governing Equations

In order to conduct numerical analysis for one specific physic, relevant governing equations
of that physic must be considered and satisfied. Thus, Maxwell’s equations with considering
magneto-quasi-static approximation can be written as:

∇×H = J,
∇× E = −∂B∂t ,
∇.B = 0,

(1)

where H, J, E, and B represent magnetic field intensity, current density, electric field, and magnetic flux
density, respectively. According to Faraday’s law, the integral of the electric field over a closed loop is
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equal to the generated voltage inside the coil. Hence, the induced voltage inside a multi-turn coil is
calculated as below [2,28]: ∮

E.ds = −N d∅(t)
dt ,

Vc = −N d∅(t)
dt ,

(2)

where N is the number of wire loops, ∅ is magnetic flux, and Vc represents the induced voltage inside
the multi-turn coil.

3. Optimization of an MFL Coil Sensor Apparatus Based on a Numerical Parametric Study

In order to fabricate a prototype coil sensor capable of detecting cross-sectional damage, a
numerical study using the finite element model (FEM) should be performed. Therefore, the main aim
of a numerical simulation is to obtain the optimum values of the essential parameters. By performing a
numerical study rather than conducting trial and error, not only can additional costs be eliminated, but
a significant amount of time and efforts can also be saved. In this study, FEA was performed using
the COMSOL Multiphysics 5.3a commercial software by applying the AC/DC module to consider the
effects of the magnetic field together with the deformed mesh physic and simulate specimen movement
in a 2D axisymmetric geometry. It should be noted that, to consider current induction, Faraday’s law
of induction which states the relationship between the magnetic field and electric field with respect to
time, must be assumed as a necessary condition for numerical simulation. Thus, all simulations were
time dependent with considering quasi-static approximation.

To reduce time consumption and increase the accuracy of numerical model, mesh size and type
must be adjusted based on the model. Meshed geometry of the model can be found in Figure 2. In this
numerical model, a free quadrilateral mesh with a minimum element size of 1 mm and a maximum
element growth rate equal to 1.2 were used to mesh the geometry.
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Figure 2. The meshed geometry (specimen, ferromagnetic handle, and permanent magnets are
highlighted in blue).

In order to implement B–H curves of ferromagnetic materials, anhysteretic B–H curves of low
carbon steel 1002 and construction steel, which are presented in the COMSOL library, were used
as representatives of ferromagnetic handles and specimen, respectively. Plotted B–H curves of the
specimen and handles can be found in Figure 3. It should be noted that, to reduce the complexity of
the model in this study, remanence magnetization was disregarded. Moreover, by defining actual
multi-turn coil sensor geometry in numerical simulation, instead of just obtaining flux leakage, the coil
sensor’s signal was directly obtained in millivolt unit. For having better damage detection visualization,
after obtaining the coil sensor’s output signal, it was proposed to perform an integration operation on
the output signal. The integrated coil sensor’s signal allows for easier inspection independent of the
specimen’s pace; also, each defect can have its own specific signature in the output signal.
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Figure 3. The B–H curves of a specimen (red line) and ferromagnetic handles (blue line).

It is important to note that, to perform the parametric simulation, the simulated specimens in
all cases had the same stepwise cross-sectional reduction with 15% cross-section loss which can be
seen in Figure 4. Also, the specimens’ velocity was assumed constant and equal to 20 cm/s for all
simulation models.
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3.1. Design Parameters

Generally, an MFL sensor setup consists of two main parts: magnetizing and sensing units.
To optimize the magnetic apparatus, both magnetizing and sensing units must be considered in the
numerical model. In the magnetizing unit, any variation in the values of the parameters, such as length
of the permanent magnets, magnitude of the magnetic flux density, length of the ferromagnetic handles,
and lift-off of the permanent magnets, can significantly impact on the output signal. For instance, if the
handle’s length is considered too long, not only does operating the apparatus become difficult due to
the excessive weight and size, but the induced magnetic field inside the specimen in the vicinity of the
sensor will also have less strength which eventually causes low signal amplitude. In addition, in the
sensing unit, there are two important parameters that are expected to affect output signal substantially:
the number of wire turns and lift-off from the surface of the specimen. For example, if the lift-off

value is assumed too small, the signal amplitude increases; however, due to the small gap between the
specimen and sensor, the chance of collision increases as well. Hence, the optimum values of important
parameters in both sensing and magnetizing units must be evaluated. Table 1 shows the parameters
that were considered in this parametric study.
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Table 1. Design parameters for parametric study.

Content Magnetizing Unit Sensing Unit

Parameters
Length of

Permanent
Magnets

Magnitude of the
Magnetic Flux

Density

Length of
Ferromagnetic

Handles

Lift-Off of
Permanent

Magnets

Coil Sensor’s
Lift-Off

Number of
Coil Turns

Candidate Values 2 to 14 0.25 to 1.5 21 to 35 1.5 to 7.5 1.2 to 4.8 5 to 20
Intervals 2 cm 0.25 T 2 cm 1.5 cm 1.2 cm 5 turns

Additional Values - 0.1, 3, 5 T - - - 1, 2 turns

3.2. Length of Permanent Magnets

Magnetic flux must be spread across region of interest in a specimen uniformly. Despite the fact
that larger magnets induce a more uniformly distributed magnetic field, having too large permanent
magnets will increase the weight of a sensor setup and occupy more space which makes it harder
to operate the probe. Therefore, it was decided to identify the optimum length for the permanent
magnets. In order to achieve this goal, seven different lengths with a constant distance to the center
of the yoke were considered and simulated, while the magnitude of the magnetic flux density was
assumed strong enough to saturate the specimen completely (according to the principal of the MFL
method) [2,8,23] and all other parameters were considered to have constant values. These seven values
were 2, 4, 6, 8, 10, 12, and 14 cm.

According to Figure 3, the specimen was saturated when the induced magnetization reached 1.3 T.
Figure 5a illustrates the saturation status of the specimen for all seven lengths across the reference
line which was located inside the specimen and the middle of the magnetic yokes. As expected, the
specimen was saturated for almost all different lengths of the permanent magnets except for 2 cm
which did not provide magnetic induction strong enough to saturate the specimen’s region of interest.
Although longer magnets magnetized the specimen much more uniformly than shorter magnets, the
longer lengths of the magnets will increase the weight, size, and final cost of the magnetic sensor. Also,
shorter permanent magnets did not magnetize the specimen uniformly (Figure 5a).
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Figure 5. Numerical simulation results of the magnets’ lengths: (a) saturation status of the specimen;
(b) coil sensor’s signal.

The output signals of the coil sensor corresponding to the different lengths of the permanent
magnets are presented in Figure 5b. It can be observed that all variables, except a 2 cm length, had a
single peak behavior which is representative of MFL from a saturated specimen. Therefore, a 2 cm
length could not be the optimum length due to the fact that the specimen’s saturation was not achieved.
Despite the fact that the 4 cm length provided a magnetic field capable of saturating the specimen,
it had the minimum measured value among all variables (except the 2 cm variable length) for both
the direct coil sensor’s output signals and integrated signals which are shown in Figures 5b and 6,
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respectively. As a result, the optimum length of the permanent magnets was 6 cm, because not only
was the coil sensor’s peak signal one of the largest in amplitude, it was also the smallest, lightest, and,
therefore, the most cost-friendly setup for damage detection. Thus, for convenient preparation of an
experimental test setup, it was decided to use three magnets with a 2 cm length instead of a one-piece
magnet with a 6 cm length.
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Figure 6. Integrated signals of the coil sensor corresponding to the magnets’ lengths.

3.3. Magnitude of the Magnetic Flux Density

Inspection using the MFL method requires a saturated specimen. Hence, this section aimed to
evaluate the optimum value of the magnetic flux density of the permanent magnets. To achieve this
goal, all other parameters, such as length of magnets (optimum value), magnets’ lift-off, etc., were
modeled with constant values; the only variable was the magnitude of the magnetic flux density.
If this value is chosen too small, the specimen is unlikely to be saturated and the chance of having
detectible flux leakage will decreased dramatically. Also, if this value is chosen as too large, in spite of
the fact that it would lead to a uniformly saturated specimen, significant drawbacks, such as a partially
magnetized specimen and operation difficulty due to the excessive attraction force, will appear.

Based on the optimum length of the magnets and the B–H curve of the specimen, nine values for
the magnitude of the magnetic flux density were considered: 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 3, and 5 T.
Before starting the simulation, it was expected to have a saturated specimen around 1 T; as a result, the
last couple of values were significantly larger than the initial values when comparing the effect of a
fully saturated specimen with a specimen during the initiation of saturation.

According to Figure 7, it can be seen that the specimen was not saturated when the magnitude of
the magnetic flux density was less than 0.75 T, and, at this magnitude, the specimen was only saturated
in the middle of the reference line and presented the smallest peak amplitude among the greater
magnitudes of magnetic flux density. Consequently, in the case of small size defects, a misdetection
may happen. Hence, 0.1, 0.25, 0.5, and 0.75 T cannot be the optimum value. On the other hand,
above 1 T, the specimen was fully saturated, and the corresponding peak signal of the coil sensor
was large enough. It can be observed that, based on Figures 7 and 8, by increasing the magnitude of
the magnetic flux density beyond 1.5 T, the integrated signals showed the same value without any
increment in the amplitude of the signal. The reason behind this phenomenon is that by increasing
the magnitude of the magnetic field beyond the saturation point, the induced magnetization remains
almost constant. According to Figure 8, it can be observed that, when the magnitude of the magnetic
flux density increased from 1 T to 1.5 T, the amplitude of the integrated signals increased slightly. Thus,
for increasing the practicality and decreasing the attraction force of the magnets, the optimum value of
the magnitude of the magnetic flux density was chosen as 1 T.
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Figure 7. Numerical simulation results of the magnitude of the magnetic flux density generated by
magnets: (a) saturation status of the specimen; (b) coil sensor’s signal.
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Figure 8. Integrated signals of the coil sensor corresponding to the magnitude of the magnetic
flux density.

3.4. Length of Ferromagnetic Handles

In order to have an evenly distributed magnetic field across the specimen and, more importantly,
to have an accurate output of data, this study aimed to evaluate the optimum distance among the
arrays of the magnets in each yoke, or, in other words, to optimize the length of the ferromagnetic
handles. If a handle’s length is chosen as too short, then it leads to a less uniform flux distribution that
is followed by inaccurate results. Moreover, if this value is chosen as too large, it leads to a large sensor
setup which is hard to carry and operate. For determining the optimum value of the handles’ length,
eight different handle lengths were chosen as candidates: 21, 23, 25, 27, 29, 31, 33, and 35 cm.

As it can be observed in Figure 9a, the magnetization level was highly dependent on the handle’s
length; a longer length of handle led to a much flatter curve of the induced magnetization in the
specimen and, therefore, more reliable results due to the much more uniformly distributed magnetic
field inside specimen. According to Figure 9b, the largest peak amplitude in the coil sensor’s signals
belonged to the smallest handle (i.e., 21 cm) and the smallest peak amplitude belonged to the longest
handle (i.e., 35 cm). Despite the shorter handles’ lengths (21, 23, and 25 cm) leading to greater signal
amplitude, due to the considerable fluctuation in the induced magnetization within the reference line
and less uniform saturation, these values cannot be considered as the optimum value. Although, in the
cases of the 29, 31, 33, and 35 cm handle lengths a uniform magnetization across the reference line was
obtained due to the small peak amplitude of the signal and, more importantly, handling and operating
issues caused by the excessive size and weight, these values cannot be good representatives for the
optimum value. Hence, the optimum value was chosen as 27 cm due to the fact that it had both a fairly
strong peak amplitude and uniform saturation.
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Figure 9. Numerical simulation results related to the length of the ferromagnetic handles: (a) saturation
status of the specimen; (b) coil sensor’s signal.

As it can be observed in Figure 10, when the coil sensor’s signals were integrated, all eight signals
presented the same peak amplitude (i.e., 1 mVs); the only differences that appeared were the different
slopes corresponding to the different handles’ lengths—shorter handle lengths led to sharper slopes.
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Figure 10. Integrated signals of the coil sensor corresponding to different lengths of the
ferromagnetic handles.

3.5. Lift-Off of Permanent Magnets

This section of study aimed to identify the optimum value of the permanent magnet’s lift-off

which has a significant impact on output data. Lift-off of magnets can affect the saturation status of a
specimen and can also change the amplitude of the output signal. For instance, if this value is chosen as
too large, not only will the handling of the sensor setup be harder due to the larger size and additional
weight of the sensor device, but the increasing distance between the magnets and the specimen will
cause less magnetization to be induced in the specimen as well. On the other hand, making this gap
too small leads to difficult inspection, since the specimen can stick to the magnet’s surface which might
cause interruptions during inspection and sensor malfunctioning. Thus, optimizing a magnet’s lift-off

is essential. Hence, it was decided to consider five different lift-off values: 1.5, 3, 4.5, 6, and 7.5 cm.
According to Figure 11, while the specimen was saturated for all lift-off values, there was a

noticeable difference: induced magnetization was less uniformly distributed when the lift-off was
greater than 4.5 cm. The coil sensor’s output signals obtained by simulation demonstrated that by
decreasing the magnet’s lift-off value, the peak value of the signal increased as well. This behavior can
be observed more clearly in Figure 12 which shows the integrated signals of the coil sensor. According
to Figure 11b, a lift-off of both 1.5 and 3 cm both showed two local peaks instead of one peak behavior
(which appears as detected damage using the MFL method); the reason behind this behavior is that
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when magnets are too close to the surface of the specimen, flux leakage will occur when the defect is
located in the vicinity of the magnet’s arrays instead of the middle of the yoke (i.e., sensor position);
therefore, two peaks will appear in the signal. To avoid this behavior, a lift-off value must be chosen
greater than 3 cm. Moreover, having too large a lift-off value reduces the peak value considerably (e.g.,
7.5 cm lift-off). As a result, 4.5 cm with a flatter magnetic induction curve was chosen as the optimum
value of the permanent magnet’s lift-off.
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Figure 11. Numerical simulation results of the permanent magnet’s lift-off: (a) saturation status of the
specimen; (b) coil sensor’s signal.
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Figure 12. Integrated signals of the coil sensor related to the permanent magnet’s lift-off.

3.6. Coil Sensor’s Lift-Off

In the previous sections, the length of the permanent magnets, magnitude of the magnetic flux
density, length of the handle, and lift-off of the permanent magnets were obtained. Hence, in this
section, the distance between coil sensor and the specimen, or, in other words, the coil sensor’s lift-off,
was identified. It should be indicated that, if the coil sensor’s lift-off is too small, there is the possibility
of unwanted collision between the specimen and the coil sensor which may cause irregularities in
the output signal or, in severe cases, permanent sensor malfunctioning. On the other hand, if this
value is too large, it can lead to inaccurate detection or even misdetection. To avoid these outcomes, a
parametric study based on FEM is essential. Consequently, four different lift-off values were chosen
based on the optimum value of the magnet’s lift-off: 1.2, 2.4, 3.6, and 4.8 cm.

Figure 13a illustrates that the specimen was saturated with a relatively small fluctuation in the
induced magnetization value. According to Figure 13b, as it could be expected, the largest peak value
belonged to the minimum lift-off value (i.e., 1.2 cm). The rest of the variables had almost the same peak
amplitude with slightly smaller values. This phenomenon can be observed better in the integrated
signals of the coil sensor in Figure 14. Based on the fact that, by increasing the coil sensor’s lift-off up
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to the maximum value (which is located just below the yoke), not only did the output signal have an
acceptable accuracy and precision, but by also implementing a coil sensor underneath the magnetic
yoke, the chance of any collision between the specimen and sensor was eliminated. Consequently, the
optimum value of the coil sensor’s lift-off was chosen as 4.8 cm.
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(b) coil sensor’s signal.
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3.7. Number of Coil Turns

Another important parameter in an MFL coil sensor is the number of the coil’s wire loops.
Decreasing the amount of wire wound in a sensing coil not only leads to a much more compact coil
with less occupied space, but also having a fewer number of turns reduces the thermal heat in a sensing
coil. Usually, excessive thermal heat occurs when a DC current passes through an electromagnet due to
the following reasons: too many turns; strong current running through the circuit; and long inspection
times. It is necessary to mention that, often in damage detection using magnetic sensors (i.e., coil
sensor), continuous inspection is required. Therefore, one way to reduce the aforementioned thermal
heat is to decrease the number of wire loops in the coil sensor.

Equation (2) shows the relationship between the induced voltage inside the coil sensor (Vc),
magnetic flux ∅(t), and the number of wire turns (N). As it can be observed, there is a linear relationship
between the number of wire loops and the induced voltage. Therefore, adding to the number of wire
loops will lead to a higher induced voltage, while reducing this number will cause a reduction in the
induced voltage. Consequently, six different values were chosen as optimum value candidates: 1, 2, 5,
10, 15, and 20 loops.
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Figure 15. Numerical simulation results related to the number of turns in a coil sensor: (a) saturation
status of the specimen; (b) coil sensor’s signals.

Figure 15 shows the specimen’s saturation status along with the coil sensor’s signals corresponding
to the different number of wire turns. Due to the magnetization level, the specimen was saturated with
insignificant magnetization change. According to Equation (2) and Figure 16, which demonstrate the
relationship between the peak amplitude of each signal and the number of wire loops, there is a linear
relationship between the number of wire loops and the peak values of the coil signals. Thus, as it is
illustrated in Figure 17, by increasing the number of loops in the sensing coil, the integrated voltage
increased linearly with respect to the number of loops. Twenty wire loops provided the highest peak
value while the single-turned coil sensor generated the minimum peak value. Despite the highest peak
value belonging to the coil sensor with the 20 turns, excessive heating issues related to multi-turn
coils with DC current may arise. In addition, by having a lower number of turns, it would be much
more convenient to print the copper wires on a small- sized circuit board. Therefore, a coil sensor
with 10 turns of wire can not only be easily printed and fit onto a small-sized circuit board, it can also
identify small cross-sectional losses without difficulties. Thus, a coil sensor with 10 turns of wire was
considered as the optimum value for the number of wire loops.Sensors 2019, 19, x FOR PEER REVIEW 13 of 17 
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Figure 16. Linear relationship between the peak amplitude of the induced voltage and the number of
wire turns.
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Figure 17. Integrated signals of the coil sensor corresponding to the number of the coil sensor’s turns.

4. Prototype Fabrication of MFL-Sensing Apparatus Based on a Numerical Parametric Study

According to the optimum values obtained in previous sections as shown in Table 2, a prototype
of an experimental sensor probe was fabricated as shown in Figure 18. This experimental test setup
consisted of a pair of identical ferromagnetic handles made out of low carbon steel with optimum
lengths equal to 27 cm, which were implemented symmetrically. Twelve permanent magnets were
embedded in the ferromagnetic handles (based on the optimum length of the permanent magnet, three
magnets were embedded into each side of the handles) and a sensing coil was printed on a silicon
circuit board with a 4.8 cm lift-off and 10 loops of copper wire. To process the analog signal, a NI
cDAQ-9181 data acquisitions system and a NI 9205 analog input module were used in the apparatus.
Finally, the prototype magnetic probe was experimentally validated using an identical specimen which
was equally modeled on the numerical simulations. Figures 18 and 19 demonstrate the prototype
magnetic probe along with a specimen made of construction steel with 15% stepwise cross-sectional
reduction and a schematic view of the printed coil sensor on a circuit board, respectively.

Table 2. Optimized design parameters.

Content Magnetizing Unit Sensing Unit

Parameters
Length of

Permanent
Magnets

Magnitude of the
Magnetic Flux

Density

Length of
Ferromagnetic

Handles

Lift-Off of
Permanent

Magnets

Coil Sensor’s
Lift-Off

Number of
Coil Turns

Optimum Value 6 cm 1 T 27 cm 4.5 cm 4.8 cm 10 turns
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Figures 20 and 21 illustrate the output signal of the coil sensor in the case of a specimen with 15%
stepwise cross-section reduction obtained from the numerical simulation and experimental apparatus,
respectively. As it was expected, there was only one peak corresponding to cross-section loss in the
coil sensor’s output signal acquired from the numerical simulation. Both integrated signals from the
numerical simulation and experimental test had the same distinctive defect pattern. Moreover, the
integrated signal obtained from the coil sensor in the numerical simulation had approximately 91%
precision with respect to the integrated signal acquired from the coil sensor in experimental test. Also, it
can be noticed that the experimental apparatus was capable of detecting defects with high consistency.
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Figure 20. Optimum numerical simulation results of a steel specimen with 15% stepwise cross-sectional
loss: (a) raw coil sensor signal; (b) integrated coil sensor signal.
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5. Discussion and Conclusions

This study aimed to achieve an optimum design of a prototype coil sensor mounted on a magnetic
probe which could be used to identify cross-sectional loss defects based on the MFL testing method.
To do so, a parametric numerical study was performed, and the optimum values of the main parameters,
such as length of permanent magnets, magnitude of the magnetic flux density, length of ferromagnetic
handles, magnet’s lift-off, coil sensor’s lift-off, and the number of wire loops in the coil sensor, were
obtained accordingly. The sensor probe prototype was made based on the optimum values acquired
from the numerical simulations and, afterwards, the performance of the sensor probe was evaluated
through an experimental test.

In previous studies, due to the different units of the numerical model and experimental test output
signals, conducting a comparative study with quantitative accuracy was impossible. In this study,
both the numerical and experimental signals had the same physical units. As a result, accuracy of
the numerical simulation was obtained as well. According to the high precision of the numerical
simulation, which had a precision of approximately 91% with respect to the experimental test, not only
was it confirmed that parametric optimization of a magnetic probe using numerical simulation can
successfully optimize an experimental apparatus for cross-sectional defects, but it can also be used
prior to any experimental tests in order to eliminate any chance of misdetection and inaccuracy due to
the different defect types and sizes.

In order to increase the accuracy of the numerical simulations, further study will be conducted
by considering the global-search optimization algorithm and the exact material properties of a ferrite
specimen and handles such as a dynamic B–H curve.
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