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Abstract 

Background:  The current study aimed to construct competing endogenous RNA (ceRNA) regulation network and 
develop two precision medicine predictive tools for colorectal cancer (CRC).

Methods:  Differentially expressed (DE) analyses were performed between CRC tissues and normal tissues. A ceRNA 
regulation network was constructed based on DElncRNAs, DEmiRNAs, and DEmRNAs.

Results:  Fifteen mRNAs (ENDOU, MFN2, FASLG, SHOC2, VEGFA, ZFPM2, HOXC6, KLK10, DDIT4, LPGAT1, BEX4, 
DENND5B, PHF20L1, HSP90B1, and PSPC1) were identified as prognostic biomarkers for CRC by multivariate Cox 
regression. Then a Fifteen-mRNA signature was developed to predict overall survival for CRC patients. Concordance 
indexes were 0.817, 0.838, and 0.825 for 1-, 2- and 3-year overall survival. Patients with high risk scores have worse OS 
compared with patients with low risk scores.

Conclusion:  The current study provided deeper understanding of prognosis-related ceRNA regulatory network for 
CRC. Two precision medicine predictive tools named Smart Cancer Survival Predictive System and Gene Survival Anal-
ysis Screen System were constructed for CRC. These two precision medicine predictive tools can provide valuable pre-
cious individual mortality risk prediction before surgery and improve the individualized treatment decision-making.
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Introduction
Colorectal cancer (CRC) is one of the most prevalent 
malignant tumors worldwide. There were around 1.1 
million newly diagnosed CRC patients and 0.55 million 
CRC patients died in 2018 [1]. The 5-year overall survival 
(OS) of CRC patients was less than 12% [2, 3]. Due to the 
poor overall survival, early detection of CRC patients 
with high mortality risk has important significance for 
improving the individualized treatment decision-making. 
Several prognostic models have been developed for CRC 
patients [4, 5]. However, the computational formulas of 
these prognostic models were too complex for clinical 

application by patients without calculation tools and 
medical knowledge. Additional, these prognostic models 
provided overall survival prediction for different groups, 
but not individual mortality risk prediction.

From the perspective of precise medicine, a good prog-
nostic model should be able to provide individual mor-
tality risk prediction for specific patient at the individual 
level. Considering the clinical need of precious individ-
ual mortality risk prediction for patients with different 
tumors, our research team has developed several preci-
sion medicine predictive tools for gastric cancer [6] and 
hepatocellular carcinoma [7]. For individual mortality 
risk prediction, our precision medicine predictive tools 
have the following advantages: full-time individual risk 
prediction, visual illustration, numerical presentation, 
customizable subgroups, and on-line computing.
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So far the molecular biological regulatory mechanism 
of development and prognosis of tumor remains unclear. 
Several researches have explored underlying molecular 
biological regulatory mechanism for different tumors 
[8–11]. Salmena and collaborators presented an inter-
esting molecular regulatory mechanism named compet-
ing endogenous RNAs (ceRNAs) [12]. The lncRNAs can 
indirectly regulate the expression of mRNAs through 
binding shared miRNA response elements [13]. Several 
researches have explored potential molecular regula-
tory mechanism for CRC [14–16]. Therefore the current 
research aimed to depict prognosis related ceRNA regu-
latory network and develop two precision medicine pre-
dictive tools for CRC patients.

Materials and methods
Study cohort
RNA sequencing and miRNA sequencing data were 
obtained from TCGA database. RNA sequencing data 
contained 14,449 lncRNAs and 20,337 mRNAs whereas 
miRNA sequencing data contained 1881 miRNAs. Four 
hundred and twenty-eight CRC patients were included 
after removing patients without complete survival infor-
mation. GSE17538 dataset were downloaded from GEO 
database. GSE17538 dataset involved 231 CRC patients 
and 23,328 RNAs (GPL570 platform). The original read 
count values in TCGA dataset were normalized by log2 
transformation. The gene background file (Gencode.v29 
supplied by The European Bioinformatics Institute of The 
European Molecular Biology Laboratory (EMBL-EBI) 
database) was used for gene symbol annotation.

Differentially expressed analyses and regulatory network
The original RNA data were processed by “edgeR” pack-
age, with a defined P of 0.05 and a ratio of 1.5 times 
between tumor and non-tumor tissues [17]. The origi-
nal miRNA sequencing data were processed by “limma” 
package [18]. First, the interaction associations between 
lncRNAs and miRNAs were identified in miRcode 
database [19]. Second, miRTarBase [20], miRDB [21], 
and TargetScan [22] were searched for miRNA-tar-
geted mRNAs. The ceRNA network was visualized by 
Cytoscape v3.6.1 [23].

Statistical analyses and artificial intelligence algorithms
Random survival forest, Multi-task logistic regression, 
and Cox survival regression algorithms were carried out 
according to the algorithms suggested in the original arti-
cles [24–29]. Statistical analyses were carried out through 
SPSS Statistics 19.0 (SPSS Inc.,USA). Other analyses were 
carried out by R version 3.5.2 with corresponding pack-
ages. P value < 0.05 was defined as statistically significant.

Results
Baseline characteristics
TCGA dataset contained 428 CRC patients and 
GSE17538 dataset contained 231 CRC patients. The 
clinical information of included patients was shown in 
Table  1. The mortality of GSE17538 dataset was 40.3% 
(93/231), which was significantly higher than 22.9% 
(98/428) of TCGA dataset. There were significant differ-
ences in terms of survival time and pathological stage, 

Table 1  Clinical features of colorectal cancer patients

SD standard deviation, NA missing data, AJCC American Joint Committee on Cancer

TCGA cohort GSE17538 P-value

Number [n] 428 231 NA

Death [n(%)] 98 (22.9) 93 (40.3) < 0.001

Total survival time (mean ± SD, month) 29.8 ± 25.6 47.6 ± 30.6 < 0.001

Survival time for dead patients (month) 23.3 ± 22.7 26.8 ± 22.0 < 0.001

Survival time for living patients (month) 31.7 ± 26.1 61.7 ± 27.5 < 0.001

Age (mean ± SD, year) 66.5 ± 13.0 64.8 ± 13.4 0.100

Male [(n)%] 230 (53.7) 121 (52.4) 0.739

AJCC stage (IV/III/II/I/NA) 60/124/163/70/11 56/75/72/28/0 < 0.001

AJCC PT (T1/T0/NA) 51/294/72/11/0 NA NA

AJCC PN (N2/N1/N0/NA) 76/103/249/0 NA NA

AJCC PM (M2/M1/M0/NA) 47/60/315/6 NA NA

Lymphovascular invasion (yes/no/NA) 148/237/43 NA NA

Vascular invasion (yes/no/NA) 89/281/58 NA NA

Residual tumor (3/2/1/0/NA) 23/21/4/307/73 NA NA

Perineural invasion (yes/no/NA) 45/126/257 NA NA

Grade (1/0/NA) NA 55/144/32 NA
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whereas there were no significant differences in terms of 
age and gender.

Differentially expressed analyses
Differential expression analysis could identify genes with 
significant differences in expression levels between nor-
mal samples and tumor samples. Compared with normal 
tissues, 3005 lncRNAs (2224 up-regulated and 781 down-
regulated), 332 miRNAs (246 up-regulated and 86 down-
regulated), and 6713 mRNAs (4087 up-regulated and 
2626 down-regulated) were identified in CRC tissues. 
The volcano plots for differentially expressed RNAs were 
shown in Additional file 1: Figure S1.

Screening of prognostic mRNAs
Univariate Cox regression was used to explore potential 
prognostic biomarkers for CRC. Out of previous dif-
ferentially expressed mRNAs, there were 2504 mRNAs 
identified as prognostic biomarkers for CRC. Out of 2504 
potential prognostic biomarkers, there were 1371 risk 
factors and 1133 protective factors.

Development of ceRNA network
The miRNA- targeted mRNAs that could be searched 
in three above databases were defined as the 

miRNA-targeted mRNAs. Third, these miRNA-targeted 
mRNAs were intersected with previous prognostic 
mRNAs for development of ceRNA network. Finally, the 
ceRNA network, consisting of 14 lncRNAs, 29 miRNAs, 
and 79 mRNAs, were constructed for CRC. The ceRNA 
network was visualized in Fig. 1 by Cytoscape v3.6.1. This 
ceRNA network depicted potential regulatory relations 
among lncRNAs, miRNAs, and mRNAs, and was help-
ful to understand the potential mechanisms of tumor 
prognosis.

Functional enrichment analyses
Functional enrichment analyses were performed based 
on previous prognostic mRNAs in ceRNA network and 
identified 26 enriched Gene Ontology (GO) terms. The 
top 15 enriched GO terms were shown in Fig.  2a. The 
prognostic mRNAs were mainly enriched in transcrip-
tion factor activity, RNA polymerase II proximal pro-
moter sequence-specific DNA binding, regulation of 
MAP kinase activity, regulation of protein serine/threo-
nine kinase activity, inactivation of MAPK activity, MAP 
kinase tyrosine/serine, MAP kinase phosphatase activity, 
protein tyrosine/serine, E-box binding, protein tyrosine 
phosphatase activity, and negative regulation of MAP 
kinase activity. The top KEGG pathways (Fig.  2b) were 

Fig. 1  Competitive endogenous RNA network chart
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Fig. 2  Chord chart of prognostic mRNAs: a GO terms; b KEGG pathways
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mainly enriched in MAPK signaling pathways, Proteo-
glycans in cancer, Breast cancer, IL-17 signaling pathway, 
TNF signaling pathway, Osteaclast differentiation, Micor-
RNAs in cancer, Human immunodeficiency virus 1 infec-
tion, Fluid shear stress and atherosclesosis, Ras signaling 
pathway, Hepatitis B, Regulation of action cytoskeleton, 
PI3K-Akt signaling pathway. These biological functions 
were helpful to understand the roles of these genes in 
tumor prognosis. The further circular visualization chart 
was presented in Fig. 3.

Construction of predictive model
Multivariate Cox regression analyses were used to screen 
independent risk factors for tumor prognosis. Fifteen 
mRNAs were used to develop a predictive model for 
CRC (Table 2). The formula for predictive model was as 
follows: The risk score = (−  4.273  *  ENDOU) + (−  1.48
9 * MFN2) + (− 1.243 * FASLG) + (− 0.904 * SHOC2) +  
(− 0.834 * VEGFA) + (− 0.690 * ZFPM2) + (0.249 * HOX
C6) + (0.446 * KLK10) + (0.672 * DDIT4) + (0.705 * LPG
AT1) + (0.711  *  BEX4) + (1.038  *  DENND5B) + (1.065 
* PHF20L1) + (1.093 * HSP90B1) + (1.146 * PSPC1). The 
prognostic nomogram chart was shown in Fig. 4.

Survival curve analyses
Survival curve analyses were performed to explore the 
survival influences of included mRNAs (Additional 
file  1: Figure S2). Kaplan–Meier curves indicated that 

patients with high expression had significantly poor 
overall survival than that with low expression for these 
15 mRNAs (P < 0.05). Comparison of Kaplan–Meier 
curves supported that these 15 genes were associated 
with overall survival in CRC patients.

Predictive performance in model dataset
CRC patients were divided into high risk subgroup 
and low risk subgroup according to median risk score. 
Figure  5a demonstrated that there was significant dif-
ference between two subgroups for OS (P < 0.001). 
Concordance indexes were 0.817, 0.838, and 0.825 
respectively for 1-year, 2-year, and 3-year OS (Fig. 5b). 
Calibration curves for OS were presented in Fig. 6, indi-
cating a good agreement between predicted mortality 
and actual mortality for 1-year, 2-year, and 3-year OS. 

Predictive performance in validation dataset
Kaplan–Meier plot (Fig.  7a) demonstrated that OS in 
high risk subgroup was significantly worse than that in 
low risk subgroup (P < 0.05). Concordance indexes were 
0.773, 0.824, and 0.801 for 1-year, 2-year, and 3-year OS 
(Fig.  7b). Calibration curves for OS were depicted in 
Fig. 8, demonstrating that the predicted mortality was 
in good agreement with the actual mortality.

Fig. 3  Circular chart of prognostic mRNAs
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Independence assessment of predictive model
In model cohort, prognostic signature and pathologi-
cal stage were independent influence factors for OS 
(Table  3). In validation cohort, prognostic signature, 
pathological stage, and age were identified as independ-
ent influence factors for OS. Decision curves and clinical 
impact curve for OS were presented in Additional file 1: 
Figure S3, suggesting that the clinical efficacy of the cur-
rent prognostic model was superior to pathological stage 
and age.

Smart Cancer Survival Predictive System
We developed a precision medicine predictive tool 
named Smart Cancer Survival Predictive System, provid-
ing a novel convenient on-line calculator for prediction 
of OS. Smart Cancer Survival Predictive System (Fig. 9) is 
available at: https​://zhang​zhiqi​ao6.shiny​apps.io/Smart​_
cance​r_predi​ctive​_syste​m_11_CRC_B1003​/. Smart Can-
cer Survival Predictive System provided three individual 
mortality risk curves predicted by Random survival for-
est algorithm, Multitask logistic regression algorithm, 
and Cox survival regression algorithm according to the 
calculation formula in ogininal articles.

Gene Survival Analysis Screen System
To further explore survival curves of previous prognos-
tic genes in different gender and pathological stage sub-
groups, we developed a new online program named Gene 
Survival Analysis Screen System (Fig. 10). Gene Survival 
Analysis Screen System is available at: https​://zhang​

zhiqi​ao5.shiny​apps.io/Gene_Survi​val_Subgr​oup_Analy​
sis_B1003​/. Gene Survival Analysis Screen System pro-
vided seven tumor datasets for exploration research 
and allowed users to select tumor type, gender, and 
stage, which were the important influence factors to the 
prognosis.

Clinical application in other tumors
The current study download five different tumor datasets 
from TCGA database as external validation datasets to 
explore the clinical application of the current prognostic 
model. Figure 11 displayed the diagnostic accuracy of the 
current prognostic model in five tumors, including hepa-
tocellular carcinoma (n = 348), breast cancer (n = 1030), 
gastric cancer (n = 265), lung cancer (n = 494), and ovar-
ian cancer (n = 370).

Predictive performance in five malignant solid tumors
To further explore the predictive performance of the 
current prognostic model, we externally validated the 
current prognostic model in a super merge dataset 
(n = 2507), which including five malignant solid tumors 
(hepatocellular carcinoma, breast cancer, gastric can-
cer, lung cancer, and ovarian cancer). Kaplan–Meier plot 
(Fig.  12a) demonstrated that OS in high risk subgroup 
was significantly worse than that in low risk subgroup 
(P < 0.05). Concordance indexes were 0.663, 0.639, and 
0.655 for 1-year, 2-year, and 3-year OS (Fig. 12b). Calibra-
tion curves for OS were depicted in Fig. 13, demonstrat-
ing that the predicted mortality was in good agreement 
with the actual mortality.

Table 2  Model information of prognostic mRNAs

HR hazard ratio, CI confidence interval

Gene Univariate analysis Multivariate analysis

HR 95% CI P-value Coefficient HR 95% CI P-value

ENDOU 0.642 0.425–0.972 0.036 − 4.273 0.014 0.004–0.047 < 0.001

MFN2 0.632 0.417–0.957 0.030 − 1.489 0.226 0.125–0.408 < 0.001

FASLG 0.560 0.368–0.853 0.007 − 1.243 0.288 0.098–0.846 0.024

SHOC2 1.544 1.023–2.333 0.039 − 0.904 0.405 0.179–0.917 0.030

VEGFA 1.569 1.037–2.373 0.033 − 0.834 0.434 0.226–0.833 0.012

ZFPM2 1.805 1.183–2.753 0.006 − 0.690 0.501 0.363–0.693 < 0.001

HOXC6 1.567 1.037–2.368 0.033 0.249 1.283 1.064–1.547 0.009

KLK10 1.593 1.053–2.409 0.028 0.446 1.562 1.161–2.100 0.003

DDIT4 1.710 1.126–2.596 0.012 0.672 1.959 1.319–2.908 0.001

LPGAT1 1.570 1.039–2.371 0.032 0.705 2.023 1.199–3.415 0.008

BEX4 1.795 1.185–2.721 0.006 0.711 2.036 1.521–2.725 < 0.001

DENND5B 1.527 1.010–2.308 0.045 1.038 2.824 1.155–6.909 0.023

PHF20L1 1.562 1.028–2.373 0.037 1.065 2.901 1.162–7.241 0.022

HSP90B1 1.959 1.291–2.972 0.002 1.093 2.982 1.561–5.696 0.001

PSPC1 1.863 1.228–2.825 0.003 1.146 3.144 1.682–5.877 < 0.001

https://zhangzhiqiao6.shinyapps.io/Smart_cancer_predictive_system_11_CRC_B1003/
https://zhangzhiqiao6.shinyapps.io/Smart_cancer_predictive_system_11_CRC_B1003/
https://zhangzhiqiao5.shinyapps.io/Gene_Survival_Subgroup_Analysis_B1003/
https://zhangzhiqiao5.shinyapps.io/Gene_Survival_Subgroup_Analysis_B1003/
https://zhangzhiqiao5.shinyapps.io/Gene_Survival_Subgroup_Analysis_B1003/
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Discussion
The current research constructed a prognosis-related 
ceRNA network for CRC. A prognostic nomogram 
was developed for OS based on prognostic mRNAs in 
ceRNA network. The current prognostic model could 
discriminate high risk patients from low risk patients for 
different time points. Meanwhile, two novel precision 
medicine predictive tools were developed to provide 
convenient on-line calculation for prediction of OS in 
CRC patients. Smart Cancer Survival Predictive System 
provided three individual mortality risk curves predicted 
by Random survival forest algorithm, Multitask logistic 
regression algorithm, and Cox survival regression. Gene 

Survival Analysis Screen System provided survival curve 
comparison and multivariable survival analysis results. 
Smart Cancer Survival Predictive System and Gene 
Survival Analysis Screen System could provide pre-
cious individualized mortality risk prediction for CRC 
patients.

The current study screened differentially expressed 
RNAs between CRC tissues and normal tissues and 
then constructed a prognosis-related ceRNA regulatory 
network for CRC. Based on mRNAs in ceRNA regula-
tory network, the current study further identified inde-
pendent prognostic biomarkers for overall survival in 
CRC patients. Through ceRNA regulatory network, the 

Fig. 4  Prognostic nomogram for overall survival in colorectal cancer
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regulatory relationship among lncRNA-miRNA-mRNA 
was depicted, providing post-transcriptional biological 
regulatory pathway information for CRC. GO term and 

KEGG pathway analyses were helpful to further under-
stand the biological function and molecular regulatory 
pathway of prognostic mRNAs in ceRNA network. The 

Fig. 5  Clinical performance in model cohort: a survival curve plot; b time-dependent receiver operating characteristic curve plot
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Fig. 6  Calibration curves for model cohort. a Calibration curve for 1-year survival; b calibration curve for 2-year survival; c calibration curve for 
3-year survival
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fifteen prognostic mRNAs were identified as independ-
ent prognostic biomarkers for overall survival in CRC 
patients by multivariable Cox regression. The ceRNA 
regulatory network and functional enrichment analyses 

provided potential biological prognostic indicators and 
therapeutic targets for future researches.

Mitofusin 2 (MFN2) promotes cell proliferation and 
invasiveness in gastric cancer [30]. Lin et  al. reported 

Fig. 7  Clinical performance in validation cohort: a survival curve plot; b time-dependent receiver operating characteristic curve plot
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Fig. 8  Calibration curves for validation cohort. a Calibration curve for 1-year survival; b calibration curve for 2-year survival; c calibration curve for 
3-year survival



Page 12 of 18Zhang et al. J Transl Med          (2019) 17:405 

that miRNA-30d can regulate cancer angiogenesis and 
cancer proliferation through MYPT1/c-JUN/VEGFA 
pathway [31]. Liu et al. reported that ZFPM2 Antisense 
RNA 1 (ZFPM2-AS1) promotes tumor proliferation 
and inhibits apoptosis through regulating miR-137 in 
renal cell cancer [32]. Li et al. reported that Homeobox 

C6 (HOXC6) promotes invasion via EMT pathway in 
hepatocellular carcinoma [33]. Petraki et  al. reported 
that Kallikrein Related Peptidase 10 (KLK10) expres-
sion is associated with overall survival in CRC [34]. Xu 
et  al. reported that MiR-199b-5p can promote tumor 
proliferation through regulating KLK10 in cervical 

Table 3  Independence assessment of prognostic model

AJCC The American Joint Committee on Cancer, HR hazard ratio, CI confidence interval

Univariate analysis Multivariate analysis

HR 95% CI P-value coefficient HR 95% CI P-value

Model group

 Gender (male/female) 0.883 0.586–1.33 0.551 − 0.247 0.781 0.508–1.202 0.261

 Age (high/low) 0.591 0.381–0.917 0.018 0.161 1.175 0.765–1.804 0.463

 AJCC stage (IV, III/II, I) 0.323 0.21–0.498 < 0.001 1.196 3.306 1.979–5.522 < 0.001

 Prognostic model (high/low) 6.48 2.037–20.61 < 0.001 1.499 4.476 2.706–7.403 < 0.001

Validation group

 Gender (male/female) 0.993 0.66–1.496 0.975 − 0.089 0.915 0.608–1.379 0.672

 Age (high/low) 0.942 0.627–1.415 0.773 0.712 2.037 1.330–3.120 < 0.001

 AJCC stage (IV, III/II, I) 0.270 0.163–0.448 < 0.001 1.206 3.341 2.185–5.107 < 0.001

 Prognostic model (high/low) 0.210 0.129–0.342 < 0.001 − 1.228 0.293 0.189–0.453 < 0.001

Fig. 9  Home page of Smart Cancer Survival Predictive System. a Survival curves display page; b quantitative display page
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cancer [35]. Liu et al. reported that Heat Shock Protein 
90 Beta Family Member 1 (HSP90B1) is significantly 
related with worse overall survival in lung cancer [36]. 
Cawthorn et  al. reported that up-regulated HSP90B1 
is related with distant metastasis [37]. Kessler et  al. 

reported that Paraspeckle Component 1 (PSPC1) is sig-
nificantly related with poor prognosis in hepatocellular 
carcinoma [38]. The results in current study further 
supported the credibility of these findings above in pre-
vious researches.

Fig. 10  Home page of Gene Survival Analysis Screen System. a Survival curves display page; b Cox survival analysis display page
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High quality samples and standardized RNA extrac-
tion technology are helpful to improve the quality and 
reliability of research data. According to the Standard 
Operating Procedure suggested by TCGA database, 
for gene sequencing sample, conventional methods of 

fixation and heating of biopsies may lead to inactivation 
of antigens and genetic material in tissues, therefore 
frozen sections was recommended in TCGA database. 
Samples should be snap-frozen and stored in cryovials 
in liquid nitrogen vapor and should not allow tissues 

Fig. 11  Time-dependent receiver operating characteristic curve plots. a Hepatocellular carcinoma; b breast cancer; c gastric cancer; d lung cancer; 
e ovarian cancer



Page 15 of 18Zhang et al. J Transl Med          (2019) 17:405 

Fig. 12  Clinical performance in five malignant solid tumor datasets: a survival curves for high risk group and low risk group. b Time-dependent 
receiver operating characteristic curves
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Fig. 13  Calibration curves in five malignant solid tumor datasets: a calibration curve for 1-year survival; b calibration curve for 2-year survival; c 
calibration curve for 3-year survival
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thaw until sectioned. The mirVana isolation technol-
ogy uses organic extraction and then fixes RNA on 
glass fiber filter to purify total RNA, so it can prepare 
high-purity and high-quality small RNA molecules 
within 2 h. RNA analytes should not undergo multiple 
freeze–thaw cycles to maintain biological activity. RNA 
is easily degraded by ribonuclease, so special meth-
ods should be taken to prevent RNA degradation. All 
reagents must be made of ribonuclease free materials 
and all products and disposable materials used must 
be free of ribonuclease. In order to prevent contamina-
tion by ribonuclease carried by the skin, gloves must be 
worn before handling biological samples. RNA analytes 
should be placed on wet ice and RNA quantification 
should be performed before freezing.

Advantages of the current study: Firstly, our study 
team developed a precision medicine tool named 
Smart Cancer Survival Predictive System, providing 
full-time individual mortality risk prediction with vis-
ual illustration and numerical presentation. Secondly, 
a novel precision medicine tool named Gene Survival 
Analysis Screen System was developed to explore the 
associations between prognostic genes (including clini-
cal parameters) and overall survival. Users are free to 
choose the appropriate subgroup, gender, and stage. 
Meanwhile, users can upload their own dataset to 
explore and validate the research result.

Shortcomings of the current research: first, detec-
tion platforms were different between model dataset 
and validation dataset. The influence of different detec-
tion platforms on gene expression read counts should 
be taken into account while evaluating clinical appli-
cation of the current prognostic model. Second, sev-
eral important prognostic factors were not included in 
the current study, including surgical, radiotherapy and 
chemotherapy regimens. Third, the prognostic model 
was developed and validated by using datasets down-
loaded from public databases without research team’s 
study cohort. External applicability of prognostic model 
needs to be validated by study cohorts from different 
population.

Conclusions
In conclusion, the current study provided deeper under-
standing of prognosis-related ceRNA regulatory net-
work for CRC. Two precision medicine predictive tools 
named Smart Cancer Survival Predictive System and 
Gene Survival Analysis Screen System were constructed 
for CRC. These two precision medicine predictive tools 
can provide individual prognostic information before 
surgery and improve the individualized treatment 
decision-making.
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