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Abstract

In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment 

(MCI) patients using multi-modal neuroimaging data and clinical data, via cross-sectional and 

longitudinal studies. However, such data are often heterogeneous, high-dimensional, noisy, and 

incomplete. We thus propose a framework that includes sparse feature selection, low-rank affinity 

pursuit denoising (LRAD), and low-rank matrix completion (LRMC) in this study. Specifically, 

we first use sparse linear regressions to remove unrelated features. Then, considering the 

heterogeneity of the MCI data, which can be assumed as a union of multiple subspaces, we 

propose to use a low rank subspace method (i.e., LRAD) to denoise the data. Finally, we employ 

LRMC algorithm with three data fitting terms and one inequality constraint for joint conversion 

and time-to-conversion predictions. Our framework aims to answer a very important but yet rarely 

explored question in AD study, i.e., when will the MCI convert to AD? This is different from 

survival analysis, which provides the probabilities of conversion at different time points that are 

mainly used for global analysis, while our time-to-conversion prediction is for each individual 

subject. Evaluations using the ADNI dataset indicate that our method outperforms conventional 

LRMC and other state-of-the-art methods. Our method achieves a maximal pMCI classification 

accuracy of 84% and time prediction correlation of 0.665.
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1. Introduction

Alzheimer’s disease (AD) (Association et al., 2016, 2017) is the most prevalent dementia 

and is commonly associated with progressive memory loss and cognitive decline. It is 

incurable and requires attentive care, thus imposing significant socio-economic burden on 

many nations. It is thus vital to detect AD in its earliest stage before its onset for possible 

therapeutic treatment. The prodromal stage of AD, called mild cognitive impairment (MCI), 

is characterized by mild but measurable decline of memory and cognition. Studies show that 

some MCI patients will recover over time, but more than half will progress to dementia 

within five years (Gauthier et al., 2006). MCI patients that will progress to AD are 

retrospectively categorized as progressive MCI (pMCI) patients, whereas those who remain 

stable as MCI are categorized as stable MCI (sMCI). In this paper, we focus on 

differentiating pMCI from sMCI patients and predicting the time to the event of AD 

conversion.

Biomarkers based on different modalities, such as magnetic resonance imaging (MRI), 

positron emission topography (PET), and cerebrospinal fluid (CSF), have been widely 

studied for the prediction of AD progression (Zhang et al., 2012; Li et al., 2015; Weiner et 

al., 2013; Zhan et al., 2015; Li et al., 2014; Adeli-Mosabbeb et al., 2015; Huang et al., 2015; 

Zhu et al., 2015; 2016; Zhou et al., 2017; Zhu et al., 2017; Thung et al., 2016, 2017). The 

Alzheimer’s disease neuroimaging initiative (ADNI) collects these data longitudinally from 

subjects ranging from cognitively normal elderly subjects to AD patients in an effort to 

improve prediction of AD progression. However, these data are incomplete due to subject 

dropouts and unacquired modalities associated with factors such as study design and cost 

constraints. The easiest and most popular way to deal with missing data is by discarding 

incomplete samples (Zhang et al., 2012), which will however decrease sample size and 

statistical power. An alternative is to impute the missing data, via methods such as k-nearest 

neighbor (KNN), expectation maximization (EM), or low-rank matrix completion (LRMC) 

(Troyanskaya et al., 2001; Zhu et al., 2011; Candès and Recht, 2009; Sanroma et al., 2014). 

These imputation methods, however, do not perform well on data with blocks of missing 

values (Thung et al., 2014; Yuan et al., 2012; Yu et al., 2014), causing erroneous prediction 

outcomes.

To avoid the need for imputation, Yuan et al. (2012) proposed a method, called incomplete 

multiple source feature learning (iMSF), to first divide the data into disjoint subsets of 

complete data, and then jointly learn the classification or prediction models for these 

subsets. Through joint feature learning, iMSF enforces all subset classifiers to use a common 

set of features for each modality. However, this will cause samples with less number of 

modalities to have limited number of features when making prediction. In addition, using 

disjoint subsets of data will also cause small sample size issue for each prediction model 

(Xiang et al., 2014).

On the other hand, the method proposed by Goldberg et al. (2010) imputes the missing 

feature values and target values (e.g., diagnostic status and clinical scores) simultaneously 

using a low-rank assumption. All samples, including those with missing feature values, and 

their corresponding targets are concatenated into a matrix and the unknown values are then 
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imputed via LRMC. This approach is able to make use of the incomplete samples more 

effectively. Thung et al. (2014) improved the efficiency and effectiveness of this method by 

performing feature and sample selection before matrix completion.

However, all these methods do not explicitly take into account the heterogeneous nature of 

the data. Recent studies (Markesbery, 2010; Nettiksimmons et al., 2013) show that there is 

significant biological heterogeneity among ADNI amnestic MCI patients. Some MCI 

subjects are biologically similar to normal aging subjects, while some have the characteristic 

AD’s pathologies, and some have other various late-life neurodegenerative pathologies 

(Nettiksimmons et al., 2013; Rahimi and Kovacs, 2014). Postmortem brain studies 

(Markesbery, 2010; Petersen et al., 2006; Jicha et al., 2006; Cairns et al., 2015) on deceased 

MCI and AD subjects also confirm that most of them developed a mixture of 

neurodegenerative diseases. The comorbidities (other than AD) include argyrophilic grain 

dementia, Lewy body dementia, Parkinson disease, hippocampal sclerosis, and 

frontotemporal dementia. These studies imply that not all MCI subjects are affected by the 

same AD pathologies.

In this study, we utilize longitudinal multi-modality data to capture the complexity and 

heterogeneity of AD pathology. The data are heterogeneous, prone to noise, and incomplete. 

To deal with these problems, we recently proposed an approach (Thung et al., 2015b) to 

cluster the data into subsets using low-rank representation (LRR) (Liu et al., 2013) and 

perform LRMC on the samples on each of these subsets separately, to improve the overall 

classification performance. This approach assumes that the data resides in a union of several 

low-dimensional subspaces, each spanned by a data subset, and tries to recover these 

subspaces through LRR. Each sample is assumed to reside in one of the subspaces. 

However, in reality, the samples can potentially reside across multiple subspaces 

(Markesbery, 2010). In addition, data clustering also reduces the number of samples 

associated with each subspace and hence may reduce the effectiveness of the prediction 

model. We have also demonstrated in (Thung et al., 2015b) that the prediction performance 

of the LRMC algorithm can also be improved by using a denoised version of the data, which 

can be obtained via LRR.

In this paper, we propose to use low-rank affinity pursuit denoising (LRAD) in combination 

with the sparse feature selection (FS) to improve the prediction power of LRMC for 

incomplete, noisy, and heterogeneous multi-modal data. More specifically, we use 

incomplete low-rank representation (ILRR) (Liu et al., 2013; Shi et al., 2014) for LRAD, 

where the samples are denoised by representing them using their neighboring points. In 

addition, we use lasso (Tibshirani, 1996; Liu et al., 2009a, 2009b; Liu and Ye, 2009) to 

select the most discriminative features for use in prediction. Lastly, we utilize LRMC to 

predict the output targets, which consist of diagnostic labels (i.e., pMCI/sMCI) and 

conversion times. We tested our framework using longitudinal and cross-sectional 

multimodality MRI data and confirm that the proposed method outperforms the conventional 

LRMC method and other state-of-the-art methods. It is also important to note that there are 

many hyper-parameters associated with LRMC. In this paper, we propose to use a Bayesian 

optimization framework to automatically select the best set of hyper-parameters. The 

contributions of this paper are threefold:
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1. We propose a framework for pMCI diagnosis and conversion time prediction 

using longitudinal multi-modal data, which can be incomplete and noisy. In 

comparison, previous studies in the literature (Section 2.1) were often focusing 

on using either multi-modal or longitudinal data for pMCI diagnosis. Moreover, 

unlike our method which is applicable to incomplete datasets, most of the 

previous methods are only applicable to datasets without missing data. More 

importantly, time-to-conversion predictions in the literature are mostly used for 

global analysis based on statistical methods, while our study is one of the few 

non-statistical methods that addresses this issue at individual level. To the best of 

our knowledge, our study is the first to predict both the pMCI diagnosis and 

time-to-conversion jointly. To this end, we propose to employ sparse feature 

selection to remove outlier features, ILRR to denoise the data, and finally LRMC 

to predict the target outputs.

2. We propose a matrix completion algorithm that is able to predict the conversion 

time even when some of the data are missing and censored. The missing data 

issue is due to missing modalities at certain time points for some subjects. In 

addition, our sMCI data is censored, i.e., we are unsure whether the sMCI 

subject will progress to AD if we increase the monitoring period indefinitely. 

Conventional linear regression models are not applicable to censored data, while 

the conventional methods that work on these data (Section 2.2) only provide the 

“probability” of conversion. To this end, we design an LRMC algorithm with 

three data fitting terms, one for the input features, one for the diagnostic labels 

(binary targets), and one for the conversion time (continuous-valued targets), 

along with an additional inequality constraint. Our modified matrix completion 

algorithm enables us to predict the conversion time for the censored data (i.e., 

sMCI), by constraining their predicted values to be at least more than a specific 

value.

3. We employ a Bayesian optimization scheme to automatically select the optimal 

hyper-parameters for LRMC.

2. Related works

In this section, we briefly discuss the related previous research works.

2.1. MCI-to-AD conversion prediction

Many works (Wei et al., 2016; Stoub et al., 2004) use MRI data for MCI-to-AD conversion 

predictions. For example, Stoub et al. (2004) used MRI-derived entorhinal volume for 

prediction. Wei et al. (2016) used MRI and structural network features to predict MCI-to-

AD conversion. They employed sparse linear regression with stability selection to select 

features and then used support vector machine (SVM) for classification. They used data at 

baseline, and 6, 12, and 18 months before diagnosis of probable AD for prediction. The best 

classification accuracy they obtained was 76% using the data 6 months prior to AD 

diagnosis. Misra et al. (2009) used longitudinal MRI data to extract brain temporal changes 
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for detecting MCI-to-AD conversion. However, this study used follow-up data of very short 

period (i.e., up-to 15 months) with unbalanced data at each cohort (i.e., pMCI and sMCI).

Some works used multimodal data (e.g., MRI, PET, CSF, demographics, genetic data) for 

conversion prediction (Davatzikos et al., 2011; Cheng et al., 2015b, 2015a; Dukart et al., 

2016; Moradi et al., 2015). Cheng et al. (2015b), for example, used MRI, PET, and CSF data 

in their studies. They employed transfer learning to borrow information from other related 

cohorts, i.e., AD and NC, to help select the features from MCI cohorts for MCI-to-AD 

conversion prediction, achieving 79% prediction accuracy. In another similar work, Cheng et 

al. (2015a) employed multimodal manifold-regularized transfer learning for feature 

selection, and achieved 80% accuracy in conversion prediction. Xu et al. (2016) used 

modality-weighted sparse representation-based classification method to combine data from 

MRI, fluorodeoxyglucose PET, and florbetapir PET, and achieved 82.5% prediction 

accuracy. They defined pMCI as MCI subjects that progressed to MCI within 36 months, 

and defined the remaining MCI subjects as sMCI. However, such definition results in highly 

unbalanced cohorts (i.e., 27 pMCI and 83 sMCI). Korolev et al. (2016) used MRI, plasma, 

and clinical biomarkers to predict MCI-to-AD conversion via probabilistic pattern 

classification, and achieved 80% accuracy. Moradi et al. (2015) used MRI and clinical 

biomarkers for MCI-to-AD conversion prediction, and achieved an AUC of 0.90 using 

regularized logistic regression to select features and then using low density separation (LDS) 

as the classifier.

Most of these methods are only applicable for datasets without missing data. In contrast, our 

study uses longitudinal multimodal data that can be incomplete. In addition, all of the 

previous studies mentioned above are focused on MCI-to-AD conversion prediction, which 

only answer the question on “who” will progress to AD. AD studies that predicted time to 

conversion, which answer the question on “when” the conversion will occur, are relatively 

rare. Conversion time prediction is important, as it gives us useful information about the 

disease progression rate and the severity of the disease, which may affect the individual 

treatment plan. In addition, knowing when the patient will progress to AD is also much more 

meaningful and clinically relevant (also more challenging) than just predicting whether the 

patient will progress to AD. Our work explores both problems.

2.2. Survival analysis

Conversion time prediction in this study is similar to survival analysis (Miller Jr, 2011; Liu 

et al., 2017; Oulhaj et al., 2009). Survival analysis computes the probability of event 

occurrence (e.g., disease status conversion) at future time points. For example, Oulhaj et al. 

(2009) used interval-censored survival analysis statistical methods to identify baseline 

cognitive tests that can best predict the time of conversion to MCI (from NC). Liu et al. 

(2017) used independent analysis and Cox model for their MCI-to-AD survival analysis 

study. Michaud et al. (2017), on the other hand, employed competing-risks survival 

regression models and Cox proportional hazards models to investigate how the 

demographics and clinical characteristics are related to AD conversion time.

Despite the similarity between conversion time prediction (as in our work) and survival 

analysis (as in many previous works), they actually address different questions. First, 
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survival analysis aims to predict the probability of AD conversion at different future time 

points, mainly used for global analysis (e.g., comparing survival times of two groups); 

conversion time prediction in the current work predicts “when” the conversion will occur. As 

a result, survival analysis is generally based on a probability model (e.g., Cox regression 

model), whereas conversion time prediction is generally based on conventional regression 

models (e.g., least-squares regression model). Second, both analysis methods are designed 

for different types of data. Specifically, survival analysis is designed for censored data 

(where the survival times are unknown or incomplete) and uncensored data, whereas 

conversion time prediction is generally only suitable for non-censored data. For our study, 

the time-to-conversion data is censored for sMCI subjects, i.e., we do not know whether or 

when the sMCI subject will progress to AD if the monitoring time is extended indefinitely. 

Conventional linear regression models are unable to address this censored data issue, and 

thus unable to perform conversion time prediction. However, our improved matrix 

completion algorithm is able to address the censored data issue for the sMCI subjects, by 

treating the conversion time of sMCI subject as unknown and limiting its time-to-conversion 

prediction to be at least a specific value (e.g., maximum monitoring period). We will discuss 

our method in greater detail in Section 4.

2.3. Low rank subspaces

It has been investigated in several previous studies that the data coming from different 

classes often lie in multiple low-dimensional subspaces (Lin et al., 2015b; Elhamifar and 

Vidal, 2011, 2013; Lin et al., 2015a; She et al., 2016). Intuitively, this is because data from 

each class are often more related with each other than the data coming from other classes, 

and hence, the data is assumed to reside in a union of a number of lower-dimensional 

subspaces. For instance, the following sentence is directly quoted from Elhamifar and Vidal 

(2011) which is also extended and published in Elhamifar and Vidal (2013):

“In many problems in signal/image processing, machine learning and computer 

vision, data in multiple classes lie in multiple low-dimensional subspaces of a high-

dimensional ambient space.”

For our application, where the data are from the MCI cohort of the ADNI dataset, there are 

samples with different survival times (time to convert to AD). This is similar to data with 

different “classes” and thus it is intuitive to assume that the data is a union of low-rank 

subspace. In this study, however, we are not using low rank subspace algorithm for 

clustering, but we take advantage of this concept for denoising the data.

3. Materials and preprocessing

3.1. Materials

In this study, we are interested in predicting two target outputs, i.e., the pMCI/sMCI class 

labels and the conversion times in months, using multi-modal data from the ADNI2 dataset. 

The multi-modal data used in this study include T1 weighted MR scans, fluorodeoxyglucose 

PET (FDG-PET, PET for short for the rest of the manuscript) scans, and cognitive clinical 

2http://adni.loni.ucla.edu.
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scores (e.g., Mini-Mental State Exam (MMSE), Clinical Dementia Rating (CDR), and 

Alzheimer’s Disease Assessment Scale (ADAS)). Using these multimodal data at a single 

time point and multiple time points, we performed cross-sectional and longitudinal study, 

respectively, in this paper. For cross-sectional study, we used different combinations of 

modalities at 18th month for pMCI and conversion time predictions. For longitudinal study, 

we examined our prediction model using different combinations of modalities at 18th month 

and one additional time point (i.e., baseline, 6th month or 12th month). For both the cross-

sectional and longitudinal studies, we used the same set of subjects with the same 

assignment of disease status labels (i.e., pMCI and sMCI), for easier comparison of results 

between these two studies. More specifically, we define pMCI subjects as MCI subjects who 

progressed to AD within the monitoring period from 18th to 60th month, while MCI 

subjects who remained stable for upto 60th month were labeled as sMCI. We also excluded 

MCI subjects who progressed to AD on and before 18th month in this study since it is 

meaningless to use (longitudinal) data that were labeled as AD for pMCI/sMCI prediction. 

Based on the definition and exclusion criteria mentioned above, we have 65 pMCI and 53 

sMCI subjects for this study, with their demographics summarized in Table 1, and their 

Roster IDs (RIDs) given in the supplementary file. As can be seen from the table, there is no 

significant difference in term of education, age and gender distribution between these two 

cohorts of data.

In addition to pMCI and sMCI labels, we also used conversion time as another target in our 

study. However, it is difficult, if not impossible, to obtain the “ground truth” of conversion 

time, as the conversion, in itself, is a process that does not occur at one single time point. In 

addition, ADNI only scans and evaluates the MCI patients at specific time points after the 

baseline scan (e.g., 12th, 18th, 24th, 36th month, etc.), where the conversion can occur at 

any time between two scan times. In this work, we estimate the “ground truth” of conversion 

time as the time period between the date of 18th month scan (we used 18th month as the 

reference) and the date of the nearest scan after the conversion had occurred. Though this is 

currently the best estimate we can get, this value is actually the upper bound of the real 

conversion time. As the exact scanning dates are used to estimate the “ground truth” of 

conversion time, the estimated values are not discrete (e.g., 6 months, 12 months, etc., if we 

use the scanning plan to obtain the conversion time), but rather real continuous values (e.g., 

5.7 months, 10.4 months, etc.). Thus, for this target, we treat the conversion time prediction 

as a regression problem. During model evaluation, we choose performance measures that are 

less sensitive to the uncertainty of the noisy “ground truth”.

3.2. Preprocessing and feature extraction

We use region-of-interest (ROI)-based features from the MRI and PET images. Each MRI 

image was Anterior Commissure – Posterior Commissure (AC–PC) aligned using MIPAV3, 

corrected for intensity inhomogeneity using the N3 algorithm (Sled et al., 1998), skull 

stripped (Wang et al., 2011), tissue segmented (Zhang et al., 2001), and registered to a 

template (Kabani, 1998; Shen and Davatzikos, 2002; Thung et al., 2014; Xue et al., 2004, 

2006b, 2006a). Gray matter (GM) volumes, normalized by the total intracranial volume, 

3http://mipav.cit.nih.gov.
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were extracted as features from 93 ROIs (Wang et al., 2011). We also affinely aligned each 

PET image to its corresponding skull stripped MRI image, and used the mean intensity value 

of each ROI as feature.

4. The proposed methods

In this study, we use multi-modal (i.e., MRI, PET, clinical scores) and longitudinal data (i.e., 

data collected at multiple time points) for classification and regression analysis. These data 

are heterogeneous, high dimensional, possibly incomplete, and could be corrupted with 

noise. To address these issues, we propose a prediction framework that consists of three 

main components: 1) sparse feature selection (FS), which removes features that are 

unrelated to the targets via sparse linear regressions, 2) low-rank affinity pursuit denoising 

(LRAD), which utilizes low-rank representation (LRR) to denoise the data using 

neighboring samples in low-rank subspace, and 3) low-rank matrix completion (LRMC), 

which predicts the unknown targets (i.e., diagnostic labels and conversion times). Fig. 1 

shows an overview of our proposed framework. The operation details involved in these three 

components are described in the following subsections.

4.1. Notation

We first introduce the notations that will be used to describe the formulation of the proposed 

method. We use X ∈ ℝn × m to denote the feature matrix with n samples of m features. Here, 

n depends on the number of time points and the number of modalities used. Each sample 

(i.e., row) in X is a concatenation of features from different time points and different 

modalities (e.g., MRI, PET and clinical scores). Note that X can be incomplete because of 

missing data, due to various reasons described in the introduction (Thung et al., 2013, 2014, 

2015a, 2015b). The corresponding target matrix is denoted as Y ∈ ℝn × 2, where the first 

column is a vector of labels (1 for pMCI, and −1 for sMCI), and the second column is a 

vector of conversion times (e.g., the number of months to convert to AD). The conversion 

times associated with the sMCI samples are unknown, but at least larger than the last 

monitored time. For any matrix M, Mj, k denotes its element indexed by (j, k), whereas Mj, : 

and M:, k denote their j th row and kth column, respectively. We denote ‖M‖*=∑σi(M) as the 

nuclear norm (i.e., sum of the singular values { σi } of M), norm, ‖M‖2 = ∑ M j, k
2 1/2

 as the 

l1 – norm, and MT as the transpose of M. I is the identity matrix.

4.2. Feature selection using sparse regression

Not all the features are related to the disease progression (Thung et al., 2014; Yuan et al., 

2012). We perform feature selection to remove features which are unrelated to our prediction 

tasks. We use lasso with logistic and least square loss functions (Tibshirani, 1996; Liu et al., 

2009b; Liu and Ye, 2009) to select features that are related to the target outputs. As the data, 

which is the concatenation of multiple modalities and time points, is possibly incomplete, 

we can not perform the feature selection using Eqs. (1) and (2) on the whole dataset directly. 

We can either use an advanced feature selection method that works with incomplete data, 

like (Yuan et al., 2012), or perform feature selection on each group of complete data 

separately. We choose the latter as methods like (Yuan et al., 2012) do not work well when 
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there are too many groups of data, as in our case. Specifically, we split the incomplete data 

into groups with complete data according to modalities and time points (Thung et al., 2015b; 

2015a), so that lasso can be applied independently to each group. The two lasso algorithms 

used are given as

min
βl

(i)‖y − X(i)β1
(i)‖2

2 + γ1‖β1
(i)‖1, (1)

min
β2

(i)∑
j

log 1 + exp −y jX j, :
(i) β2

(i) + γ2‖β2
(i)‖1, (2)

where X(i) is the data matrix of the i th group, and β1
(i) is the sparse weight vector. y is the 

target label (first column of Y), as we are more interested in the classification task, while yj 

is the target label for the j th sample. We use two types of linear regressions to select 

features, as our previous study (Thung et al., 2015a) showed that the prediction model that 

uses two linear regressions is better than the model that uses one linear regression. The 

combined non-zero values (OR operation) in vectors β1
(i) and β2

(i) are used to select 

corresponding features in X(i). The regularizing parameters γ1 and γ2 are determined 

through cross-validation using the training data.

4.3. Low-rank affinity pursuit denoising (LRAD)

ROI-based MRI and PET features can be noisy. In addition, when features from multiple 

time points are stacked together, the dimensionality of the features is high. Nevertheless, as 

these features are highly correlated, the true rank of the data matrix (i.e., a 2D matrix X, 

where each row denotes feature vector of a sample) is low if the noise is removed. Thus, we 

can use, e.g., a robust principal component analysis (RPCA) algorithm (Liu et al., 2013; 

Candès et al., 2011; Wright et al., 2009), to denoise the data by decomposing the data into 

two components – the low-rank component and the sparse noise component. However, as 

criticized by Vidal (2010), RPCA algorithm denoises the data with the assumption that there 

is only one low-rank dimensional subspace in the data, which may not produce satisfactory 

results if the data is actually a union of low-rank subspaces, as could be the case of our data, 

where the data is heterogeneous. Following the work in (Vidal, 2010; Thung et al., 2015b), 

we introduce low-rank affinity pursuit denoising (LRAD) to denoise data by representing 

each sample, with possible missing feature values, using its neighboring samples in the low-

rank subspace, via an incomplete version of low-rank representation (LRR). LRR has been 

previously used in various applications, such as subspace clustering (Liu et al., 2013), 

subspace segmentation Liu et al. (2010), etc (Zhou et al., 2013; Liu and Yan, 2011). In this 

work, we introduce a procedure to utilize it for denoising.

In LRR, the data is decomposed into two components – the low-rank self-representation data 

component and the error (or noise) component. As there are missing feature values in X, we 

use incomplete data version of LRR (ILRR) (Shi et al., 2014), which is given as:
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min
A, E, 𝒳

‖A‖* + α‖E‖1 s.t. 𝒳 = A𝒳 + E, 𝒳Ω = XΩ, (3)

where 𝒳 is the completed version of X, which is self-representedby A𝒳, A ∈ ℝn × n is the 

low-rank affinity matrix, E is the error matrix, and α is the regularizing parameter. Each 

element of A indexed by (i, j) is an indicator of the similarity between the i th sample and 

the j th sample, which are represented by the i th row and the j th row of 𝒳, respectively. 

Thus, the i th row of A denotesthe similarity of the i th sample with all other samples in 𝒳. 

A𝒳 is thus a reconstruction of 𝒳, where each row is a linear combination of neighboring 

rows determined by the A. By imposing low-rank constraint on A, A𝒳 is a low-rank 

recovery of, 𝒳 which is called the “lowest-rank representation” of 𝒳 (Liu et al., 2013). In 

brief, ILRR gives us a locally compact (low-rank) representation and denoised version of the 

raw data, given as D = A𝒳. Problem in Eq. (3) is solved using inexact augmented 

Lagrangian multiplier (ALM), as described in (Shi et al., 2014). Note also that we 

regularized the error matrix E using the l1 -norm, as we expect that the noise is sparse (e.g., 

the segmentation and registration errors could have happened at certain brain regions, 

causing sparse noise in ROI-based features). In addition to ‖E‖1, we also test our framework 

using the l2 -norm, ‖E‖2, which assumes that the data matrix X is corrupted by Gaussian 

noise.

4.4. Predictions using low-rank matrix completion (LRMC)

Assuming a linear relationship between X and Y, the k th target of Y is given by Y: ,k = Xak 

+ bk = [X 1] × [ak; bk], where 1 is acolumn vector of 1’s, ak is the weight vector, and b k is 

the offset. Assuming that X is low-rank (i.e., each column of X could be represented by 

some other columns in X), then the concatenated matrix M = [X 1 Y] is also low-rank 

(Goldberg et al., 2010), i.e., each column of M can be linearly represented by other columns, 

or each row of M can be linearly represented by other rows. Based on this assumption, low-

rank matrix completion (LRMC) (Goldberg et al., 2010; Sanroma et al., 2014; 2015; Thung 

et al., 2014; Chen et al., 2017) can be applied to M to impute the missing feature values and 

the target outputs simultaneously by solving minZ{‖Z‖*|MΩ=ZΩ}, where Ω is the index set 

of known values in M, and Z is the completed matrix version of M. In the presence of noise, 

the problem can be relaxed as (Goldberg et al., 2010)

min
Z

μ‖Z‖* + 1
Ωx

ℒS ZΩx
, MΩx

+
λ1
Ωyl

ℒl ZΩyl
, MΩyl

, (4)

where Ωyl and Ωχ are the index sets of the known target labels and feature values, 

respectively, while ℒl(u, v) = ∑i log(1 + exp −uivi ) and ℒS(u, V) = ∑i
1
2 ui − vi

2 are the 

logistic loss function and mean square loss function, respectively. The nuclear norm ‖⋅‖* in 

(4) is used as a convex surrogate for matrix rank. Parameters μ and λ1 are the trade-off 

hyper-parameters that control the effect of each term. In our application, there are two 

targets, i.e., the pMCI label and the conversion time, which are binary and continuous, 

respectively. Thus, we use two separate hyper-parameters and data fitting terms, based on 
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these two targets. The LRMC with three data fitting terms and one inequality constraint is 

given as:

min
Z

μ‖Z‖* + 1
Ωx

ℒS ZΩx
, MΩx

+
λ1
Ωyl

ℒl ZΩyl
, MΩyl

+
λ2

Ωyr
ℒs ZΩyr

, MΩyr
,

s . t . ZΩyr
≥ Tmax, if Ωyr ∈ YsMCl .

(5)

where Ωyr is the index set of know regression targets for conversion time, and μ, λ1 and λ2 

are the hyper-parameters. The conversion times of sMCI samples are considered unknown, 

except we know that they are at least larger than the last monitored time point. Thus, we use 

the inequality constraint to make sure that the conversion times of the sMCI samples in the 

training set are always larger than a threshold time point, which we set as 12 months in 

addition to the maximum conversion time. When the data are z-normalized, this threshold is 

normalized accordingly. We solve Eq. (5) using fixed point continuation (FPC) (Algorithm 

1) (Ma et al., 2011; Thung et al., 2014), which consists of 2 alternating steps for each 

iteration. The alternating steps of k th iteration are given as:

1. Gradient step:

Gk = Zk − τg Zk (6)

where τ is the step size and g (Zk) is the matrix gradient which is defined as
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g Zi j =

λ1
Ωyl

−Mi j

1 + exp Mi jZi j
, (i, j) ∈ Ωyl

1
Ωx

Mi j − Zi j , (i, j) ∈ Ωx

λ2
Ωyr

Mi j − Zi j , (i, j) ∈ Ωyr

0,  otherwise.

(7)

2. Shrinkage step (Cai et al., 2010):

Zk + 1 = Sτμ Gk = Umax(Λ − τμ, 0)VT, (8)

where S(⋅) is the matrix shrinkage operator, U ΛVT is the SVD of Gk, and 

max(⋅) is the elementwise maximum operator.

The value of τ is determined from the data. A minor modification of the argument in (Ma et 

al., 2011; Goldberg et al., 2010) would reveal that, as long as we choose a non-negative step 

size satisfying τ < min (4|Ωyr|/λ2, 4|Ωyl|/λ1, |Ωχ|), the algorithm above is guaranteed to 

converge to a global minimum.

4.5. Bayesian hyper-parameter optimization

The problem in Eq. (5) involves multiple hyper-parameters (e.g., μ, λ1, λ2). The values of 

these hyper-parameters can be obtained by cross-validation and grid search. This is, 

however, time consuming. For example, if we test 6 candidate values for each hyper-

parameter, there would be a total of 63 = 216 combinations. If we test these combinations 

using 5 fold cross-validation, we will need to solve Eq. (5) more than 1000 times. It is 

therefore desirable to have a more efficient strategy for the hyper-parameter optimization. In 

this work, we use a Bayesian optimization algorithm (Bergstra et al., 2011; Thornton et al., 

2013; Yogatama and Mann, 2014) to obtain the best hyper-parameters. In this approach, not 

all the combination of hyper-parameters are tested. Instead, only hyper-parameters that have 

higher probability of improving the cross-validation accuracy are evaluated. Specifically, 

Bayesian optimization first builds a prediction model based on previous records of hyper-

parameters and their corresponding cross-validation accuracies. Using the prediction model, 

we obtain the posterior predictive distribution map, which predicts the accuracy distribution 

for each point in the hyper-parameters search range. Each point in the predictive distribution 

map can be characterized by a mean and a standard deviation, which are used to denote the 

prediction accuracy and information gain (the larger the standard deviation, the less certain 

of the prediction, and the higher of information gain) of this point, respectively. Balancing 

the information gain and the exploitation of the prediction accuracy, Bayesian optimization 

arrives at a value via an evaluation function (which is commonly called as acquisition 

function). Finally, the highest point of the acquisition function is used to choose the hyper-

parameter point to be evaluated next. Then the whole process of selecting hyper-parameters 

is repeated until a stopping criterion is fulfilled.
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Algorithm 2 outlines the Bayesian optimization method used in this work, called sequential 

model-based optimization (SMBO) (Bergstra et al., 2011). Let θ denotes a hyper-parameter 

point, which consists of the hyper-parameters (i.e., μ, λ1, λ2 in (5)) that we need to 

optimize, ψ denote the corresponding cross validation accuracy using the training data (Xtr, 

ytr), and ℋ = (θ, ψ)  denotes the historical observation of the hyper-parameters and their 

corresponding accuracy values. SMBO performs the following steps iteratively: 1) Build a 

model that captures the relationship of θ and ψ using a Gaussian process; 2) Determine the 

next promising θ candidate; 3) Compute ψ based on the selected θ; and 4) Update ℋ with a 

new pair of (θ, ψ) as well as the Gaussian process prediction model.

We solve the problem in line 3 of Algorithm 2 by using a Gaussian Process (GP) prior 

(Algorithm 3) (Rasmussen, 2004; Rasmussen and Williams, 2006; Bergstra et al., 2011; 

Thornton et al., 2013; Snoek et al., 2012). GP is an extension of a multivariate Gaussian 

distribution to an infinite dimensional stochastic process (Brochu et al., 2010). For each θ, 

ψ(θ) is assumed to be a sample from a multivariate Gaussian distribution, which is 

completely specified by mean m (θ) and covariance k (θ, θ′):

ψ(θ) 𝒢𝒫 m(θ), k θ, θ′ . (9)

There are many choices of covariance function (Rasmussen and Williams, 2006; Brochu et 

al., 2010; Snoek et al., 2012). In this paper, we use the squared exponential covariance 

function with isotropic distance measure:
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k θi, θ j = s1
2exp − 1

2s2
2‖θi − θ j‖

2 , (10)

where s1 and s2 are the parameters of the covariance function. Assuming that we have 

historical observation ℋ = θi, ψ i , i = 1, …, t  from previous iterations, we want to 

determine the next plausible hyper-parameter point, θt+1. Let ψt+1 = ψ(θt+1) denotesthe 

function value at θt+1, and ψ1:t = ψ denotes the column vector of cross validation accuracy 

values using θ1:t. Then, by the properties of GP, ψ and ψt+1 are jointly Gaussian (Brochu et 

al., 2010):

ψ
ψ t + 1

𝒩 0,
K k
kT k θt + 1, θt + 1

, (11)

where

K =
k θ1, θ1 … k θ1, θt

⋮ ⋱ ⋮
k θt, θ1 … k θt, θt

,

k = k θt + 1, θ1 ⋯k θt + 1, θt
T .

(12)

The parameters s1 and s2 of the covariance function in (10) can be solved by maximizing the 

probability of ψ given θ (Rasmussen and Williams, 2006):

max
s = s1, s2

log p ψ s, θ1: t = max
s = s1, s2

− (ψ)TK−1ψ − log( K ) .
(13)

Based on (11), the posterior predictive distribution is given as (Brochu et al., 2010; 

Rasmussen and Williams, 2006)

p ψ t + 1 θt + 1, ℋ = 𝒩 m θt + 1 , σ2 θt + 1 , (14)

where

m θt + 1 = kTK−1ψ (15)

σ2 θt + 1 = k θt + 1, θt + 1 − kTK−1k (16)

Based on the computed mean and covariance function, we evaluate the acquisition function 

which controls the balance between exploitation (favors θ with higher m) and exploration 

(favors θ with higher σ2). We use expected improvement (EI) as acquisition function in this 

study, which is given as (Brochu et al., 2010):
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θt + 1 = argmax
θ

𝔼 max 0, ψ t + 1 − ψmax |ℋ (17)

= argmax
θ

m(θ) − ψmax Φ(Z) + σ(θ)ϕ(Z) (18)

where Z = m(θ) − ψmax
σ(θ) , and Φ(⋅) ϕ(⋅) are the probability distribution function (PDF) and 

cumulative distribution function (CDF) of the standard normal distribution, respectively. The 

hyper-parameter point corresponding to the highest value of the acquisition function is 

chosen for the next round of hyper-parameter test.

5. Results

We evaluated our proposed framework using both the longitudinal and the multi-modal data. 

We tested different variations of our proposed framework, and compared them with two 

baseline methods, as well as two state-of-the-art classification methods that also work on 

incomplete data. In the following, we describe the baseline methods, the variations of our 

proposed framework, the state-of-the-art methods, the parameter settings, the performance 

metrics, and the experimental results.

5.1. The baseline and the proposed methods

One of the differences of our proposed framework with the previous LRMC-based 

prediction model is the inclusion of LRAD denoising component, which improves the 

prediction performance significantly. Fig. 2 shows the flowchart of the comparison baseline 

methods and the proposed methods (i.e., three variations of the proposed framework). For 

simplicity, we use abbreviations to denote the baseline methods and our proposed methods. 

The top two rows in Fig. 2, denoted as MC and FMC in the figure, are the baseline methods 

that do not use LRAD, i.e., LRMC and FS-LRMC (FS-based LRMC), respectively. The 

following three rows in Fig. 2, denoted as DMC, FDMC and DFMC in the figure, are the 

proposed methods that utilize LRAD, i.e., LRAD-MC (no feature selection), FS-LRAD-MC 

(sequentially performing FS, LRAD and LRMC), and LRAD-FS-MC (sequentially 

performing LRAD, FS and LRMC), respectively. Note that the sequence of applying the 

feature selection and denoising algorithms will affect the final prediction result. In FS-

LRAD-MC, we select features before data denoising, while, in LRAD-FS-MC, we select 

features after data denoising. While the feature selection algorithm works better if the data is 

denoised, the denoising algorithm also works better if the data is lower in dimension and 

discriminative to the prediction task. Therefore, there are pros and cons for both approaches, 

and we include both models in our study. In the experimental result section, we will discuss 

a simple guiding principle to help us in deciding which approach to be used in practice.

5.2. The comparison methods

We compared our method with two state-of-the-art methods – iMSF (Yuan et al., 2012) and 

Ingalhalikar’s ensemble method (Ingal) (Ingalhalikar et al., 2012). We made some 

modifications to both algorithms so that they can be applied to our dataset.
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1. iMSF: iMSF is a multi-task learning algorithm where each task is dedicated to the 

mapping of one data subset to its corresponding target vector. The incomplete dataset is first 

divided into several disjoint data subsets, each of which is the input for one learning task. 

The mappings of the subsets to their targets are learned jointly. One of the limitations of this 

algorithm is the limited number of samples in each disjoint subset. Therefore, we make 

some modifications to iMSF to use overlapped data subsets for each learning task. This 

modification greatly increases the number of samples in each data subset, and thus improves 

the performance of iMSF.

2. Ingalhalikar’s ensemble model (Ingalhalikar et al., 2012): This algorithm uses 

an ensemble classification technique to fuse decisions from multiple classifiers constructed 

using data subsets, obtained similarly as (Thung et al., 2013). The algorithm groups the data 

into subsets, selects features using signal-to-noise ratio coefficient filter (Guyon and 

Elisseeff, 2003), performs classification using each data subset based on linear discriminant 

analysis (LDA), and fuses all classification results into a single result. The decisions are 

fused using weighted averaging by assigning a weight to the decision of each classifier 

based on its training classification error. We also implemented a regression ensemble model, 

where we build a sparse regression model for each data subset and fuse the regression 

outputs using weighted averaging.

5.3. Hyper-parameters and performance metrics

For our method, we use a small value α = 0.005 for ILRR in (3). The hyper-parameters γ1 

and γ2 in feature selection are determined through 5-fold cross validation using only the 

training data of each fold. The parameters μ, λ1, and λ2 of LRMC are determined using 

Bayesian optimization as LRMC is more time consuming due to the computation of singular 

value thresholding. The hyper-parameters of iMSF and Ingalhalikar’s fusion methods are 

determined using 5-fold cross-validation, since they both involve only one hyper-parameter.

For the classification task involving prediction of diagnostic labels, we use accuracy (ACC) 

and Area Under the Receiver operator curve (AUC) as the performance metrics. For the 

regression task involving prediction of MCI conversion time, we choose performance 

metrics that are less sensitive to the uncertainty or noise in the “ground truth” of conversion 

time (please refer to Section 3.1), i.e., Pearson correlation coefficient (PCC) and Spearman 

rank-order correlation coefficient (SROCC). PCC measures the prediction accuracy and 

SROCC measures the prediction monotonicity. In addition, we also include coefficient 

determination to measure how well future samples are likely to be predicted by the model. 

For all the performance metrics, higher values correspond to better predictions.

5.4. Cross-sectional study: prediction of diagnostic labels using multi-modal data and 
single time point data

Figs. 3 and 4 show respectively the pMCI classification accuracies and AUCs using different 

combinations of multi-modal data of time point T4 = 18th month. To show the efficacy of 

each component in the proposed framework, we report the results given by different 

combinations of the components, i.e., DMC, DFMC and FDMC in Fig. 2, which 

respectively represents LRAD-MC, FS-LRADMC, and LRAD-FS-MC. LRMC and FS-
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LRMC, represented by MC and FMC for convenience, are the baseline LRMC methods 

without LRAD components. More specifically, LRMC and FS-LRMC are the matrix 

completion algorithms using the original and feature reduced matrices, respectively. Their 

results are denoted by the blue boxes in Fig. 3. On the other hand, the red boxes in Fig. 3 are 

used to denote the results of the proposed methods that contain LRAD, i.e.,LRAD-MC, FS-

LRAD-MC, and LRAD-FS-MC, represented by DMC, FDMC, and DFMC, respectively.

It can be observed from Fig. 3 that the LRAD improves the diagnostic accuracies (i.e., the 

red boxes are generally higher than the blue boxes). Generally, when LRAD is employed 

after feature selection, we observe some improvements (comparing FMC with FDMC), 

especially for MRI+PET, MRI+Cli, and MRI+PET+Cli. In contrast, when feature selection 

is employed after LRAD, the improvement is not obvious (comparing DMC with DFMC), 

since using LRAD alone has already significantly improved the accuracy (compare MC with 

DMC). However, performing feature selection after LRAD can reduce the computation cost 

because LRMC is applied on a smaller matrix. Similar conclusions can be drawn based on 

AUC (see Fig. 4).

5.5. Cross-sectional study: influence of regularization

We evaluated the effects of two types of regularization, i.e., the l1 -norm and the l2 -norm, 

which make different assumptions about the data noise. For the l1 -norm, the data are 

assumed to be corrupted by sparse noise, which could be caused by any of the preprocessing 

steps, e.g., segmentation or ROI alignment errors. For the l2 -norm, the data are assumed to 

be corrupted by Gaussian noise. Tables 2 and 3 show the pMCI/sMCI classification results 

using multi-modal data of time point T4, with LRAD using an l1 -norm (‖E‖1) or an l2 -norm 

(‖E‖2) error term. Both tables show that the prediction of LRMC improves with LRAD. We 

further perform paired t -test between the best result and the other results in each category, 

and mark the statistically significant results (p < 0.05) with asterisks (*). Comparing the 

results from both tables, the l1 -norm gives greater improvement than the l2 -norm, implying 

that the former gives a better denoising outcome.

5.6. Longitudinal study: prediction of diagnostic labels using multi-modal and 
longitudinal data

Table 4 shows the results using multi-modal and longitudinal data, when the l1 -norm error 

term is used in LRR. Four time points are used in this experiment, namely time point 1, 2, 3 

and 4, corresponding to the data acquired at baseline, 6th month, 12th month, and 18th 

month, respectively. Time point 4 (T4) is used as our reference time point since it is the latest 

time point and gives us the most current state of the subject. As shown in our previous work 

(Thung et al., 2015a, 2015b), predictions using longitudinal data with 2 time points are 

generally better than using one time point. Hence, we test our method using 2 time points, 

i.e., the reference time point (T4) plus an additional historical time point data. For example, 

in Table 4, T4, 1 indicates that the data of T4 and T1 are used. From the table, it can be seen 

that LRAD improves prediction performance, for almost all combinations of modalities and 

time-points. The only case where the proposed method performs slightly worse than the 

baseline is MRI+PET+Cli-T4, 3. The difference is, however, not statistically significant. The 

highest accuracy achieved by the proposed method is 84.0% for the case of MRI+Cli-T4, 1. 
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Similar observations can be made when the l2 -norm error term is used in LRAD (See Table 

5), even though the l1 -norm is generally better than the l2 -norm in this application.

5.7. Cross-sectional study: prediction of conversion time using multi-modal single time 
point data

Figs. 5 and 6 show respectively the PCC and SROCC results computed between the 

predicted conversion time and the ground-truth conversion time, using different 

combinations of multi-modal data of the reference time point. As shown in both figures, the 

performance of LRMC has been significantly improved with LRAD and feature selection. 

The best PCC of 0.665, which is about 10% higher than the original LRMC method, is 

achieved when using MRI data and clinical scores with the proposed framework LRAD-FS-

LRMC. Similar results can be observed for coefficient determination (or R2 scores), as 

shown in Fig. 7.

5.8. Longitudinal study: prediction of conversion time using multi-modal and longitudinal 
data

Table 6 shows the PCC values of the predicted conversion times using different 

combinations of longitudinal and multi-modal data. As can be seen from the table, the 

proposed methods (last 2 columns) perform best in all settings. Particularly, for a smaller 

feature dimension, LRAD-FS-MC (column DFMC) performs better (e.g., MRI, MRI+Cli at 

T4). For a larger feature dimension, FS-LRADMC (column FDMC) performs better (e.g., 

MRI+PET, MRI+PET+Cli). The best performance is obtained when using MRI+Cli at T4, 

which gives us an average PCC value of 0.665. Similar observations can be obtained for 

SROCC, as shown in Table 7, and R2 scores, as shown in Table 8. Thus, the rule of thumb is 

to choose LRAD-FS-MC when the feature dimension is smaller and less noisy, and choose 

FS-LRAD-MC when the feature dimension is bigger and noisier.

5.9. Discussions

Comparing the results of MRI+PET+Cli and MRI+Cli, especially referring to Table 4, it 

seems that there is a drop in performance when additional PET data is used. There could be 

several possible reasons behind this observation, including the small sample size of the data. 

This is because the number of samples being used is much less than the number of features. 

The number of samples used in this study is 118, which is relatively small compared to the 

number of features (93 for each modality at each time point). During training, cross-

validation uses an even smaller data subset for feature selection, resulting in instability 

especially in the presence of outliers and missing data. For the ADNI dataset we used in this 

study, PET data are not available for half of the samples, whereas clinical cognitive scores 

and MRI are relatively complete. The relatively smaller number of samples with PET data 

makes prediction using PET less reliable. We use the results in Table 4 as an example, where 

columns (c) and (d) refer respectively to our proposed method without and with feature 

selection. It can be seen that, with feature selection, MRI+PET and MRI+PET+Cli are better 

than the methods without feature selection, which to some extent verifies our expectation 

that removing outlier features in the PET data would improve prediction performance.
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5.10. Comparison with other methods

In addition, we also compared our method with the methods proposed in (Yuan et al., 2012; 

Ingalhalikar et al., 2012). Some modifications were made to the method in (Yuan et al., 

2012), so that it can be applied to our multi-modal and longitudinal dataset, as described in 

Section 5.2. The results in Table 9 indicate that the proposed method outperforms these 

state-of-the-art methods for MRI, MRI+PET and MRI+Cli longitudinal data. For MRI+PET

+Cli, the proposed method is still the best when data from a single time point is used, but 

does not perform as well as iMSF when more time points are used. It is worth noting that 

this iMSF result is obtained after our improvement modifications, the original iMSF 

algorithm can not handle so many missing patterns in the longitudinal multi-modal data. 

Nevertheless, this also likely indicates that a better feature selection method is needed for the 

proposed framework to further improve performance. As we are focusing on LRAD in this 

work, we left this as our future work. Similar observation can be obtained for the PCC 

metric, as shown in Table 10. The best classification and conversion time prediction 

accuracy for these two tables are still achieved by the proposed LRAD-FS-MC, using MRI 

and clinical data, at the value of 0.839 and 0.665, respectively.

6. Conclusion

In this study, we have proposed a series of algorithms based on subspace methods to address 

two very important questions on AD study – which MCI subject will progress to AD and 

when it will occur. Our framework is one of the few studies that addresses these queries 

jointly using incomplete multi-modal and longitudinal neuroimaging and clinical data. Our 

framework consists of three main components, i.e., sparse feature selection, low-rank 

affinity pursuit denoising (LRAD), and low-rank matrix completion (LRMC), in addition to 

efficient Bayesian hyper-parameter optimization. We have demonstrated that the LRAD is 

able to improve the LRMC-based predictions, either in terms of the diagnostic labels or the 

conversion time predictions using MCI data. We use LRAD to denoise heterogeneous multi-

modal neuroimaging and clinical data by self-representing the data with the neighboring 

data. The LRAD with the l1 -norm regularization performs better than the LRAD with the l2 

-norm regularization, indicating that the data we used contain more likely sparse noise rather 

than Gaussian noise. On the other hand, we have modified the original matrix completion 

algorithm by introducing three data fitting terms and one inequality constraint to predict 

conversion and time-to-conversion jointly. The added inequality constraint has made the 

conversion time prediction of the censored sMCI data possible. In addition, we used 

Bayesian optimization to efficiently search for the optimal set of hyper-parameters for our 

proposed framework. Extensive evaluations also indicate that the proposed method 

outperforms the conventional LRMC in various settings, as well as a number of state-of-the-

art methods.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the proposed framework, which consists of sparse feature selection, low-rank 

affinity pursuit denoising (LRAD), and low-rank matrix completion.
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Fig. 2. 
Flow chart of the proposed methods in comparison with the baseline methods. The two 

baseline methods are LRMC and FS-LRMC, which are respectively abbreviated as MC and 

FMC. The proposed methods that utilize low-rank affinity pursuit denoising (LRAD) are 

LRAD-MC, FS-LRAD-MC, and LRAD-FS-MC, which are respectively abbreviated as 

DMC, FDMC, and DFMC.
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Fig. 3. 
Boxplots of pMCI classification accuracies using different combinations of modalities. MC, 

FMC, DMC, FDMC, and DFMC denote the abbreviations used for LRMC, FS-LRMC, 

LRAD-MC, FS-LRAD-MC, and LRAD-FS-MC, respectively (as shown in Fig. 2). Each 

boxplot summarizes the results of 10 repetitions of 10-fold cross validation. The blue and 

the red boxes denote the results given by the LRMC without and with the LRAD, 

respectively. The boxes with darker colors are the results given by the LRMC with feature 

selection. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 4. 
Boxplots of pMCI classification AUC using different combinations of modalities.
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Fig. 5. 
Boxplots of PCC between the predicted and true pMCI conversion times using different 

combinations of modalities.
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Fig. 6. 
Boxplots of SROCC between the predicted and true pMCI conversion times using different 

combinations of modalities.
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Fig. 7. 
Boxplots of R2 score of pMCI conversion time prediction using different combinations of 

modalities.
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Table 1

Demographic information of subjects involved in this study. (Edu.: Education; std.: Standard Deviation).

No. of subjects Gender (M/F) Age (years) Edu. (years)

pMCI 65 49/16 75.3 ± 6.7 15.6 ± 3.0

sMCI 53 37/16 76.0 ± 7.9 15.5 ± 3.0

Total 118 86/32 - -
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Table 2

pMCI classification accuracy using multi-modal data of a single time point (18th month from baseline). An l1 -

norm error term is used in ILRR. [Bold: Best result; *: statistically significantly different result compared with 

the best result (same for all the other Tables in this paper)].

Data modal Baseline ||E||1 in LRR

MC FMC DMC FDMC DFMC

MRI 0.686* 0.706* 0.726 0.715 0.720

MRI + PET 0.686* 0.700* 0.724 0.737 0.726

MRI + Cli 0.764* 0.770* 0.827 0.821 0.828

MRI + PET + Cli 0.745* 0.768* 0.792 0.812 0.802
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Table 3

pMCI classification accuracy using multi-modal data of a single time point (18th month from baseline). An l2 

-norm error term is used in ILRR.

Modality Baseline || E ||2 in LRR

MC FMC DMC FDMC DFMC

MRI 0.686* 0.706 0.709 0.718 0.719

MRI + PET 0.686* 0.700* 0.726 0.729 0.724

MRI + Cli 0.764* 0.770* 0.808 0.807 0.809

MRI + PET + Cli 0.745* 0.768* 0.778* 0.800 0.787
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Table 4

Classification accuracy using longitudinal and multi-modal data. An l1 -norm error term is used in LRAD.

Modality Time Baseline ||E||1 in LRAD

points MC FMC DMC FDMC DFMC

MRI T4 0.686* 0.706* 0.726 0.715 0.720

T4,1 0.713* 0.716* 0.748 0.743 0.756

T4,2 0.702* 0.694* 0.734 0.719 0.729

T4,3 0.706* 0.698* 0.727 0.731 0.728

MRI + PET T4 0.686* 0.700* 0.724 0.737 0.726

T4,1 0.688* 0.701* 0.711 0.720 0.723

T4,2 0.682* 0.699 0.665* 0.708 0.679*

T4,3 0.705 0.714 0.721 0.702 0.720

MRI + Cli T4 0.764* 0.770* 0.827 0.821 0.828

T4,1 0.790* 0.791* 0.840 0.805* 0.839

T4,2 0.771* 0.773* 0.803 0.802 0.807

T4,3 0.809* 0.809* 0.832 0.826 0.825

MRI + PET + Cli T4 0.745* 0.768* 0.792 0.812 0.802

T4,1 0.765 0.760* 0.753* 0.777 0.755*

T4,2 0.730* 0.759 0.736* 0.767 0.757

T4,3 0.788* 0.808 0.789 0.796 0.800
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Table 5

Classification accuracy using longitudinal and multi-modal data. An l2 -norm error term is used in LRAD.

Modality Time Baseline ||E||2 in LRAD

points NIC FMC DMC FDMC DFMC

MRI T4 0.686* 0.706* 0.709 0.718 0.719

T4,1 0.713* 0.716* 0.734 0.738 0.740

T4,2 0.702* 0.694* 0.723 0.725 0.723

T4,3 0.706* 0.698* 0.716 0.728 0.726

MRI + PET T4 0.686* 0.700* 0.726 0.729 0.724

T4,1 0.688* 0.701* 0.699* 0.721 0.706

T4,2 0.682* 0.699* 0.682* 0.722 0.700*

T4,3 0.705 0.714 0.703 0.718 0.716

MRI + Cli T4 0.764* 0.770* 0.808 0.807 0.809

T4,1 0.790* 0.791* 0.820 0.800* 0.821

T4,2 0.771* 0.773* 0.798 0.790* 0.802

T4,3 0.809* 0.809* 0.822 0.826 0.816

MRI + PET + Cli T4 0.745* 0.768* 0.778 0.800 0.787

T4,1 0.765 0.760* 0.769 0.782 0.767

T4,2 0.730* 0.759 0.743* 0.770 0.743*

T4,3 0.788* 0.808 0.798 0.798 0.809
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Table 6

PCC of MCI conversion time predictions using longitudinal and multi-modal data. An l1 -norm error term is 

used in LRR.

Modality Time Baseline ||E||1 in LRR

MC FMC DMC FDMC DFMC

MRI T4 0.462* 0.480* 0.540* 0.550 0.560

T41 0.423* 0.476* 0.437* 0.528 0.509

T42 0.440* 0.459* 0.451* 0.524 0.504

T43 0.426* 0.41* 0.463* 0.511 0.521

MRI + PET T4 0.512* 0.531* 0.454* 0.568 0.550*

T41 0.415* 0.502* 0.448* 0.533 0.512*

T42 0.452’ 0.475* 0.431* 0.513 0.503

T43 0.442* 0.485* 0.467* 0.522 0.491*

MRI + Cli T4 0.566* 0.594* 0.643* 0.639* 0.665

T41 0.552* 0.582* 0.605 0.587 0.607

T42 0.553* 0.617* 0.593* 0.643 0.626*

T43 0.576* 0.622 0.610 0.626 0.619

MRI + PET + Cli T4 0.558* 0.610* 0.556* 0.643 0.633

T41 0.579* 0.607 0.537* 0.612 0.596*

T42 0.471* 0.598* 0.569* 0.616 0.621

T43 0.566* 0.623 0.597* 0.631 0.621
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Table 7

SROCC of MCI conversion time predictions using longitudinal and multimodal data. An l1 -norm error term is 

used in LRR.

Modality Time Baseline ||E||1 in LRR

MC FMC DMC FDMC DFMC

MRI T4 0.463 0.476 0.536 0.548 0.557

T41 0.420 0.472 0.433 0.516 0.506

T42 0.440 0.457 0.446 0.523 0.506

T43 0.432 0.403 0.465 0.499 0.536

MRI + PET T4 0.492 0.524 0.446 0.554 0.551

T41 0.400 0.498 0.444 0.514 0.506

T42 0.442 0.485 0.417 0.519 0.505

T43 0.446 0.481 0.465 0.521 0.481

MRI + Cli T4 0.561 0.578 0.631 0.625 0.661

T41 0.526 0.568 0.579 0.568 0.599

T42 0.543 0.605 0.593 0.635 0.613

T43 0.563 0.620 0.593 0.624 0.608

MRI + PET + Cli T4 0.537 0.600 0.541 0.636 0.615

T41 0.555 0.594 0.517 0.597 0.579

T42 0.462 0.581 0.555 0.602 0.612

T43 0.566 0.613 0.591 0.622 0.609
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Table 8

R2 scores of MCI conversion time predictions using longitudinal and multimodal data. An l1 -norm error term 

is used in LRR.

Modality Time Baseline ||E||1 in LRR

MC FMC DMC FDMC DFMC

MRI T4 0.111 0.172 0.231 0.243 0.250

T41 0.100 0.161 0.092 0.221 0.197

T42 0.1 IS 0.136 0.090 0.216 0.175

T43 0.094 0.104 0.100 0.201 0.208

MRI + PET T4 0.175 0.215 0.122 0.263 0.245

T41 0.105 0.188 0.121 0.216 0.196

T42 0.124 0.144 0.117 0.208 0.182

T43 0.117 0.163 0.124 0.209 0.179

MRI + Cli T4 0.191 0.307 0.340 0.346 0.369

T41 0.222 0.287 0.282 0.300 0.307

T42 0.220 0.320 0.244 0.346 0.320

T43 0.239 0.325 0.270 0.325 0.321

MRI + PET + Cli T4 0.190 0.308 0.224 0.344 0.336

T41 0.261 0.294 0.209 0.312 0.292

T42 0.140 0.287 0.219 0.316 0.305

T43 0.243 0.323 0.268 0.333 0.319
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Table 9

pMCI classification accuracy using multi-modal and longitudinal data, comparison of results with other 

methods.

Modality Time iMSF Ingal Proposed

LogisticR LeastR FDMC DFMC

MRI T4 0.683 0.678 0.620 0.715 0.720

T41 0.681 0.686 0.690 0.743 0.756

T42 0.690 0.694 0.643 0.719 0.729

T43 0.663 0.650 0.614 0.731 0.728

MRI + PET T4 0.687 0.684 0.680 0.737 0.726

T41 0.658 0.654 0.721 0.720 0.723

T42 0.685 0.706 0.675 0.708 0.679

T43 0.676 0.654 0.705 0.702 0.720

MRI + Cli T4 0.792 0.766 0.771 0.821 0.828

T41 0.794 0.784 0.768 0.805 0.839

T42 0.800 0.789 0.772 0.802 0.807

T43 0.834 0.830 0.787 0.826 0.825

MRI + PET + Cli T4 0.787 0.764 0.777 0.812 0.802

T41 0.802 0.797 0.691 0.777 0.755

T42 0.811 0.810 0.727 0.767 0.757

T43 0.832 0.806 0.717 0.796 0.800
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Table 10

PCC of pMCI conversion time predictions using multi-modal and longitudinal data, comparison of results with 

other methods.

Modality Time iMSF Ingal Proposed

LogisticR LeastR FDMC DFMC

MRI T4 0.464 0.567 0.32 0.55 0.56

T41 0.432 0.520 0.281 0.528 0.509

T42 0.445 0.474 0.326 0.524 0.504

T43 0.397 0.493 0.307 0.511 0.521

MRI + PET T4 0.499 0.494 0.392 0.568 0.55

T41 0.407 0.493 0.37 0.533 0.512

T42 0.502 0.507 0.364 0.513 0.503

T43 0.442 0.447 0.395 0.522 0.491

MRI + Cli T4 0.577 0.654 0.543 0.639 0.665

T41 0.565 0.588 0.523 0.587 0.607

T42 0.604 0.638 0.45 0.643 0.626

T43 0.653 0.651 0.48 0.626 0.619

MRI + PET + Cli T4 0.578 0.621 0.491 0.643 0.633

T41 0.621 0.584 0.429 0.612 0.596

T42 0.638 0.617 0.333 0.616 0.621

T43 0.632 0.657 0.352 0.631 0.621
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