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Abstract
Background  Chronic kidney disease (CKD) is a progressive condition that leads to irreversible damage to the kidneys and 
is associated with an increased incidence of cardiovascular events and mortality. As novel interventions become available, 
estimates of economic and clinical outcomes are needed to guide payer reimbursement decisions.
Objective  The aim of the present study was to systematically review published economic models that simulated long-term 
outcomes of kidney disease to inform cost-effectiveness evaluations of CKD treatments.
Methods  The review was conducted across four databases (MEDLINE, Embase, the Cochrane library and EconLit) and 
health technology assessment agency websites. Relevant information on each model was extracted. Transition and mortality 
rates were also extracted to assess the choice of model parameterisation on disease progression by simulating patient’s time 
with end-stage renal disease (ESRD) and time to ESRD/death. The incorporation of cardiovascular disease in a population 
with CKD was qualitatively assessed across identified models.
Results  The search identified 101 models that met the criteria for inclusion. Models were classified into CKD models (n = 13), 
diabetes models with nephropathy (n = 48), ESRD-only models (n = 33) and cardiovascular models with CKD components 
(n = 7). Typically, published models utilised frameworks based on either (estimated or measured) glomerular filtration rate 
(GFR) or albuminuria, in line with clinical guideline recommendations for the diagnosis and monitoring of CKD. Generally, 
two core structures were identified, either a microsimulation model involving albuminuria or a Markov model utilising CKD 
stages and a linear GFR decline (although further variations on these model structures were also identified). Analysis of 
parameter variability in CKD disease progression suggested that mean time to ESRD/death was relatively consistent across 
model types (CKD models 28.2 years; diabetes models with nephropathy 24.6 years). When evaluating time with ESRD, CKD 
models predicted extended ESRD survival over diabetes models with nephropathy (mean time with ESRD 8.0 vs. 3.8 years).
Discussion  This review provides an overview of how CKD is typically modelled. While common frameworks were identi-
fied, model structure varied, and no single model type was used for the modelling of patients with CKD. In addition, many 
of the current methods did not explicitly consider patient heterogeneity or underlying disease aetiology, except for diabetes. 
However, the variability of individual patients’ GFR and albuminuria trajectories perhaps provides rationale for a model 
structure designed around the prediction of individual patients’ GFR trajectories. Frameworks of future CKD models should 
be informed and justified based on clinical rationale and availability of data to ensure validity of model results. In addition, 
further clinical and observational research is warranted to provide a better understanding of prognostic factors and data 
sources to improve economic modelling accuracy in CKD.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4027​3-019-00835​-z) contains 
supplementary material, which is available to authorized users.
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1  Introduction

Chronic kidney disease (CKD) is a progressive condition 
with heterogenous aetiology that leads to irreversible dam-
age to the kidneys and is associated with an increased inci-
dence of cardiovascular events and mortality [1–6]. The 
age-standardised global prevalence of CKD stages 1–5 
among adults aged ≥ 20 years in 2010 was approximately 
10.4% in men and 11.8% in women and continues to rise, 
fuelled by ageing populations and the increasing incidence 
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Key Points for Decision Makers 

This review provides an overview of how chronic kidney 
disease (CKD) is typically modelled, with glomerular 
filtration rate (GFR) and albuminuria, respectively, typi-
cally utilised as the key prognostic factor within CKD 
and diabetes model frameworks.

Most of the models identified were Markov models and/
or utilised input data at cohort mean levels, and many of 
the current methods did not explicitly consider patient 
heterogeneity or underlying disease aetiology, except 
for diabetes, providing limited clinical rationale for the 
choice of model design.

Given the heterogenous nature of individual CKD 
patients’ characteristics and clinical prognoses, a model 
structure designed around the prediction of individual 
patients’ GFR trajectories may be preferred over cohort-
based modelling frameworks when simulating patients 
with CKD. However, model choice should be informed 
and justified based on clinical rationale and availability 
of data to ensure validity of model results.

lifestyle interventions, others cannot, and the main goals of 
CKD management are to delay the rate of progression to 
ESRD to limit cardiovascular risk, preserve HRQoL and 
restrain healthcare costs. However, the underlying aetiology 
is often predictive of both the likely treatment strategy and 
the clinical prognosis.

As novel treatments for CKD become available and 
require evaluation for inclusion into drug formularies, 
estimates of economic (optimisation of budget usage) and 
clinical (maximisation of population benefits) outcomes are 
needed to guide payer reimbursement decisions. Given the 
significant costs associated with ESRD management, the rate 
of progression to ESRD is a significant determinant of cost 
effectiveness. However, the long-term outcomes of CKD, 
such as ESRD incidence, are not always sufficiently captured 
over the duration of clinical studies, and time to ESRD often 
varies widely between patients [20], making extrapolation 
necessary yet challenging. The choice of model structure 
may also play a key role in the validity of these extrapo-
lations, underlining the importance of understanding the 
implications of selecting a particular conceptual modelling 
approach. With these challenges in mind, the aim of the 
present review was to systematically review published eco-
nomic models that simulated long-term outcomes of kidney 
disease to qualitatively describe the chosen model designs, 
rates of CKD progression and the incorporation of CVD in 
a population with CKD.

2 � Methods

2.1 � Literature Search and Data Extraction

This review was conducted according to the PRISMA-
P (Preferred Reporting Items for Systematic reviews and 
Meta-Analyses Protocols) guidelines [21]. A search strategy 
was devised using a specified set of search terms for each 
database (Tables 1–6 in Resource 1 of the Electronic Supple-
mentary Material [ESM]). In brief, the search was designed 
to identify economic modelling publications that included 
adult patients with/without CKD in whom CKD progression 
was evaluated.

Searches were conducted in MEDLINE, Embase, the 
Cochrane Library and EconLit on 10 November 2017. To 
identify additional publications that may have modelled pro-
gression of kidney disease as part of another disease model, 
we conducted a supplementary search in MEDLINE to iden-
tify systematic literature reviews detailing economic models 
for diabetes or hypertension. We also searched the websites 
of the following health technology assessment agencies: UK 
National Institute for Health and Care Excellence, Cana-
dian Agency for Drugs and Technologies in Health and the 
Australian Pharmaceutical Benefits Advisory Committee. 

of diabetes and hypertension [7, 8]. Currently, more than two 
million patients with CKD worldwide have been estimated 
to require renal replacement therapy (RRT) through dialy-
sis or kidney transplantation [9]. In addition, the human-
istic and economic burdens of CKD increase significantly 
as renal function declines, and patients at CKD stage 3 or 
above are at 1–14 times higher risk for cardiovascular and 
overall mortality compared with the general population 
[4]. Moreover, patients with CKD often experience health-
related quality of life (HRQoL) impairments and increased 
healthcare costs [4, 10]. Because of the need for intensive 
treatment, the largest costs and impacts on HRQoL are 
incurred when patients reach CKD stage 5 (glomerular fil-
tration rate [GFR] < 15 mL/min/1.73 m2) or end-stage renal 
disease (ESRD), which is irreversible and where patients 
often require RRT [11, 12].

Cardiovascular disease (CVD) and CKD are closely inter-
related, and the reduction of systolic blood pressure, blood 
glucose and other cardiovascular risk factors via drug treat-
ment and/or lifestyle modifications are key components of 
CKD management. Renin–angiotensin–aldosterone system 
inhibitors, which confer both cardio- and reno-protective 
benefits through their anti-hypertensive effect, have been 
the cornerstone of CKD treatment for many years [13, 14] 
and are often prescribed in addition to statins and anti-plate-
let therapy [15–19]. While the risk of developing CKD of 
certain aetiologies can be reduced through medical and/or 
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Bibliographies of eligible articles were also searched for 
potential publications of interest to the review.

Titles and abstracts of the identified citations were 
screened by a single reviewer following specific PICOS 
(population, interventions, comparators, outcomes and 
study design) eligibility criteria (Table 7 in Resource 1 of 
the ESM). In brief, studies were included if they described 
an economic model of adult patients with/without CKD in 
whom CKD progression was evaluated. The model structure 
must have included the progression of kidney disease and 
any health economic outcome, including (but not restricted 
to) quality-adjusted life-years, incremental cost-effectiveness 
ratios, life-years gained or costs. Studies were limited to 
English language only. Abstracts/titles that did not meet the 
eligibility criteria were excluded; full-text publications were 
obtained for the remaining citations. The screening process 
was repeated using the PICOS criteria for full-text articles 
to obtain a final set of included publications that described 
economic models characterising CKD progression, regard-
less of the intervention or comparator being assessed.

Information on model characteristics (including structure, 
perspective, health states and disease setting), disease pro-
gression, event utility, costs, sensitivity analyses, drivers of 
cost effectiveness, validation procedures and model limita-
tions were extracted from all included publications.

2.2 � Analysis of Time to End‑Stage Renal Disease 
(ESRD) or Death

Where reported, transition and mortality rates were extracted 
from publications to qualitatively describe the choice of 
model parameterisation on disease progression, such as time 
to and time with ESRD. To facilitate comparison of rates of 
CKD disease progression, transition rates from each eligible 
published model were used to estimate time to ESRD or 
death (ESRD/death) and time with ESRD within a simple 
Markov model framework. Such analyses were undertaken 
individually for each model and limited to decision trees and 
Markov models that reported sufficient data to allow such 
analyses. Published models were excluded from these analy-
ses if transition rate data were not reported in sufficient detail 
or if regression-based simulation approaches were modelled 
because of their complexity. Models were also excluded if 
they were designed to model a horizon of < 10 years.

Health states were defined based on those reported in 
each individual model publication (Fig. 1 in Resource 2 of 
the ESM). Where possible, analyses were initiated with a 
standard patient profile, defined as patients aged 50 and from 
CKD stage 1, normo-albuminuria or earliest disease stage 
modelled, to provide a consistent reference point. The cycle 
length reported in each publication was utilised and the time 
to ESRD/death and time with ESRD subsequently calculated 
by estimating the time spent in each of the modelled health 

states. A maximum horizon of 50 years (up to the age of 
100) was modelled across all analyses to limit the uncer-
tainty between modelled outcomes.

3 � Results

3.1 � Summary of Included Models

The search identified 2382 citations, excluding any dupli-
cate publications (Fig. 1). During the screening of titles and 
abstracts, a further 1880 citations were excluded. Upon full-
text assessment of the remaining 502 articles, 101 models 
met criteria for inclusion, which were classified into CKD 
models (n = 13), diabetes models with nephropathy (n = 48), 
ESRD-only models (n = 33) and cardiovascular disease 
(CVD) models with CKD components (n = 7).

Models were assessed using the Consolidated Health 
Economic Evaluation Reporting Standards (CHEERS) 
checklist for economic evaluation of health interventions, 
which assesses whether all key elements of model structure, 
parameterisation and approach have been clearly reported 
[22]. In 15 (15%) models, all elements of the CHEERS 
checklist were included, with 79 (78%) models includ-
ing ≥ 80% of applicable elements (Resource 3 of the ESM). 
Often there was no single table of modelling assumptions; 
instead, structural or other assumptions underpinning the 
models were reported in relevant sections of the publication. 
The most infrequently reported elements were conflicts of 
interest (47%), measurement and valuation of preference-
based outcomes (34%) and sources of funding (30%).

3.2 � Chronic Kidney Disease (CKD) Models

3.2.1 � Framework and Disease Pathway

In 13 publications that described unique CKD models, a 
Markov model was most commonly used (ten publications 
[77%]) [23–32], including two models that were devel-
oped to inform clinical and policy decisions in improving 
CKD care: the Chronic Kidney Disease Model [31] and 
the SHARP CKD-CVD model [32] (Table 1). A further 
model, the CKD Health Policy Model, was also developed 
to inform policy-making decisions and used a microsimu-
lation approach [33]. Across models, CKD was generally 
described and modelled as a single disease. Other aetiolo-
gies included CKD and hypertension [26] and CKD and 
hepatitis C virus genotype [25], but a general population 
of individuals was more common [23, 24, 27, 33]. Where 
reported, the underlying disease aetiologies are described in 
Supplementary Table 8 (Resource 4 of the ESM). Also, an 
overview of the model settings, health states related to kid-
ney disease, approach to model CKD progression, approach 
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to modelling cardiovascular events, discounting, sensitiv-
ity analyses, drivers of cost effectiveness and approach to 
model validation is available in Supplementary Tables 8–10 
(Resource 4 of the ESM).

In general, models were based on a core structure defined 
by health states for CKD according to (estimated or meas-
ured) GFR, in line with stratifications in the National Kid-
ney Foundation Kidney Disease Outcomes Quality Ini-
tiative (NKF KDOQI) guidelines [34] (Fig. 2). However, 
four models did not apply this structure [23, 27, 35, 36]. 
Boersma et al. [23] modelled CKD according to the pres-
ence of albuminuria (normoalbuminuria, microalbuminuria 
and macroalbuminuria). Ferguson et al. [27] divided model 
states into normal kidney function; low, intermediate and 
high risk of progression to kidney failure; being on dialysis; 
and surviving with a kidney transplant. Howard et al. [36] 

simulated the annual progression of patients from the devel-
opment of risk factors (specifically hypertension, proteinu-
ria and diabetes [with no albuminuria, microalbuminuria or 
macroalbuminuria]) through CKD stage 1–4 to ESRD and 
RRT. In most studies, patients initiated RRT with dialysis 
and had the option to receive a transplant. However, a num-
ber of studies did not differentiate between type of RRT, 
instead defining RRT as dialysis or transplant. For hyperten-
sion and proteinuria states, patients in this modelling study 
had an annual probability of progressing to ESRD requiring 
RRT, where CKD progression was not explicitly modelled. 
Finally, Okubo et al. [35] formulated a Markov model using 
separate sub-models for patients with CKD with and without 
diabetes. In both, kidney disease was modelled as the prob-
ability of ESRD. All models included transition to death.

Fig. 1   PRISMA (Preferred 
Reporting Items for Systematic 
Reviews and Meta-Analyses) 
diagram showing the model-
selection process. CKD chronic 
kidney disease, CVD cardiovas-
cular disease, ESRD end-stage 
renal disease, HTA health 
technology appraisal
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Table 1   Summary of model structural framework and the method of disease progression across identified chronic kidney disease and diabetes 
models

N Model structure Model structure sub-category CKD progression (as described by model publication) References

CKD models (N = 13)
 9 Markov model Multistate Markov model Transition probabilities [23]

Markov model GFR decline [24]
Semi-Markov model Transition probabilities [25]
Markov model Estimated GFR decline, transition probabilities [26]
Markov model Transition probabilities [27]
Markov model Estimated GFR decline, transition probabilities [28]
Markov model Transition probabilities [30]
Markov model Transition probabilities [29]
Markov model Risk equations [32]

 1 Simulation model Microsimulation model Estimated GFR decline [163]
 3 Combination Markov model and Monte Carlo simulation Relative risk of progression [36]

Decision tree and Markov model Transition probabilities [35]
Markov model and Monte Carlo simulation GFR decline [31]

Diabetes models (N = 48)
 25 Markov model Markov model Transition probabilities [115]

Markov model Transition probabilities [118]
Markov model Transition probabilities [90]
Markov model Transition probabilities [79]
Markov model Transition probabilities [98]
Markov model Transition probabilities [116]
Markov model Transition probabilities [53]
Markov model Creatinine clearance decline [124]
Markov model Transition probabilities [92]
Markov model Transition probabilities [100]
Markov model Transition probabilities [89]
Markov model Transition probabilities [164]
Markov model Transition probabilities [85]
Markov model Transition probabilities [120]
Markov model Transition probabilities 105
Markov model Transition probabilities [88]
Markov model Transition probabilities [110]
Markov model HbA1c levels [86]
Markov model Transition probabilities [102]
Markov model Transition probabilities [103]
Markov model Risk equations [104]
Markov model Transition probabilities [113]
Markov model Transition probabilities [74]
Semi-Markov model Transition probabilities [117]
Semi-Markov model Transition probabilities [107]

 13 Simulation model Discrete-event simulation model Transition probabilities [121]
Microsimulation model Risk equations [109]
Microsimulation model Incidence rates [91]
Discrete-event simulation model Risk equations [95]
Microsimulation model Risk equations [93]
Microsimulation model Transition probabilities [83]
Object-oriented simulation model Risk equations [112]
Microsimulation model Risk equations [99]
Discrete-event simulation model Transition probabilities [101]
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There were four common variations to the core structure 
of reported models (Fig. 2): (1) modelling CKD stage 3 as a 
single health state or stratified into CKD stage 3a and 3b; (2) 
the initial CKD stage (i.e. whether patients began in early or 
advanced CKD stages); (3) presenting CKD stage 5 as a sin-
gle state (ESRD) or stratified into non-dialysis ESRD, dialy-
sis or kidney transplant; and (4) using separate sub-models 
for diabetes and CKD that informed the overall model. 
Where reported, ESRD models defined ESRD as (measured 
or estimated) GFR < 15 mL/min/m2; the initiation rules for 
RRT were less consistent. Four models assumed initiation of 
RRT (dialysis or transplant) immediately after the incidence 
of ESRD [29, 30, 32, 36], whereas four models assumed a 
delay in the initiation of RRT; one model assumed RRT 
was initiated 1 year after ESRD incidence [33], two models 
initiated RRT at a GFR < 10 mL/min/m2 [28, 31] and one 
assumed a static transition probability to RRT [25].

3.2.2 � Characterisation of CKD Progression

In summary, five models (38%) predicted CKD outcomes 
based on rates of annual GFR decline, four models (31%) 
used GFR transition probabilities and two models (15%) 
used albuminuria transition probabilities.

Models based on GFR health states predicted CKD out-
comes based on rates of GFR decline or transition prob-
abilities. Erickson et al. [26] used published observations 
from large observational cohorts of comparable patient 
populations to estimate the mean annual rate of estimated 
GFR decline. This annual rate was applied to all CKD stages 
(progression from stage 3a to stage 5 CKD). Boulware et al. 
[24] and the CKD Health Policy Model [33] modelled pro-
gression through CKD stages based on GFR decline and 
albuminuria status. In the CKD Health Policy Model, a 
person would be assigned an initial estimated GFR and 

Decision tree: Defined as a cohort-level model that uses a tree-like model of decisions and their possible consequences, where transitions are 
limited to those specified by the particular nodes included in the decision tree. Markov model: A more fluid extension of the decision tree prin-
ciple, defined as a type of cohort-based mathematical model containing a finite number of mutually exclusive health states, with time periods of 
uniform length, in which the probability of movement from one state to another depends on the current state. Semi-Markov model: As a Markov 
model but incorporating a time-dependency factor whereby transition rates are dependent on the time spent in a health state and are, thus, not 
constant. Multi-state Markov model: As a Markov model but has explicitly described the calculation of transition rates as accounting for depend-
encies between events. Simulation model: Defined as a patient-level model in which patient disease progression is simulated individually and 
where health states are not modelled as mutually exclusive. Microsimulation model: As a simulation model but providing more granularity/detail 
(e.g. where a simulation model may model ESRD as a single state, a microsimulation model may model health states within the ESRD state 
such as dialysis or transplant). Object-oriented simulation model: Defined as a person-by-person, object-by-object simulation, spanning from 
biological details to the care processes, logistics, resources and costs of healthcare systems. Monte-Carlo simulation model: Defined as a form 
of modelling where model inputs are drawn from distributions and are not treated as fixed values, with the model run multiple times to provide 
a probabilistic distribution of results. Discrete-event simulation: Discrete-event simulation is a computer-modelling technique used in economic 
evaluation of health interventions in which individual patient experience is simulated over time, and events occurring to the patient and the con-
sequences of such events are tracked and summarised. Unlike other models, in discrete-event simulation, movements between patients’ health 
states are usually driven by events that may occur at varying times (rather than during cycles of fixed length), and time-to-event distributions are 
required for each event. Event likelihoods are driven by individual patient characteristics, which are recorded at baseline and may be updated as 
the patient experience (events, new health states) accumulates
CKD chronic kidney disease, ESRD end-stage renal disease, GFR glomerular filtration rate, HbA1c glycated haemoglobin

Table 1   (continued)

N Model structure Model structure sub-category CKD progression (as described by model publication) References

Microsimulation model Transition probabilities [96]
Discrete-event simulation model Transition probabilities [84]
Monte Carlo simulation model Transition probabilities [87]
Microsimulation model Not reported [106]

 2 Decision tree Decision tree Creatinine clearance decline [96]
Decision tree Probabilities [82]

 8 Combination Markov model and Monte Carlo simulation Transition probabilities [94]
Markov model and Monte Carlo simulation Transition probabilities [119]
Markov model and microsimulation Transition probabilities [122]
Semi-Markov model and Monte Carlo simulation Transition probabilities [81]
Markov model and Monte Carlo simulation Hazard rate (per year) [97]
Markov model and Monte Carlo simulation Risk equations [114]
Markov model and Monte Carlo simulation Transition probabilities [80]
Decision tree and Markov model Transition probabilities [111]
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subsequently experience annual decreases in estimated GFR 
based on rates derived from a clinical trial by Boulware et al. 
[24] that varied according to CKD stage, presence of albu-
minuria and diabetes, and hypertension status. The model 
by Levy et al. [28] modelled the functioning kidney as a 
single health state; estimated GFR was assumed to decline 
linearly from estimated GFR 3a until ESRD. The Chronic 
Kidney Disease model [31] utilised GFR changes based 
upon a distribution derived from an analysis of a primary 
dataset of patients with CKD followed for 5 years [37] that 
was adjusted for age, race, current CKD stage, hypertension, 
diabetes, proteinuria, and CVD.

Four models [25, 27, 29, 30] utilised transition prob-
abilities between CKD stages to model (estimated or meas-
ured) GFR decline. Elbasha et al. [25] derived probabilities 
from a targeted review of the published literature, Ferguson 
et al. [27] calculated probabilities based on estimated GFR 
values and adapted longitudinal data on CKD progression 
and regression rates from the indigenous cohort within the 
Alberta Kidney Disease Network [38], and Nuijten et al. [29, 
30] used a published study by Keith et al. [39] to derive 
transition probabilities.

In the two models [23, 36] that used albuminuria states to 
model CKD progression, annual transition probability and 
mortality rates differed by proteinuria stage and were based 
on data from the PREVEND (Prevention of Renal and Vas-
cular End Stage Disease) study [40].

Within the SHARP CKD-CVD policy model, the CKD 
sub-model utilised participant data from the SHARP (Study 
of Heart and Renal Protection) trial—a randomised trial 
assessing the effects of lowering low-density lipoprotein 
cholesterol in patients with CKD—to inform disease pro-
gression [32, 41]. For each year of follow-up, data collected 
during that year were used to categorise participants into 
respective health states (one of five CKD states, on main-
tenance dialysis, or having undergone a kidney transplant). 
Participants not receiving RRT could progress to (or remain 
in) any CKD category, with transition probabilities esti-
mated using multivariate multinomial logistic regression.

Two models predicted improvement in health over time 
(e.g. CKD stage 2 to stage 1): Boersma et al. [23] and Fer-
guson et al. [27] allowed patients to transition to improved 
states of health during the model horizon, the former through 
transitions between macro-, micro- and normo-albuminuria, 
and the latter between CKD stages 1–4.

Four models [25–28] adapted mortality rates from base-
line populations using age- and sex-specific life tables from 
the country of study and modified them using relative risks 
or hazard ratios to derive CKD stage-specific all-cause mor-
tality. Another approach was to derive mortality rates from 
large cohort studies [23, 29, 30]. Where modelled, mortality 
rates for those surviving with a transplant or those on dialy-
sis, as well as the chance of graft failure, were taken from 
national registries.

3.3 � ESRD‑Only Models

Rather than modelling disease progression through its full 
spectrum (CKD stage 1–5), 33 models described an ESRD 
population (e.g. CKD stage 5 or a dialysis population). 
Across ESRD-only models, the costs and benefits of differ-
ent dialysis modalities was the primary outcome assessed 
[42–51]. In addition, the cost effectiveness of treating hyper-
phosphatemia or anaemia, secondary conditions associated 
with CKD progression, were commonly modelled (e.g. use 
of sevelamer with calcium carbonate for patients receiving 
dialysis with hyperphosphatemia [52]).

Of these models, 19 (58%) modelled patients from the 
explicit state of dialysis or transplant, and the remaining 
14 (42%) initiated patients from a pre-dialysis health state 
with or without ESRD, including health states describing 
pre-dialysis CKD stage 5 and other broader CKD health 
state definitions. Most models focusing on ESRD only used 
Markov modelling techniques (28 publications [42–45, 47, 
48, 50–71]); among the remaining models, one [49] used a 

Fig. 2   Example of the core model structure of chronic kidney disease 
models. CKD chronic kidney disease, ESRD end-stage renal disease. 
*CKD stage 3 may be further stratified into CKD stage 3a and CKD 
stage 3b. Note: Patients could progress to death from any health state
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decision tree and another a microsimulation approach [46], 
and two further models used a Markov model with a deci-
sion tree component [58, 72]. An overview of the models 
is provided in Supplementary Tables 11–13 (Resource 5 of 
the ESM).

In general, models employed a core structure based on 
four health states: pre-dialysis, dialysis, transplantation and 
death. The majority of models assumed the initiation of 
dialysis or transplantation at model initiation, with only two 
notable exceptions, the models by Shechter et al. [73] and 
Lee et al. [46], where dialysis was not initiated until GFR 
thresholds of < 10 and < 9 mL/min/m2, respectively. Within 
the dialysis state, patients could switch between haemo-
dialysis and peritoneal dialysis modalities. Patients could 
progress from the pre-dialysis state to dialysis or directly to 
kidney transplant; they could also reach the transplant state 
through progression from the dialysis state. Upon transplant, 
patients could remain in continued graft function or experi-
ence graft failure, whereby they returned to the dialysis state.

There were two common variations to this structure: first, 
models differed in the approach to modelling dialysis and, 
second, they differed on how kidney function was modelled 
post-transplant. Dialysis was modelled as a single health 
state [44, 51, 52, 55, 66, 68, 71, 74], as two separate health 
states for haemodialysis and peritoneal dialysis [45, 48–50, 
56, 58, 62, 63, 67], as three separate health states [47, 65], 
or as four separate health states [43, 70] that included home 
haemodialysis, satellite haemodialysis, hospital haemodialy-
sis and continuous ambulatory peritoneal dialysis [43]. Two 
models reported the use of five different dialysis modalities 
[42, 57]. Regarding graft function post-transplant, the major-
ity of models included a rate of graft failure, upon which 
patients would return to the dialysis health state. Four mod-
els included a post-transplant health state [44, 46, 60, 65].

In general, ESRD-only models used various forms of tran-
sition rates to model the proportion of pre-dialysis patients 
progressing to dialysis or transplant, as described briefly in 
Supplementary Tables 10–19 (Resources 5–7 of the ESM) 
[42–45, 47–52, 54, 56, 57, 60, 62–67, 70, 75]. These were 
usually derived using data obtained from national renal 
registries relevant to the country perspective of the model, 
such as the Norwegian Renal Registry [76], the UK Renal 
Registry [75] or the Dutch Renal Replacement Registry [77].

3.4 � Diabetes Models with Nephropathy

3.4.1 � Framework and Disease Pathway

Diabetic nephropathy is a microvascular complication of dia-
betes and a leading cause of ESRD [78]. In total, 48 unique 
diabetes models were identified that modelled nephropathy 
using two different approaches. The first approach modelled 
diabetes through estimated glycated haemoglobin (HbA1c) 

change with time. The models included a sub-model of 
nephropathy as a long-term complication of diabetes; other 
complications included retinopathy and neuropathy. The 
second approach exclusively modelled the progression of 
nephropathy in diabetic patients through albuminuria health 
states, without modelling diabetes progression or HbA1c. 
Twelve (25%) were models of type 1 diabetes mellitus 
(T1DM) [74, 79–89], 22 (46%) were models of type 2 diabe-
tes mellitus (T2DM) [90–111] and seven (16%) were models 
of both T1DM and T2DM [112–117]. The remaining models 
evaluated either diabetes with hypertension [118–120], pre-
diabetes [121, 122], or diabetes with more advanced kidney 
disease [123, 124]. The majority of models were Markov 
(n = 25 [52%]) or microsimulation (n = 7 [15%]) models 
(Table 1). An overview of the models is provided in Sup-
plementary Tables 14–16 (Resource 6 of the ESM).

Irrespective of the type of diabetes, most models applied 
a core sub-model structure of diabetic nephropathy based on 
a disease pathway of five health states: no nephropathy (or 
normoalbuminuria), microalbuminuria, macroalbuminuria 
(or gross proteinuria), ESRD (comprising dialysis or trans-
plant as absorbing states) and death (Fig. 3). Some mod-
els also included a health state of macroalbuminuria with 
impaired (estimated or measured) GFR.

Generally, in models focusing on diabetic nephropathy, 
patients could progress from no nephropathy to microalbu-
minuria, from which they could either return to no nephrop-
athy or progress to macroalbuminuria with or without 
impaired GFR. Once in a state of macroalbuminuria, with 
or without impaired GFR, patients could progress to ESRD. 
Across all diabetic nephropathy models, RRT (dialysis or 
transplant) was not explicitly defined in 15 models and not 
modelled entirely in nine models. When RRT was included 
in a model, it was typically initiated upon the incidence 
of ESRD (22 models) or after the first year of ESRD (one 
model). Patients with ESRD could usually progress from 
dialysis to transplant and, following graft failure, from trans-
plant to dialysis; both the dialysis and the transplant health 
states were associated with an increased risk of mortality.

3.4.2 � Characterisation of CKD Progression

Generally, in T1DM models, transition rates or transition 
probabilities informed nephropathy progression, with the 
source of disease progression commonly derived from the 
DCCT (Diabetes Control and Complications Trial), a major 
clinical trial conducted from 1983 to 1993 [125] or the ran-
domised clinical trial of captopril for the inhibition of dia-
betic nephropathy [126]. Similarly, T2DM models tended 
to use transition rates or transition probabilities to model 
the progression of diabetic nephropathy. Two studies, the 
USRDS (United States Renal Data System) national data-
base and the UKPDS (UK Prospective Diabetes Study), were 
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used to inform transition rates or probabilities across many 
of the models. The JADE model [95], UKPDS OM1 model 
[96], UKPDS OM2 model [99] and the IHE cohort model 
[104] developed risk equations using data mainly derived 
from the UKPDS, among other sources.

Models including both T1DM and T2DM disease states 
also applied transition rates or transition probabilities to 
predict diabetic nephropathy progression. Information was 
generally sourced from different studies to inform separate 
rates/probabilities for T1DM and T2DM. The EAGLE [114] 
and CORE [115] diabetes models with CKD components 
used separate sources for ESRD only (T1DM [127], T2DM 
[128]), with the latter model employing three additional 
studies [126, 129, 130] to inform T2DM transition prob-
abilities. Furthermore, in the CORE diabetes model, patients 
were screened for the presence of micro- or macroalbumi-
nuria; once either was detected, they could be treated with 
angiotensin-converting enzyme inhibitors. Patients in receipt 
of angiotensin-converting enzyme inhibitors progressed at 
a different rate from those not receiving these medications.

In all models, patients in the ESRD health state received 
dialysis or renal transplant. The decision to transition to dial-
ysis was typically based on a weighted average of dialysis 
modalities (haemodialysis and peritoneal dialysis) that either 
reflected country-specific treatment patterns or were derived 
from contemporary studies. The rate at which patients pro-
gressed from dialysis to transplant or from transplant to 

dialysis, and the mortality risk multiplier attributable ESRD, 
were typically informed by country-specific registry data.

3.5 � Cardiovascular Morbidity and Mortality

Given the interrelationship between CKD and CVD, the 
incorporation of cardiovascular morbidity and mortality was 
assessed across identified models. In CKD models, the most 
commonly reported cardiovascular events were myocardial 
infarction (five models [23, 25, 26, 31, 33]) and stroke (four 
models [25, 26, 31, 33]). In two models, the Framingham 
risk equations were used to estimate baseline cardiovas-
cular event hazards that were subsequently multiplied by 
CKD-specific hazard ratios reflecting the increased risk of 
cardiovascular events independently associated with CKD 
stage [26, 33]. In one of these models [26], a relative risk 
reduction for myocardial infarction and stroke was applied to 
the baseline risk based on statin use. The relative risk reduc-
tions for CKD stage 3 (3a and 3b) and stage 4 were obtained 
from a published meta-analysis [131] and the SHARP trial 
[41], respectively. The authors assumed that statins did not 
reduce cardiovascular risks for patients with CKD stage 5. 
The second publication, describing an adapted version of the 
SHARP CKD-CVD policy model [33], included CVD as a 
separate sub-model, with health states including non-vas-
cular death, vascular death, non-fatal major atherosclerotic 
event and non-fatal haemorrhagic stroke. Elbasha et al. [25] 
also used CKD stage-specific hazard rates for myocardial 
infarction and stroke, although they were applied to baseline 
probabilities reported in the underlying Framingham risk 
equation publications. Boersma et al. [23] used transition 
probabilities for cardiovascular event incidence that were 
estimated based on the PREVEND study [40]. In Howard 
et al. [36], patients had an annual probability of experiencing 
a fatal or non-fatal cardiovascular event based on clinical 
history (diabetes, hypertension, proteinuria) obtained from 
the general literature. Models of ESRD did not include CVD 
components.

In models focusing on patients with diabetic nephropathy, 
CVD was most commonly incorporated using risk equations 
or transition probabilities. Equations from the Framingham 
Heart Study [132, 133] or UKPDS [96, 134] were most 
commonly used to model cardiovascular events, including 
myocardial infarction and stroke. Transition probabilities 
were estimated based on data derived from various sources, 
including DCCT [125], MARVAL [135] and UKPDS [96, 
134].

In addition to the models described, a further seven mod-
els of CVD were identified that included a CKD component 
[136–142]. An overview of the models is provided in Sup-
plementary Tables 17–19 (Resource 7 of the ESM). In six of 
these models, CKD was incorporated through a single ESRD 
health state, and one model [141] included a sub-model 

Fig. 3   Example of the core model structure of the nephropathy com-
ponent of diabetes models with nephropathy. CKD chronic kidney 
disease, ESRD end-stage renal disease, GFR glomerular filtration 
rate. Note: Patients could progress to death from any health state
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for the progression of nephropathy. The main approach to 
modelling cardiovascular events by these models was to use 
transition probabilities. Probabilities were typically age and 
sex specific and derived from the Framingham risk equa-
tion or Framingham data/studies. Two models adjusted the 
risk of cardiovascular events for hypertension treatment but 
assumed such treatment had no comparable impact on the 
risk of CKD progression [138, 141].

3.6 � Time to and Time with ESRD

Transition rates consistent with the core model structures 
presented in Figs. 2 and 3 were extracted from eligible stud-
ies and are summarised in Table 2. Overall, there was greater 
availability of transition rate data for model structures based 
on albuminuria than for CKD stage-based models defined 
by GFR, which would be expected given the greater num-
ber of diabetes models with CKD components identified. 
Significant variability was observed across several reported 
transition rates. Most notably, the annual transitions from 
CKD stage 3 to CKD stage 4 and the transitions from ESRD/
dialysis to death ranged from 0.008 to 0.405 and 0.008 to 
0.626, respectively. All extracted transition rates are sum-
marised in Resource 8 in the ESM.

The mean rate of progression from CKD stage 4 to 
ESRD was greater than that from macroalbuminuria (0.067 
vs. 0.043, respectively); conversely, the mean rate of pro-
gression from CKD stage 4 to death was lower than that 
from macroalbuminuria (0.080 vs. 0.101, respectively). As 
anticipated, across transition rates relating to model struc-
tures based on albuminuria, the rate of progression to death 
increased as disease severity increased, with a less clear pat-
tern observed among transitions relating to a CKD stage-
based model structure defined by GFR. Patients with ESRD/
dialysis were at the greatest risk of mortality (mean rate 
0.177); following transplant, the rate of transition to death 
was comparable to that in earlier disease stages (mean rate 
0.053).

In total, eight CKD models and 15 diabetes models with 
CKD components reported enough information to evaluate 
expected time to ESRD/death and/or time with ESRD. Sig-
nificant parameter variability existed between models in both 
time to ESRD/death and time with ESRD, with only small 
improvements in consistency observed when considering 
just those models where starting health states were aligned 
(i.e. all patients initiated at CKD stage 1 or normoalbumi-
nuria) (Fig. 4).

Such parameter variability was likely due to the het-
erogeneity in patient characteristics and disease severity 
across studies. The reported age of patients varied from 
13 to 75 years, with most models evaluating a cohort aged 
between 30 and 50 years. The majority of CKD models initi-
ated patients at CKD stage 1, with only two exceptions: Levy 

et al. [28] (CKD stage 3b/4) and Erickson et al. [26] (CKD 
stage 2). However, significant heterogeneity existed with 
respect to patients’ disease background, the most notable of 
which were the models by Elbasha et al. [25] and Erickson 
et al. [26], which modelled cohorts with hepatitis C and early 
autosomal dominant polycystic kidney disease, respectively. 
Among diabetes models with nephropathy, there was reason-
able consistency with respect to starting health state, with 
only four of the 15 models not initiating patients in the state 
of normoalbuminuria. The most notable differences in dis-
ease background were the modelling of T1DM or T2DM, 
and within those settings, the choice of diabetes treatment.

Further, published models eligible for this analysis typi-
cally followed the core model structure identified earlier 
in this review, based on either CKD stage or albuminuria. 
Some variability existed with respect to explicitly incorpo-
rated health states outside of these core structures, where 
the number of health state transitions varied from two in 
the simplest model to 26 in the most complex. Such differ-
ences in health state definition likely influenced differences 
in progression estimates.

Mean time to ESRD/death was relatively consistent 
across CKD models and diabetes models with nephropathy. 
In CKD models, mean time to ESRD/death was 28.2 years 
when patients were initiated from the earliest CKD stage 
(21.6 years when initiating patients in the starting health 
state defined in the model publication) and 24.6 years in 
diabetes models with CKD components (24.0 years when 
initiating patients in the starting health state defined in the 
model publication). When evaluating time with ESRD, CKD 
models predicted extended ESRD survival over diabetes 
models with nephropathy (mean time with ESRD: 8.0 vs. 
3.8 years).

4 � Discussion

This review qualitatively describes how the progression 
of kidney disease was incorporated in economic models. 
Models focusing purely on CKD are typically based on 
(estimated or measured GFR) decline, with GFR progres-
sion predominantly based on a linear rate of decline, which 
could be adjusted for age, race, CKD stage, prevalence of 
proteinuria and clinical history (hypertension or diabetes). 
In comparison, diabetes models with nephropathy, where 
most of the economic models included nephropathy as a 
separate microvascular sub-model within the overall model, 
were most frequently based on the presence of albuminuria, 
where CKD progression was most commonly modelled with 
the use of transition probabilities calculated for progression 
between albuminuria health states. There were exceptions to 
these general rules, and the choice of modelling framework 
was likely driven by numerous factors, such as perspective, 
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Table 2   Summary of annual transition rates reported in identified studies

Assumptions: Where relevant, transitions were matched to a baseline patient age of 50 years. Where ranges were reported, the midpoint of the 
range was extracted. Where male and female rates were reported, the average of the two was extracted. Duration of diabetes was assumed to be 
10 years if not reported and required to calculate transition rates. All transitions are presented as annual probabilities. Depending on the model, 
ESRD includes non-dialysis ESRD and dialysis
CKD chronic kidney disease, ESRD end-stage renal disease

Transition Mean Median Minimum Maximum No. of 
observations

References

CKD transitions
 CKD 1 to CKD 2 0.053 0.053 0.022 0.083 2 [25, 30]
 CKD 1 to death 0.040 0.040 0.040 0.040 1 [30]
 CKD 2 to CKD 3 0.071 0.054 0.002 0.175 4 [25, 27, 30]
 CKD 2 to death 0.027 0.027 0.003 0.051 2 [27, 30]
 CKD 3 to CKD 4 0.182 0.151 0.008 0.405 6 [25, 27, 29, 30]
 CKD 3 to death 0.041 0.063 0.005 0.063 5 [27, 29, 30]
 CKD 4 to CKD 5/ESRD 0.067 0.059 0.010 0.148 12 [25, 27, 29, 30, 53, 54, 58, 61]
 CKD 4 to death 0.080 0.062 0.008 0.177 10 [27, 29, 30] [58, 61, 66]

Nephropathy-related transitions
 No nephropathy to microalbuminuria 0.028 0.027 0.003 0.060 24 [23, 74, 79, 88, 92, 98, 103, 111, 117, 141]
 No nephropathy to death 0.026 0.006 0.000 0.194 16 [23, 74, 79, 80, 88, 92, 113, 117]
 Microalbuminuria to macroalbuminuria 0.044 0.030 0.001 0.157 18 [23, 74, 79, 88, 92, 103, 110, 111, 117]
 Microalbuminuria to death 0.038 0.014 0.000 0.119 17 [23, 74, 79, 88, 92, 102, 110, 117]
 Macroalbuminuria to ESRD 0.040 0.012 0.001 0.158 17 [23, 74, 79, 88, 92, 110, 111, 117]
 Macroalbuminuria to death 0.101 0.086 0.007 0.289 15 [23, 74, 79, 88, 92, 110, 117]

ESRD transitions
 ESRD/dialysis to transplant 0.055 0.040 0.005 0.150 14 [27, 30, 43, 44, 48, 51, 107, 118, 120]
 ESRD/dialysis to death 0.177 0.146 0.008 0.626 56 [27, 30, 35, 43–45, 48, 51, 53, 58, 59, 61, 63, 

66, 74, 79, 88, 92, 94, 98, 107, 110, 111, 
117, 118, 120, 121, 136, 138, 141]

 Transplant to dialysis 0.082 0.084 0.040 0.118 4 [27, 30, 118]
 Transplant to death 0.053 0.050 0.012 0.093 12 [27, 30, 51, 61, 107, 118, 120]

Fig. 4   Predicted time to end-
stage renal disease (ESRD) or 
death and with ESRD. CKD 
chronic kidney disease
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intervention, indication and underlying data sources used 
to inform disease progression, among other considerations.

The preference to model GFR over albuminuria (or vice 
versa) was not immediately clear and not typically justi-
fied in modelling publications; however, it may relate to the 
focus and structure of models in the two disease areas. For 
example, models focusing on CKD typically predicted health 
state occupancy in line with CKD stages in patients with 
established CKD, for which GFR provides an explicit deline-
ator. In contrast, diabetes models with nephropathy typically 
aimed to predict the presence of ESRD based on a reported 
baseline prevalence of albuminuria, an established predictor 
of ESRD in patients with diabetes, often in patients with no 
history of CKD [143, 144]. However, while the choice of 
prognostic factor may be relatively straight forward within 
the context of specific modelling frameworks informed by 
the availability of data, the clinical rationale for any prefer-
ence is much less well-defined [145]. Consensus does exist 
among the published literature with respect to the natural 
trajectory of albuminuria and GFR, with changes in albu-
minuria considered variable, with both negative and positive 
changes often observed in short timeframes, and changes in 
GFR usually considered to be progressive (i.e. monotoni-
cally decreasing). However, two studies predicted improve-
ment in GFR and albuminuria health states [23, 27], in line 
with the literature suggesting that renal function can improve 
in a subset of patients [146–148]. Nevertheless, it has been 
suggested that the two variables be used in conjunction to 
predict the progression of CKD [145, 149].

There were some limitations to our review. First, only 
English articles were included in the search. However, this 
included the vast majority of the articles published, and 
research suggests that exclusion of non-English articles is 
unlikely to result in bias [150]. Second, only primary pub-
lications of models were included as they were deemed to 
contain the most relevant information regarding the model. 
Third, the review was limited to the information available 
in the study publication. Fourth, titles and abstracts of the 
identified citations were screened by a single reviewer. For 
uncertainties surrounding the relevance of a study, the cor-
responding full text was obtained, so a decision was made 
based on a thorough assessment of the study.

Across all models, a common author-identified limitation 
was the quality and quantity of the data sources that were 
used to inform the model, such as using data from clinical 
trials with a short duration, despite a longer follow-up study 
being more appropriate to model disease progression. For 
models of CKD without diabetes, limitations surrounded the 
modelling of CKD progression, including the lack of data for 
estimating the rate of decline in kidney function for people 
with neither diabetes nor hypertension [24], lack of strati-
fication of CKD states according to albuminuria [25], and 
the assumption that GFR declines linearly [28]. In models 

of CKD with diabetes, a number of authors cited the use of 
risk equations derived from the Framingham Heart Study 
as a limitation to predicting cardiovascular events in those 
with CKD.

Interestingly, most models that captured the risk of CVD 
predicted an increase in cardiovascular risk as CKD pro-
gressed; conversely, only two models predicted an increased 
risk of CKD progression as a function of CVD incidence 
[23, 92]. However, it should be noted that the modelling 
of these components was often relatively simplistic and 
failed to provide clinical justification or rationale for the 
choice of modelled relationship. Across all models, car-
diovascular-related risk was most frequently derived from 
the Framingham Heart Study, with estimates modified to 
reflect differences in specific geographical populations or 
patient characteristics. The Framingham risk equations 
are an extremely well-validated set of equations derived 
from a large cohort of patients (over multiple generations) 
followed-up over several decades and have helped identify 
major cardiovascular risk factors and their impact on the 
evolving risk of CVD [151–156]. However, the generalis-
ability of the Framingham equations to a CKD population is 
uncertain, given the equations were derived using data from 
a population-based cohort with a low prevalence of CKD 
[157]. Various studies have demonstrated that patients with 
CKD have a higher prevalence of CVD than can reasonably 
be explained based on traditional cardiovascular risk factors, 
suggesting that CKD itself, or other unknown factors, are 
additionally impacting on patients’ cardiovascular risk [3, 
158, 159]. As a result, the Framingham risk equations dem-
onstrate poor overall accuracy in predicting cardiovascular 
events in individuals with CKD, emphasising the need for 
the development of cardiovascular risk equations in patients 
with CKD specifically to support future cost-effectiveness 
studies [156].

Across models, CKD was generally described and mod-
elled as a single disease, thus ignoring (perhaps relevant) 
differences in aetiologies. However, the interventions under 
evaluation were typically indicated across all CKD aetiolo-
gies and targeted to other diseases rather than to CKD itself, 
with decision makers most interested in an evaluation of cost 
effectiveness across the entire CKD population (cohort level 
as opposed to individual patient level). Further, while spe-
cific CKD aetiologies were not often defined or cited, mod-
elled populations were usually defined based on an under-
lying clinical trial design, which typically limited patient 
heterogeneity through specific inclusion/exclusion criteria. 
Therefore, within this context, a simplification or generali-
sation of CKD aetiologies may be considered appropriate.

The clinical course of CKD progression (CKD stage 1–4) 
to ESRD is known to vary substantially across patients and 
may be influenced by various risk factors, including CKD 
aetiology, sex, presence of comorbidities (e.g. diabetes and 
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CVD), anaemia, hypertension and proteinuria [160, 161]. 
Such heterogeneity in underlying disease poses challenges 
in the accurate modelling of CKD progression, and the mod-
els identified often did not consider these factors. Overall, 
the body of evidence on prognostic factors related to dis-
ease outcomes is relatively large in the field of diabetes, 
with a greater volume of prospective studies from which 
disease progression estimates can be derived or multivari-
able risk equations utilised. However, the tendency across 
all identified models was to capture input data at the mean 
rather than the observed patient-level variation, which often 
precluded the ability to capture true patient heterogeneity. 
More commonplace was the independent sampling of input 
data, through probabilistic sensitivity analysis to approxi-
mate heterogeneity, although this approach is associated 
with inherent limitations and does not actually capture how 
relevant differences in patients’ clinical profiles affect cost-
effectiveness outcomes.

The time it takes a patient to reach ESRD/death, and the 
time for which a patient resides in the ESRD state, is of sig-
nificance, particularly from the health economics perspec-
tive, since ESRD is associated with a significant resource 
burden and, consequently, may influence cost-effectiveness 
decisions. While there was general agreement amongst 
model type with respect to mean time to ESRD/death, mean 
time with ESRD was typically shorter among CKD models 
than among diabetes models with nephropathy. Such a dif-
ference may possibly be attributed to the excess morbidity 
and mortality associated with diabetes. In addition, a differ-
ence in the age distribution of patients may be a contribut-
ing factor. Overall, given the relatively large variations in 
time to and time with ESRD and their potential influence on 
health economics studies, we suggest that further research 
may be undertaken to fully quantify the differences across 
models’ structures and better understand the heterogeneity 
between modelled populations and model designs, and the 
likely causes of such differences.

The heterogeneity with respect to both patient charac-
teristics and disease outcome prediction, combined with 
a reasonable body of evidence, does seem to contribute 
to a wide use of microsimulation models (compared with 
Markov-based cohort models) in the field of diabetes. How-
ever, the rationale for model selection was often not cited in 
the various model publications identified in this review, and 
estimates of CKD progression in diabetes models with CKD 
components still rely heavily on a limited number of older 
datasets that may not fully capture contemporary patient 
care. Even though (at least) a similar level of patient and 
disease heterogeneity exists in the field of CKD, a Markov 
design was relatively common for simulating CKD progres-
sion. This may be driven by the limited data available to 
characterise the true variation in CKD progression patterns, 
although several risk equations are currently available [162]. 

It could be hypothesised that the economic modelling of 
CKD is less well-researched than that of diabetes because 
of the significant advancements in the treatment of diabetes 
over recent years and paralleled advancements in model-
ling methodologies. With the expected development of new 
CKD treatment options, we anticipate that our understand-
ing of the most appropriate modelling methods for CKD 
will improve, with this review providing a basis from which 
further discussion may be considered.

5 � Conclusion

Typically, GFR is used within CKD model frameworks 
and albuminuria in diabetes model frameworks. The prog-
nostic ability of GFR to predict CKD progression is well-
established in patients with CKD (both with and without 
diabetes). This, combined with the heterogenous nature of 
individual patients’ GFR and albuminuria trajectories, pro-
vides rationale for a model structure designed around the 
prediction of individual patients’ GFR trajectories. However, 
most models identified by this review were cohort based and/
or utilised input data at cohort mean levels, limiting the con-
sideration of clinically relevant differences between patients’ 
course of disease. Frameworks of future CKD models should 
be informed and justified based on clinical rationale and data 
availability to ensure validity of model results. In addition, 
further clinical and observational research is warranted to 
provide a better understanding of prognostic factors and data 
sources to improve economic modelling accuracy in CKD.
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