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Abstract

The homoeostatic regulation of metabolism is highly complex and involves multiple
inputs from both the nervous and endocrine systems. The gut is the largest endocrine
organ in our body and synthesises and secretes over 20 different hormones from
enteroendocrine cells that are dispersed throughout the gut epithelium. These
hormones include GLP-1, PYY, GIP, serotonin, and CCK, each of which play pivotal roles
in maintaining energy balance and glucose homeostasis. Some are now the basis of
several clinically used glucose-lowering and weight loss therapies. The environment

in which these enteroendocrine cells exist is also complex, as they are exposed to
numerous physiological inputs including ingested nutrients, circulating factors and
metabolites produced from neighbouring gut microbiome. In this review, we examine
the diverse means by which gut-derived hormones carry out their metabolic functions
through their interactions with different metabolically important organs including the
liver, pancreas, adipose tissue and brain. Furthermore, we discuss how nutrients and
microbial metabolites affect gut hormone secretion and the mechanisms underlying
these interactions.
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Introduction

Enteroendocrine (EE) cells are specialised hormone-
secreting cells that are dispersed throughout the
mucosal epithelial layer of the gastrointestinal (GI) tract.
Collectively, these cells constitute 1% of the mucosal
cell population and are, by mass, the largest endocrine
tissue in the body (Ahlman & Nilsson 2001). EE cells
consist of an array of different cell types, synthesising
and secreting a combination of more than 20 hormones
in response to a variety of luminal and basolateral
stimuli. The characterisation of distinct EE cell types
has been traditionally based on their dominant and
supposedly unique hormone expression profile, such
as enterochromaffin (EC) cells secreting serotonin (5-HT),

L cells secreting glucagon-like peptide 1 (GLP-1), peptide
YY (PYY) and oxyntomodulin (OXM), and glucose-
dependent insulinotropic peptide (GIP) secreting K cells.
It is now clear that such a classification system is not
accurate given the accumulation of evidence that cross-
over in hormone co-expression exists in a regionally
distinct manner, giving rise to an array of EE cell subtypes
(Fothergill et al. 2017).

Gut-derived hormones influence a range of
physiological processes, including metabolic pathways.
They perform theseregulatoryrolesin glucose homeostasis,
centrally-mediated appetite control and adiposity. This
review focuses on the molecular mechanisms driving gut
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hormone secretion and describes how this is significant in
the context of human metabolism and the pathogenesis
of human metabolic disorders.

Gut hormone regulation of metabolism

The regulation of whole-body metabolism involves the
integrated activity of multiple metabolically active tissues,
including the GI tract, pancreas, adipose tissue, liver and
the central nervous system (CNS). The release of one or
a combination of gut hormones either postprandially
(GLP-1, GIP, PYY, 5-HT, CCK, OXM) or during periods
of fasting (ghrelin, 5-HT) significantly influences both
glucose homeostasis and overall energy status. Each of
these hormones can exert such effects independently
or can act in a synergistic manner to influence these
processes (Fig. 1).

Glucose homeostasis

The coordinated control of endogenous glucose output
and the clearance of exogenous glucose is required to
maintain blood glucose homeostasis. If not adequately
controlled, this can lead to metabolic diseases such as type 2
diabetes (T2D) and markedly increased cardiovascular risk.

Glucose homeostasis
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Hepatic glucose production is the primary determinant
of glucose homeostasis and is predominantly dictated by
pancreatic insulin and glucagon. In addition, postprandial
glucose disposal by other insulin-sensitive tissues such
as skeletal muscles and adipose tissue, and exogenous
glucose uptake by the intestine also significantly
determines peripheral glucose levels. In particular, the
distal small intestine has been shown to contribute to
gastrointestinal-mediated glucose disposal in both healthy
and type 2 diabetic humans and coincides with incretin
hormone release (Zhang et al. 2019). Gut hormones have
well-established glucoregulatory roles, via activation of
receptors expressed by target tissues.

Endocrine pancreas

Dysregulated secretion of insulin and glucagon, the two
primary islet hormones, is a major contributing factor of
the development of diabetes mellitus. Although a number
of gut-derived hormones augment glucose-stimulated
insulin secretion (GSIS) from pancreatic p cells and
expansion of p-cell mass, some of these including GLP-1,
GIP, CCK, PYY and 5-HT, have also been identified in
the pancreas (Fujita et al. 2010). As such, the relative
contributions of islet- and gut-derived hormones to
pancreatic function have been increasingly scrutinised. It
was originally thought that enteroendocrine L cells and
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The role of gut hormones in metabolically important organs. Gut hormones are implicated in the regulation in glucose homeostasis through their
differential actions on the liver and endocrine pancreas. They also play important roles in maintaining energy balance by modulating nutrient absorption,
mobilization of fat stores from adipose tissue and appetite regulation. 5-HT, serotonin; CCK, cholecystokinin; GIP, glucose-dependent insulinotropic
peptide; GLP-1, glucagon-like peptide 1; INSL5, insulin-like peptide 5; PYY, peptide YY; OXM, oxyntomodulin; BAT, brown adipose tissue; WAT, white

adipose tissue.
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K cells release GLP-1 and GIP, respectively, in response
to intraluminal glucose and these two peptides then
stimulate pancreatic p cells in an endocrine manner.
While f cell GLP-1R have been consistently demonstrated
to be essential for maintaining glucose homeostasis
(Smith et al. 2014, Grasset et al. 2017), the physiological
ligand for f cell GLP-1R remains a subject of controversy.
Small amount of GLP-1 has been demonstrated to be
produced by pancreatic islets (Marchetti et al. 2012)
and Chambers et al. reported glucose tolerance in mice
was significantly impaired by islet-, but not intestinal-
specific ablation of Gc¢g (encodes of proglucagon derived
peptides that include glucagon, GLP-1, GLP-2 and
oxyntomodulin) (Chambers et al. 2017), supporting the
notion that it is islet-derived, in a paracrine manner,
rather than gut-derived GLP-1, in an endocrine fashion,
that is crucial for gluco-regulation. However, this view
has been challenged by several recent findings. Firstly,
other groups have reported that only an extremely small
amount of GLP-1 is produced by islet under normal
physiological conditions (Song et al. 2019). Moreover, f
cell GLP-1R is activated by glucagon at levels observed
within islet microenvironments (Svendsen et al. 2018). As
such, one can no longer conclude that islet-derived GLP-1
is essential for glucose homeostasis based on experiments
in which a GLP-1R antagonist was used or involved site-
specific Gcg knockdown, since pancreatic glucagon and
GLP-1 actions are both blocked in these experiments.
The necessity of gut-derived GLP-1 in glucoregulation
is further complicated by a recent report showing that
when Ggg is ablated specifically in the mouse ileum and
colon, both oral and intraperitoneal glucose tolerance
are significantly impaired, despite a compensatory
upregulation of GIP (Song et al. 2019), landing support to
the notion that gut-derived GLP-1 does play an essential
role in gluco-regluation. Pancreatic p-cells also synthesise
and secrete 5-HT, and this is important for the pregnancy-
induced expansion of p-cell mass that occurs during
pregnancy and which is essential to avoid gestational
diabetes (Kim et al. 2010).

Liver

The liver is central in maintaining glucose homeostasis
with hepatic glucose output through glycogenolysis and
gluconeogenesis being the biggest contributor to plasma
glucose levels in the post-absorptive state (Sherwin 1980).
During the postprandial period, hepatocytes increase
glucose uptake and upregulate glycogen synthesis in
response to elevated insulin and reduce glucose output
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in response to decreased glucagon levels. Dysregulated
suppression of hepatic glucose output during the
postprandial period is a major driver of postprandial
hyperglycaemia in T2D patients (DeFronzo et al. 1989).
Several gut-derived hormones contribute to hepatic
glucose output through their capacity to augment
hepatic gluconeogenesis and glycogenolysis. In addition,
hepatic insulin clearance has been recently demonstrated
to contribute significantly to insulin action, through
controlling insulin availability to peripheral tissues
(Bojsen-Moller et al. 2018).

Postprandial release of GLP-1 attenuates hepatic
glucose production, independent of its effects on
pancreatic islets (Jun et al. 2015), potentially through
activation of GLP-1R on vagal afferent nerves innervating
the hepatic portal vein (Vahl et al. 2007). CCK suppresses
hepatic glucose output in rodents by acting on CCK-A
receptors on intestinal vagal afferents projecting to the
nuclear solitary tract (NTS), a signalling pathway that
is perturbed by diet-induced obesity (Cheung et al.
2009). However, whether such mechanism exist in
humans remains a subject of contest. Various in vivo
studies indicated that although CCK infusion lowers
postprandial plasma glucose levels in humans, this is
likely to be mediated by its inhibitory effect on gastric
emptying (Liddle et al. 1988, Fried et al. 1991) or potential
insulinotropic actions (Ahren et al. 2000), rather than
direct effects on the liver. Opposingly, the release
of gut-derived S5-HT during fasting increases hepatic
gluconeogenesis and glycogenolysis while inhibiting
peripheral glucose uptake (Sumara et al. 2012). Perhaps
the most well-known of the gut-derived hormones
released during fasting is ghrelin, with intraduodenal
infusion increasing hepatic glucose production via
GSH-R1a receptors on vagal afferents signalling to the
NTS (Lin et al. 2019).

Energy balance

Energy homeostasis is maintained through a delicate
balance between calorie intake and expenditure, which
ultimately determines bodyweight. Energy intake is
determined by feeding drive and efficiency of nutrient
absorption while energy expenditure is primarily governed
by energetic cost to maintain basic cellular metabolic
processes, thermal regulation and voluntary movements
such as exercise. In the next section, we review how gut
hormones influence energy balance through their effects
of these governing factors.
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Satiety and feeding behaviour

Gut-derived hormones play an integral role in appetite
regulation, which in turn governs food intake, one of
the major pillars of maintaining energy balance. The
anorexigenic gut hormones GLP-1, PYY, CKK and OXM
are released postprandially to induce satiety and reduce
food intake whilst levels of the orexigenic hormones
ghrelin and INSLS are elevated during fasting to induce
hunger and drive feeding behaviour (Sun et al. 2018).
Gut hormones released by EECs stimulate vagal afferent
nerve fibres by activating receptors located on nearby
nerve endings, which project to appetite control nuclei
of the brainstem. The anorectic effects of GLP-1 and
CCK are significantly attenuated in vagotomised patients
(Joyner et al. 1993, Plamboeck et al. 2013) whilst ghrelin
receptors on gastric afferent nerve terminals mediate
ghrelin-induced feeding (Date et al. 2002). Diet-induced
obesity disrupts this neuroendocrine signalling pathway
between the gut and the brain, dampening the activity
of anorexigenic hormones and causes hyperphagia (de
Lartigue 2016).

Gut hormones can also carry out appetite regulatory
effects in an endocrine fashion where, via the fenestrated
capillaries, circulatinghormonesreach thearcuate nucleus
(ARC) in the hypothalamus (Cone 2005) as well as the
NTS and area postrema (AP) in the brainstem (Murphy
& Bloom 2004). Together, these form the key appetite
centres in mammals. Within the ARC, the orexigenic
AgRP/NPY neurons are activated during fasting and drive
acute food seeking and consumption (Aponte et al. 2011).
Ghrelin potently activates AgRP neurons while 5-HT,
CCK and PYY, hormones that are released postprandially,
all suppress AgRP neuron activity (Beutler et al. 2017).
Acute food intake rapidly inhibits AgRP neuron firings
(Beutler et al. 2017), resulting in the disinhibition
of neighbouring anorexigenic proopiomelanocortin
(POMC) neurons. Contrasting the rapid but short-lived
effects of AgRP neurons, activation of POMC neurons
in the ARC reduces food intake in a delayed but more
sustained manner (Aponte et al. 2011). The GLP-1R
agonist, liraglutide, acts on GLP-1R on ARC POMC
neurons to reduce food intake and protect mice from
diet-induced obesity (Burmeister et al. 2017). Within
the brainstem, neurons of the NTS and adjacent AP
are activated by gut-derived satiety signals primarily
via the sensory vagus nerve and to a lesser extent by
circulating gut-derived hormones. Similar to neurons
within the ARC, the NTS and AP produce both NPY
and POMC, and have reciprocal connections with the
ARC that allows for extensive communication between
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the brainstem and hypothalamus to regulate feeding
behaviour (Wynne et al. 2005). This central appetite-
regulating pathway is made even more complex by the
ability of sensory inputs arising from food detection to
reverse orexigenic signalling in vivo in mice prior to food
consumption. Intriguingly, the magnitude of response to
food detection is also dictated by the hedonic properties
of the food itself, such as palatability and energy density
(Chen et al. 2015). Whether this is also driven by gut-
derived hormones in response to potential olfactory
cues is unknown.

Nutrient absorption

GImotility heavily influences the digestion and absorption
of nutrients across the gut lumen, whereby contributing
to glucose homeostasis and overall energy intake. A
relationship exists between gastrointestinal motility and
glycaemic control, as the rate of gastric emptying heavily
influence oral glucose absorption and hence, postprandial
glucose excursion (Rayner et al. 2001). CCK, ghrelin, PYY,
GLP-1 and 5-HT are potent stimulators of the ENS to
modulate GI motility. EC cell-derived 5-HT increases the
frequency and force of colonic contractions (Keating &
Spencer 2010). Ghrelin stimulates gastric motility and as
such accelerates gastric emptying, alleviating the sense of
fullness caused by gastric distention (Muller et al. 2015).
Conversely, most of the anorexigenic gut hormones inhibit
GI motility. CCK inhibits gastric emptying by mediating
vasoactive intestinal peptide-induced relaxation of the
gastric fundus as part of a vago-vagal reflex pathway
(Grider 1994). GLP-1 delays gastric emptying and potently
suppresses small intestinal motility (Hellstrom et al. 2008),
an effect that is ascribed to some of the glucose-lowering
effect of the GLP-1R agonist, liraglutide (Nakatani et al.
2017). Further to this, another GLP-1R agonist, exenatide,
has been demonstrated to clinically suppress small
intestinal motility and glucose absorption rate in both
healthy individuals and those with type 2 diabetes
(Thazhath et al. 2016). Similarly, the other L cell hormone
PYY inhibits proximal intestinal motility, as part of an
‘ileal break’ mechanism (Maljaars et al. 2008).

Optimal nutrient absorption is heavily reliant on
efficient digestion of ingested foodstuff, a process that
is regulated by gut hormones. CCK is the major gut
hormone that triggers gallbladder
exocrine pancreatic secretion. The former releases bile
acids, amphiphilic molecules that aid the solubilization
of luminal lipids, whilst the latter consists of a mixture
of digestive enzymes such as lipase, amylase and
proteases, critical for the breakdown of macronutrients.

contraction and
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Secretin released from the proximal small intestine
following exposure to prandial gastric acid also stimulates
secretion of pancreatic digestive enzymes and biliary
bicarbonate secretion, while also reducing gastric
emptying and gastric acid secretion (Afroze et al. 2013).
EC cell-derived 5-HT is also implicated in the secretion
of pancreatic enzymes and bicarbonate from the exocrine
pancreas (Li et al. 2000, 2001), the latter being crucial in
neutralizing gastric acid that would otherwise denature
the enzymes (Keller & Layer 2005). An inhibitory role of
PYY on exocrine pancreatic secretion had been suggested
(Tatemoto 1982, Jin et al. 1993), although this could be
mediated by pancreatic islet-derived PYY in a paracrine
manner (Shi et al. 2015). While GLP-1 does not appear to
directly affect gallbladder motility (Smits ef al. 2016), there
is evidence in support of a modulatory role to antagonize
CCK-induced gallbladder contraction (Keller et al. 2012).
On the other hand, a recent study showed that GLP-2,
another L cell hormone, induces gallbladder relaxation
and promotes gallbladder refilling (Yusta et al. 2017).

Energy mobilization
Adipose tissue exists as two subtypes: white adipose tissue
(WAT) and brown adipose tissue (BAT), each serving
distinct metabolic functions. The body’s surplus energy is
primarily stored in WAT as triglycerides and liberated from
the adipocyte as free fatty acids and glycerol when required.
Excess adiposity secondary to increased fat storage within
WAT is a key driver of obesity. On the other hand, BAT is
implicated in thermal adaptation through its thermogenic
capacity, dissipating energy harvested from the proton
gradient across the inner mitochondrial membrane as heat,
instead of coupling to ATP production (Bouillaud et al.
1983). Under certain conditions such as cold exposure,
WAT has the capacity to undergo ‘browning’, whereby
the expression of key genes controlling thermogenesis,
particularly UCP1, are upregulated and cells transform
towards those of a thermogenic phenotype resembling
that of BAT (Bartelt & Heeren 2014). Increasing WAT
browning and expanding BAT volume have both been
intensely investigated for their anti-obesity potential as
both approaches favour the removal of the body’s excess
energy stores by increasing heat production (Bartelt &
Heeren 2014). Moreover, a recent study has suggested
that elevated hypothalamic temperature secondary to
BAT-mediated thermogenesis induces satiety by activating
POMC neurons in the ARC (Li et al. 2018).

Several gut hormones exert their metabolic effects
by targeting adipose tissue, differentially influencing
the uptake, utilization and storage of lipids. Many of the
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obesogenic effects of 5-HT is mediated through its action
on adipocytes. Whilst 5-HT potently stimulates lipolysis
in WAT to release free fatty acids and glycerol, it impairs
p oxidation in the liver and WAT (Rozenblit-Susan et al.
2016), preventing these tissue from utilizing the newly
available free fatty acids. Moreover, 5-HT reduces energy
expenditure by preventing WAT browning (Crane et al.
2015). Together with ghrelin, the two hormones
downregulate the thermogenic capacity of BAT (Muller
et al. 2015), thereby increasing energy conservation. In
addition, together with GIP, ghrelin increases the storage
of lipids by upregulating lipogenesis (Getty-Kaushik et al.
2006, Theander-Carrillo et al. 2006). On the other hand,
gut hormones that increase thermogenic capacity of
adipocytes can prevent the development of obesity. In
rodents, CCK and GLP-1 are both implicated in diet-
induced thermogenesis in BAT, as they activate vagal
afferents which in turns results in increased sympathetic
output to BAT (Blouet & Schwartz 2012, Beiroa et al. 2014).
The role of GLP-1 in thermogenic capacity in humans is
less clear, however, as several clinical trials with acute
exposure to the GLP-1R agonists, liraglutide and exenatide,
yield no differences in resting energy expenditure, while
prolonged exposure to these agonists increased energy
expenditure (Maciel et al. 2018). A recent study showed
that the intestinal hormone secretin potently induces
prandial BAT thermogenesis, independent of sympathetic
activity (Li et al. 2018).

In addition to its critical role in energy storage and
thermal regulation, adipose tissue is a prominent regulator
of peripheral metabolism through the secretion of a range
of adipocyte-derived hormones, termed adipokines. Gut
hormones have the capacity to alter the release of these
adipokines, which poses another secondary mechanism
by which they regulate peripheral metabolism via
adipose tissue. Specifically, 5-HT attenuates the release of
adiponectin from WAT (Uchida-Kitajima et al. 2008), an
insulin-sensitizing, anti-lipogenic and anti-atherogenic
adipokine (Stern et al. 2016). GIP upregulates the
expression and stimulates the secretion of osteopontin,
a pro-inflammatory adipokine derived from WAT that is
implicated in the development of obesity-induced insulin
resistance (Kiefer et al. 2010).

Mechanisms controlling gut
hormone secretion

Enteroendocrine cells are dispersed throughout the gut
epithelium as individual cells. This makes it inherently
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difficult to isolate and study pure EE cells in culture and,
as such, our knowledge on the mechanisms controlling
gut hormone secretion has been predominantly derived
from cell lines, or ex vivo and in vivo animal models. Recent
advances in EE cell purification (Reimann et al. 2008,
Martin et al. 2017a, Lund et al. 2018), particularly the
availability of transgenic mouse lines in which specific EE
cell populations can be fluorescently labelled and sorted
(Reimann et al. 2008), have provided valuable insights
into our understanding of the molecular mechanisms
controlling gut hormone secretion. Functional
transcriptomic and proteomic analysis of purified EE cells
has revealed that these cells are sensors for an array of
luminal nutrients and microbial metabolites (Fig. 2).

Nutrient sensing

Carbohydrate

Most EE cell types have the capacity to sense luminal
carbohydrates. During a standard oral glucose tolerance
test, ghrelin secretion is significantly suppressed (Muller
et al. 2015), whilst 5-HT, CCK, GIP and GLP-1 are
increased (Gribble & Reimann 2016). Glucose-induced
GLP-1 secretion is primarily driven by glucose-dependent
Na+ uptake via SGLT-1 and intracellular glucose
metabolism, which leads to closure of K,;; channels
and further depolarisation and exocytosis (Reimann
et al. 2008, Gorboulev et al. 2012, Kuhre et al. 2014a,
Sun et al. 2017). Additional mechanisms independent
of glucose metabolism may also play a role, however, as
consumption of the non-metabolised SGLT-1 substrate,
3-O-methylglucose, also increases plasma GLP-1 in
humans (Wu et al. 2012). What these mechanisms are,
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precisely, remains unknown. Other EE cells, such as
GIP-secreting K cells may also sense glucose via similar
metabolism-dependent mechanisms (Parker et al. 2009).
On the other hand, the underlying mechanisms driving
glucose-induced 5-HT release remains to be determined,
although 5-HT secreting enterochromaffin (EC) cells
are clearly glucose-sensitive in vitro (Martin et al. 2017b,
Lumsden et al. 2019) and in vivo (Young et al. 2018), and
express a myriad of glucose sensors, such as SGLT1, GLUT2
and the sweet taste receptor T1R2/T1R3 (Martin et al.
2017a). Although ghrelin-secreting X/A cells demonstrate
sensitivity to glucose in vitro (Sakata et al. 2012), they do
not appear to directly sense luminal or vascular glucose
in vivo (Schaller et al. 2003, Williams et al. 2003).

Fructose occurs naturally in fruit but the primary
source of fructose in the modern diet is in the form of
sucrose, a disaccharide, which is degraded by sucrase into
glucose and fructose. Fructose transport and absorption
is mediated by GLUTS, which is expressed in EC cells
(Martin et al. 2017a), L cells (Reimann et al. 2008) and
K cells (Parker et al. 2009). Fructose triggers the release
of 5-HT (Martin et al. 2017b), GLP-1, CCK and PYY, but
despite K cells expressing GLUTS, luminal fructose does
not elicit in vivo GIP release in mice, rats or humans
(Kuhre et al. 2014b). Further interrogation using a GLP-
1-secreting cell line suggests that fructose-induced GLP-1
secretion is mediated by intracellular metabolism and
subsequent closure of K,;, channels (Kuhre et al. 2014b),
although this remains to be confirmed in primary L cells.
EECs also express sweet taste receptors (STRs), which
comprise a heterodimer of the GPCRs T1R2 and T1R3
(Steinert et al. 2011, Kreuch et al. 2018). Genetic ablation
of T1r3 or the STR subunit, a-gustducin, significantly

Figure 2
Activation of enteroendocrine (EE) cells.
Carbohydrates in the gut lumen such as simple
sugars are sensed by sodium-glucose
transporters (SGLTs), glucose transporters
(GLUTSs) and sweet taste receptors (T1R2/3). Lipids
are sensed basolaterally, with medium- and
long-chain fatty acids activating free fatty acid
receptors (FFARs) 1 and 4 and lipid amides
activating G-protein receptor 119 (GPR119). EE cell
secretion is also differentially regulated by
° individual bile acids, which signal through the
GPCR, Takeda G-protein receptor 5 (TGR5) on the
basolateral membrane and through the nuclear
receptor, Farnesoid X receptor (FXR). Short-chain
fatty acids (SCFAs) derived from bacterial
fermentation of indigestible polysaccharides, also
influence EE cell secretion through activating
FFARs 2 and 3 and inhibiting histone deacetylases
(HDACs).
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attenuated GLP-1 secretion upon an OGTT in mice
(Jang et al. 2007, Kokrashvili et al. 2009). Although sugars
are agonists for STRs, whether or not they are directly
implicated in glucose-induced incretin secretion is still a
subject of controversy (Gerspach et al. 2011, Steinert et al.
2011, Saltiel et al. 2017).

Proteins

Protein ingestion is a potent stimulant for the secretion
of a range of gut hormones. Ingested proteins are broken
down into oligopeptides and individual amino acids
by proteases in the stomach. Peptides are translocated
across the gut wall by the proton-coupled oligopeptide
transporter PEPT1 (also known as SLC15A1), which is
expressed by EECs secreting CCK (Liou et al. 2011a)
and GLP-1 (Diakogiannaki et al. 2013). PEPT1 activity
is electrogenically coupled to protons and its activation
contributes to the lowering of membrane potential
(Fei et al. 1994). PEPT1 activity is required for protein
hydrolysate-induced GLP-1 secretion from murine small
intestinal enteroids (Zietek et al. 2015) and mixed epithelial
cell culture (Diakogiannaki et al. 2013), which underpins
the reduction of endogenous glucose production by
casein hydrolysates in rats (Dranse et al. 2018). However,
the mechanisms underlying protein hydrolysate-induced
I cell secretion remains to be elucidated as PEPT1 is not
necessary for triggering CCK release in vitro (Liou et al.
2011a). Individual amino acids can also trigger the release
of a range of gut hormones by activating different GPCRs.
CaSR was first described as a calcium sensor and was
later shown to be an amino acid sensor, preferentially
activated by aromatic amino acids such as tryptophan
and phenylalanine, but not branched chain amino
acids (Conigrave et al. 2000). CCK (Liou et al. 2011c¢),
GIP (Mace et al. 2012) and GLP-1 cells (Diakogiannaki
et al. 2013) all express CaSR and tryptophan-induced
gut hormone secretion is reliant on CaSR activity (Mace
et al. 2012). GPR142 is implicated in tryptophan, but not
protein-induced GIP and GLP-1 release (Rudenko et al.
2019). GIP-secreting K cells express high levels of the
basic amino acid sensor GPRC6a (Sommer & Mostoslavsky
2014), which is activated by arginine and lysine but is
insensitive to aromatic acids (Wellendorph et al. 2005).
Intraduodenal infusion of the branched chain amino
acid (BCAA) leucine stimulates the release of CCK but
not other gut hormones (Steinert et al. 2015), while
valine, another BCAA, does not stimulate CCK release
(Elovaris et al. 2019). Emerging evidence suggests leucine-
stimulated CCK secretion is mediated through the umami
taste receptor T1R1/T1R3 (Tian et al. 2019).
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Dietary protein can also regulate gut hormone
biosynthesis, predominantly through the activation of
mTOR, the highly conserved master regulator of cellular
anabolic processes. Mice with EEC-specific deletion
of TSC1, an endogenous mTOR inhibitor, had higher
circulating GLP-1 levels and increased ileal proglucagon
mRNA and protein levels. Elevated baseline GLP-1 is
also seen with a 6-day treatment with leucine, which
is associated with increased ileal proglucagon protein
content. Conversely, same treatment duration with
rapamycin, which potently suppresses mTOR activity,
significantly decreases circulating GLP-1 levels and
reversed the effects of leucine treatment (Xu et al. 2015).
On the other hand, the biosynthesis of the orexigenic
hormone ghrelin is suppressed by increased amino acid
availability through increased mTOR activity in X/A cells,
while rapamycin significantly increases circulating ghrelin
levels (Xu et al. 2009, 2012). Moreover, mTOR activation
also results in the downregulation of the expression
of GOAT, the rate-limiting enzyme of ghrelin acylation
(Muller et al. 2015), thereby reducing the availability of
active ghrelin (Li et al. 2019, Mao et al. 2019). As such,
reduced protein availability could drive hunger by
increasing ghrelin levels.

Lipids

Dietary lipids are typically ingested in the form of
triglycerides, which are broken down by pancreatic lipase
into long-chain fatty acids (LCFAs) and monoacylglycerols
(MAGsS). These are either passively absorbed or undergo
facilitated transport into enterocytes and resynthesised
into triglycerides, packaged into chylomicrons and
released into the lymphatic system (Igbal & Hussain
2009). Free fatty acids signal via G-protein-coupled free
fatty acid receptors (FFAR), several of which have been
identified in EE cell populations and convey the ability
to sense luminal short-, medium- and long-chain fatty
acids. Ingestion of lipids stimulates the in vivo release
of many gut hormones, including CCK, GLP-1 and GIP
(Isaacs et al. 1987, Ekberg et al. 2016, Mandoe et al. 2018).
Expression of the lipid amide receptor, GPR119, which is
activated by monoacylglycerols, has been demonstrated
in EC cells (Martin et al. 2017a), L cells (Chu et al. 2008),
I cells (Sykaras et al. 2012) and K cells (Parker et al. 2012)
and enhances the secretion of GLP-1 and GIP, but not CCK
or PYY, in humans in vivo (Hansen et al. 2011). Moreover,
agonists for FFAR1 and GRP119 stimulate secretion of
GLP-1 (Lan et al. 2012, Moss et al. 2016) (Christensen et al.
2015) in various in vitro models, while lipid-induced GIP,
CCK and GLP-1 release is substantially compromised
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in Ffarl and Ffar4-deficient mice (Liou et al. 2011b,
Iwasaki et al. 2015, Sankoda et al. 2017). Intraduodenal
lipid infusion increases the expression of FFAR1 and is
positively correlated with GIP secretion, suggesting long-
chain fatty acids may drive an increase in GIP secretion
(Cvijanovic et al. 2017).

It was once thought that localisation of receptors for
lipid sensing were exclusive to the apical membrane of
EECs, which would allow them to directly sense luminal
lipids. However, emerging evidence appears to refute this
model. Vascular, but not luminal administration of the
long-chain fatty acid linoleic acid and FFAR1 agonist-
stimulated GLP-1 secretion in an ex vivo rat small intestine
perfusion model (Christensen et al. 2015), thereby
suggesting that FFAR1 resides in the basolateral membrane
of GLP-1-secreting L cells. Moreover, the formation of
chylomicrons appears pivotal in lipid-induced CCK
(Glatzle et al. 2003), GLP-1 and GIP secretion (Lu et al.
2012, Psichas et al. 2017). While the immunoglobulin-
like domain-containing receptor 1 has been identified
as a CCK-specific chylomicron sensor (Chandra et al.
2013), the mechanisms controlling chylomicron-induced
GLP-1 and GIP secretion remain to be elucidated, as it is
not affected by the blockade of lipoprotein lipase or
the inhibition of GPR119 or FFARI signalling (Psichas
etal. 2017).

Bile acid sensing

Bile acids are amphiphilic molecules synthesized by
hepatocytes from cholesterol and stored in the gallbladder.
Upon exposure to lipids in the GI lumen, I cells release
CCK that then triggers gallbladder contraction to release
bile into the duodenum to aid the solubilization of
lipids, facilitating their absorption (Lefebvre et al. 2009).
The majority of bile acids are actively reabsorbed in the
terminal ileum by apical sodium bile acid transporter
and approximately 5% enters the colon, where their
hydrophobicity is enhanced by microbial metabolism,
thus enabling some of the bile acids to be passively
absorbed while the remainder are excreted (Lefebvre
et al. 2009). In addition to their role as GI detergents,
bile acids are signalling molecules that have important
implications in peripheral metabolism. The acute
stimulatory effect of bile acids on EECs is mediated by
the Takeda G-protein-coupled receptor 5 (TGRS), which
results in elevated intracellular cAMP levels and PKA
activation (Goldspink et al. 2018). TGRS expression has
been confirmed in various enteroendocrine cell types,
including L cells (Kuhre et al. 2018) and colonic EC cells
(Alemi et al. 2013). Acute bile acid exposure stimulates
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the release of GLP-1 and PYY from L-cells in the small
intestine and colon (Adrian et al. 2012, Wu et al. 2013a,b,
Brighton et al. 2015, Hansen et al. 2016, Kuhre et al. 2018,
Christiansen et al. 2019) and chronic TGRS activation
increases proglucagon biosynthesis (Harach et al. 2012),
which may underpin the increased basal GLP-1 levels
observed in TGRS agonist-treated mice (Thomas et al.
2009). Bile acids have an inhibitory effect on CCK release
(Koop et al. 1988, Koide et al. 1993, Marina et al. 2012),
but it remains to be determined if this is TGR5 mediated.
Bile acid sequestrants, which are anionic exchange resins
that inhibits bile acid reabsorption in the terminal ileum,
markedly increases GLP-1 levels in rodents in a TGRS-
dependent manner (Harach et al. 2012). However, these
effects have not been reliably translated to humans
(Beysen et al. 2012, Smushkin et al. 2013, Hansen et al.
2016, Bronden et al. 2018).

Bile acid signal transduction in EECs is also carried out
via the nuclear Farnesoid X receptor (FXR) (Lefebvre et al.
2009), which influences gene transcription pathways and
the biosynthesis of gut hormones, rather than activating
hormonerelease (Kuhreetal. 2018). FXR activation inhibits
proglucagon biosynthesis (Jiang et al. 2015), thereby
reducing the fasting plasma GLP-1 levels (Albaugh et al.
2019, Pierre et al. 2019). Conversely, intestinal-specific
FXR inhibition results in increased intestinal proglucagon
mRNA and circulating GLP-1 levels in mice (Trabelsi et al.
2015) but does not change circulating GIP and ghrelin
levels (Pierre et al. 2019). The effects of FXR activation on
other gut hormones remain unclear, as is the mechanisms
by which intestinal FXR regulate peripheral metabolism.

Microbial sensing

The GI tract is host to an abundance of gut microbes,
or microbiota, and together with the genetic traits
(collectively referred to as the gut microbiome),
contribute profoundly to host metabolic processes. The
importance of the gut microbiome in host metabolism
has been elegantly demonstrated through the use of
faecal microbiota transfer from lean and obese humans
and obese mice into germ-free (GF) mice lacking a native
gut microbiome, which conveys the metabolic phenotype
from the donor to the host (Turnbaugh et al. 2006, 2009,
Backhed et al. 2007). In addition, a core obese microbiome
has been identified in humans, which contributes to
obesity progression and the dysregulation of metabolism
through an increase in energy harvest (Turnbaugh et al.
2006, 2009). It has now been established that there is
bidirectional signalling between EE cells and the resident
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gut microbiota, which is wunsurprising, considering
they are constitutively in direct contact with the other
(Martin et al. 2019).

The importance of the signalling from the microbiota
to EECs is evident in reports that GF mice or broad-
spectrum antibiotic-treated mice have markedly elevated
circulating GLP-1 (Grasset et al. 2017) but reduced 5-HT
(Yano et al. 2015). In addition to acute hormone release,
the microbiota also has profound impact on gut hormone
biosynthesis at the cellular level and the composition of
the EE cell population. Reduced CCK and proglucagon
protein expression is observed in dissociated cells from
the proximal small intestine of GF mice, which was not
due to reduced numbers of EE cells (Duca et al. 2012).
Conversely, the presence of a gut microbiome acts in a
chronic manner to increase the biosynthesis of 5-HT
(Reigstad et al. 2015), contributed to by an increase in the
density of 5-HT-containing cells compared to GF mice
(Yanoetal. 2015). Gut microbiota signal to EE cells through
several mechanisms, including the release of microbial
structural components such as lipopolysaccharides and
metabolites such as short-chain fatty acids (SCFAs) and
secondary bile acids (Martin et al. 2019).

Most mammals do not possess the enzymes to
metabolise indigestible carbohydrates such as cellulose.
The ability for the gut microbiota to utilize these insoluble
fibre and harvest energy forms the foundation of the
symbiotic relationship between host and its resident
gut microbiota. Resulting metabolites can then serve
as signalling molecules that regulate host metabolism
or as energy substrates. Short-chain fatty acids (SCFAs)
are the primary breakdown products of this process
and they signal via the G-protein-coupled free fatty
acid receptors (FFAR) 2 and 3 (Offermanns 2014) or by
modulating nuclear histone deacetylase (HDAC) activity
(Waldecker et al. 2008, Fellows et al. 2018, Larraufie et al.
2018). SCFA signalling through FFAR2 and FFAR3 in EE
cells occurs via different secondary pathways, with each
receptor having differing affinities for the dominant
SCFAs: acetate, propionate and butyrate (Offermanns
2014). The expression of FFAR2 and FFAR3 has been
identified in 5-HT-producing EC cells (Martin et al. 2017a)
and GLP-1/PYY-producing L cells (Nohr et al. 2013). SCFAs
are potent GLP-1 secretagogues (Tolhurst et al. 2012),
stimulating L cells secretion in a region-specific manner.
SCFA signalling in the small intestine occurs primarily
through FFAR3, whilst FFAR2 mediates GLP-1 release
from colonic L cells (Greiner & Backhed 2011). Chronic
SCFA treatment increases the density of PYY-containing
cells (Brooks et al. 2017), as well as PYY biosynthesis in a
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dose- and time-dependent manner in both EE cell lines
and primary human colonic cells (Larraufie et al. 2018).
On the other hand, acute exposure of primary EC cells
from mice to SCFA in culture does not increase 5-HT
release (Martin et al. 2017b).

In addition to indigestible carbohydrates, the gut
microbiota also metabolise a range of substrates present
in the intestinal lumen. Aforementioned, the intestinal
flora drives the deconjugation and dihydroxylation
of bile acids that escapes active reabsorption in the
terminal ileum, forming secondary bile acids, which are
more hydrophobic and can thus enter the enterohepatic
circulation via passive diffusion (Lefebvre et al. 2009). As
individual bile acids having different signalling profiles
at TGRS and FXR (Kuhre et al. 2018) and as such, the
microbiota can influence gut hormone secretion by
altering the composition of the bile acid pool. Microbial
metabolites derived from amino acid metabolism have
also been shown to modulate gut hormone secretion.
While the majority of dietary proteins and amino acids
are absorbed in the small intestine, small amounts of
unabsorbed amino acids could go through the ileocaecal
valve to enter the colon (Chungetal. 1979), and thus, serve
as a nitrogen source for the colonic microbiota. Indole and
hydrogen sulphide are metabolites produced by microbial
metabolism of tryptophan and cysteine, respectively,
and have both been shown to acutely stimulate GLP-1
secretion in GLUTag cells, a L cell-like GLP-1-secreting cell
line (Chimerel et al. 2014, Pichette et al. 2017). Isovalerate,
a volatile fatty acid derived from valine fermentation
(Zarling & Ruchim 1987), has been identified as a potent
EC cell secretagogue (Bellono et al. 2017).

The presence of the microbiota in the gastrointestinal
lumen represents a rich source of microbial-associated
molecular patterns (MAMPs), which are evolutionarily
conserved microbial structures that are recognized by
host immune cells through a range of pattern recognition
receptors (PRRs). It has been speculated that EECs possess
the same machinery (Bogunovic et al. 2007). GLP-1
secretion is markedly elevated upon LPS exposure in vivo
in both mice (Kahles et al. 2014) and humans. However,
emerging evidence suggests the stimulatory effect of LPS
on L cells may be indirect. LPS only increased GLP-1 levels
when administered systemically or in animal models of
impaired intestinal barrier function (Kahles et al. 2014,
Lebrun et al. 2017), implying any potential sensing
machinery resides basolaterally. Importantly, LPS-induced
GLP-1 increase is abolished in mice deficient in receptor
for the proinflammatory cytokine IL-6 (Kahles et al. 2014),
a known L cell secretagogue (Ellingsgaard et al. 2011).
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Together, these observations suggest that MAMP-induced
gut hormone release is likely to be a reaction associated
with systemic exposure, rather than to microbial structural
components derived from the gut microbiota locally.

Summary

There is a growing appreciation for the role of the
gastrointestinal tract in maintaining energy and glucose
homeostasis and gut-derived hormones contribute
significantly to metabolic control. Enteroendocrine cells
are key players in driving the metabolic functions of the
gut as they release a host of different hormones in response
to various luminal and vascular stimuli to elicit adequate
metabolic responses, either in an endocrine manner or via
the gut-brain axis through activation of extrinsic nerves.
As such, enteroendocrine cells and gut hormones are in
themselves, important drug targets for anti-obesity and
anti-diabetes therapies and a better understanding of gut
hormone physiology will greatly facilitate this process.
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