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Abstract

Fluid-structure systems occur in a range of scientific and engineering applications. The immersed 

boundary (IB) method is a widely recognized and effective modeling paradigm for simulating 

fluid-structure interaction (FSI) in such systems, but a difficulty of the IB formulation of these 

problems is that the pressure and viscous stress are generally discontinuous at fluid-solid 

interfaces. The conventional IB method regularizes these discontinuities, which typically yields 

low-order accuracy at these interfaces. The immersed interface method (IIM) is an IB-like 

approach to FSI that sharply imposes stress jump conditions, enabling higher-order accuracy, but 

prior applications of the IIM have been largely restricted to numerical methods that rely on smooth 

representations of the interface geometry. This paper introduces an immersed interface formulation 

that uses only a C0 representation of the immersed interface, such as those provided by standard 

nodal Lagrangian finite element methods. Verification examples for models with prescribed 

interface motion demonstrate that the method sharply resolves stress discontinuities along 

immersed boundaries while avoiding the need for analytic information about the interface 

geometry. Our results also demonstrate that only the lowest-order jump conditions for the pressure 

and velocity gradient are required to realize global second-order accuracy. Specifically, we 

demonstrate second-order global convergence rates along with nearly second-order local 

convergence in the Eulerian velocity field, and between first- and second-order global convergence 

rates along with approximately first-order local convergence for the Eulerian pressure field. We 

also demonstrate approximately second-order local convergence in the interfacial displacement 

and velocity along with first-order local convergence in the fluid traction along the interface. As a 

demonstration of the method’s ability to tackle more complex geometries, the present approach is 
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also used to simulate flow in a patient-averaged anatomical model of the inferior vena cava, which 

is the large vein that carries deoxygenated blood from the lower extremities back to the heart. 

Comparisons of the general hemodynamics and wall shear stress obtained by the present IIM and a 

body-fitted discretization approach show that the present method yields results that are in good 

agreement with those obtained by the body-fitted approach.

Keywords

immersed boundary method; immersed interface method; finite element; fluid-structure 
interaction; jump conditions; complex geometries

1 Introduction and overview

Stable and accurate yet simple and computationally tractable methods for treating interfaces 

are of great importance in fluid dynamics problems involving immersed boundaries. Body-

fitted discretization approaches, which approximate the fluid dynamics on a computational 

domain that conforms to the interface geometry, can provide high accuracy for such 

problems but are limited by the continued difficulties of mesh generation, especially for 

problems involving substantial motion of the immersed interface. A widely used alternative 

approach to these types of interactions is the immersed boundary (IB) method introduced by 

Peskin [1, 2]. Unlike body-fitted methods, the IB approach avoids dynamic mesh 

regeneration and allows for the use of fast structured-grid fluid solvers. In the classical IB 

method, the Navier-Stokes equations are solved on a fixed background Eulerian grid, and the 

immersed structure is represented as a collection of Lagrangian markers. The interaction of 

Eulerian and Lagrangian frameworks takes place in two steps: 1) spreading structural forces 

from the Lagrangian markers to the Eulerian grid using a regularized Dirac delta function 

and 2) interpolating velocities from the Eulerian grid back to the Lagrangian markers using 

the same smoothed delta function.

A limitation of the conventional IB method is that it yields low-order accuracy at fluid-

structure interfaces. The continuous form of the IB equations uses integral equations with 

singular kernels to connect the Lagrangian and Eulerian frames, and this formulation is 

equivalent to a formulation involving jump conditions [3]. However, the use of regularized 

delta functions in the conventional numerical realization of the IB method has the effect of 

regularizing stress jumps at those interfaces, which implies that stresses do not converge 

pointwise at the interface. Much work to improve the IB method has focused on improving 

its accuracy while retaining the original method’s use of nonconforming grids. The first 

formally second-order version of the method was introduced by Lai and Peskin [4]. This 

method was formulated to be second-order accurate if applied to a hypothetical problem in 

which the regularized delta functions are replaced by fixed smooth functions, independent of 

the mesh [4]. This method was refined by Griffith and Peskin and applied to a specific FSI 

problem for which the formally second-order accurate method was able to achieve its 

designed order of accuracy [5], although for general FSI problems, the formally second-

order accurate method still only realizes first-order convergence rates. This approach was 

further extended by Griffith et al. [6] to use adaptive mesh refinement. This methodology 
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has enabled modeling in a number of application areas, including cardiac dynamics [7, 8, 9, 

10, 11, 12, 13, 14, 15], platelet adhesion [16], esophageal transport [17, 18, 19], heart 

development [20, 21], insect flight [22, 23], and undulatory swimming [24, 25, 26, 27, 28, 

29, 30].

Meanwhile, motivated by the same objective, a number of sharp interface methods have also 

been developed. Among them are the immersed interface method (IIM) [31, 32, 33], the 

ghost-fluid method [34, 35], the cut-cell method [36, 37, 38, 39, 40], the hybrid Cartesian-

immersed boundary method [41, 42], and the curvilinear immersed boundary method [43, 

44]. Many of these methods achieve higher-order accuracy by adopting approaches that are 

similar to body-fitted discretization methods, such as local modifications to the finite 

difference stencils, to allow for the accurate reconstruction of boundary conditions in the 

vicinity of the immersed interface.

This paper introduces a new immersed interface scheme for the incompressible Navier-

Stokes equations that uses only a C0-continuous representation of the interface geometry. 

Immersed interface methods resemble the classical IB method in that the motion is derived 

from a singular surface force. In the classical IB method and other continuum surface force 

approaches [45, 46], these forces are smoothed out over a small region near the interface 

using a smooth kernel function. In the IIM, these forces are used to determine discrete jump 

conditions that are imposed in the finite difference discretization of the fluid equations. In 

fact, in most modern IIMs for FSI, generalized Taylor series expansions are used to extend 

the jump values from the interface to the finite difference discretization [47]. In this work, 

we view this procedure as constructing a discrete force-coupling operator that is tailored to a 

particular fluid discretization method.

The IIM was introduced by Leveque and Li [31] for the solution of elliptic PDEs with 

discontinuous coefficients, or in the presence of singular forces. This initial method was 

extended to the two-dimensional solution of the incompressible Stokes [48, 49] and Navier-

Stokes [32, 33, 50] equations, typically in combination with geometrical representations of 

the interface based on level set methods [51, 52, 53]. The systematic derivation of the jump 

conditions for the velocity and its first and second normal derivatives, as well as the pressure 

and its first normal derivative at the interface, was detailed by Lai and Li [3]. They then 

coupled their method with a second-order accurate projection algorithm to solve the full 

Navier-Stokes equations in two spatial dimensions and empirically demonstrated that the 

selected jump conditions were adequate to achieve full second-order accuracy for the 

velocity and nearly second-order accuracy for the pressure in the maximum norms [32]. 

Later, Xu and Wang used a generalized surface parameterization for the interface 

representation and derived jump conditions for the first-, second-, and third-order spatial 

derivatives of velocity and pressure along with jump conditions in the first- and second-order 

time derivatives of the velocity [47]. They used their method in both two-dimensional [54] 

and three-dimensional [55] applications. In the infinity norm, second-order accuracy of both 

velocity and pressure was demonstrated in two spatial dimensions, although some deviations 

from the designed order of accuracy were observed in empirical tests. In the three-

dimensional cases, nearly second-order accuracy was shown in the infinity norm of the 

velocity, and between first- and second-order accuracy was observed for the pressure. Local 
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truncation error analysis suggests that achieving pointwise second-order accuracy in solving 

an elliptic PDE with a solution that includes a discontinuity along an internal interface 

requires correction terms up to the third normal derivative [56, 54]. However, several authors 

have reported empirical results demonstrating local second-order accuracy when including 

jumps only up to the second normal derivative, provided that all the spatial terms in the 

original equation are approximated to second-order accuracy [32, 50, 57]. Because the 

interfacial discontinuities are one dimension lower than the solution domain, prior work has 

also studied how these conditions are sufficient despite the truncation error being reduced to 

first-order at the interface [56, 57]. The textbook of Li and Ito [56] provides additional 

details on the IIM, which is now routinely used to simulate various physical phenomena [51, 

58, 59, 60, 61, 62].

Almost all previous work using the IIM represents the immersed boundary as a smooth 

interface, and in many cases, it is assumed that an analytic description of the interface 

geometry is available. An exception is the work of Xu and Wang [55], in which triangular 

patches are used to find the intersections between the interface and the finite difference 

stencils. However, in that work, the boundary parameterization still relies on an analytic 

description of the interface for computing geometrical quantities [55], which limits the 

applicability of that method to situations with more general boundary geometries.

The present numerical method does not use analytical information about the interface 

geometry. Instead, all geometrical information is provided by the discrete finite element 

representation of the interface. The ability to use such representations facilitates simulations 

with complex interfacial geometries. However, because even the lowest-order jump 

conditions require geometrical quantities that are discontinuous on a C0 representation (e.g. 

the normal vector to the surface), the use of these representations requires a substantial 

extension of prior IIM formulations. In the present work, an L2 projection is used to 

construct jump condition values that are continuous along the C0 interface. An L2 projection 

is also used to construct a velocity interpolation scheme that accounts for the known velocity 

discontinuities along the interface.

Empirical results from verification tests demonstrate that the method attains second-order 

global convergence rates along with nearly second-order local convergence in the Eulerian 

velocity field, and between first- and second-order global convergence rates along with 

approximately first-order local convergence for the Eulerian pressure field. These tests also 

show that along the interface, the method yields approximately second-order local accuracy 

in the velocity along with first-order local accuracy in the fluid traction (pressure and wall 

shear stress). In this work, we impose only the lowest order jump conditions in the pressure 

and velocity gradient. To our knowledge, all prior work using the IIM that has achieved 

similar levels of accuracy has imposed additional higher-order jump conditions. We also 

show that this approach yields a substantial improvement in accuracy as compared to a 

conventional formally second-order accurate IB method, and that it is necessary to use both 

pressure and velocity jump conditions along with corrected velocity interpolation for the 

present immersed interface scheme to achieve its full accuracy. As a demonstration of the 

method’s versatility in treating complex geometries, this work also presents initial results of 

IIM simulations of flow in a patient-averaged anatomical model of the human inferior vena 
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cava, which is the major vein that is responsible for returning deoxygenated blood from the 

lower extremities back to the heart.

2 Mathematical formulation

This section introduces the governing equations and physical interface conditions in the 

continuous formulation of the IB method. The alternative treatment of singular forces in the 

form of jump conditions for the pressure and velocity derivatives is then described. The 

resulting jump conditions will be used in the discretization technique described in Sec. 3. 

Throughout the paper, Eulerian quantities are indicated using lower case variables, and 

Lagrangian quantities are indicated by upper case variables. Bold face variables are used for 

vectors, and bold double-bar symbols are used for tensors. Superscripts ‘+’ (‘−’) indicate 

values obtained from the ‘exterior’ (‘interior’) side of an interface.

2.1 Governing equations

This study concerns the flow of a viscous, incompressible Newtonian fluid interacting with 

an infinitesimally thin immersed boundary. The computational domain is Ω, and x ∈ Ω 
indicates fixed physical coordinates. We consider the case in which Ω is divided into an 

exterior region Ω+ = Ωt
+ and an interior region Ω− = Ωt

−, each parameterized by time t. We 

require that Ω = Ωt
+ ∪ Ωt

−, so that the interface is Γt = Ωt
+ ∩ Ωt

−. Here, we consider only cases 

in which the interface is stationary or moves in a prescribed manner. We describe the motion 

of the interface through reference coordinates X ∈ Γ0 attached to the interface at time t = 0. 

To simplify the numerical treatment of this problem, we use a penalty method that allows for 

small deviations between the prescribed position of the interface and its actual physical 

configuration. The prescribed physical position of material point X at time t is ξ(X, t), which 

has velocity W = ∂ξ(X, t)/∂t, and the actual physical position of material point X at time t is 

χ(X, t), which has velocity U(X, t) = ∂χ(X, t)/∂t. Because there will generally be a 

discrepancy between the prescribed and actual configurations of the boundary, we use the 

actual configuration, which is determined by the computed motion map χ : Γ0 × t ↦ Ω, to 

determine the location where jump conditions are imposed and where the interface velocity 

is evaluated, see Fig. 1. The interface can also be described using curvilinear coordinates, 

say (ι, ν), so that X = X(ι, ν) and χ = χ(X(ι, ν), t). The present numerical method does not 

use a global curvilinear coordinate system. The finite element discretization of the interface 

geometry implicitly defines a local curvilinear coordinate system (i.e., in terms of the 

coordinates of the reference elements), but because this is a mesh-dependent coordinate 

system, we describe the interface geometry using reference coordinates attached to the 

interface. This approach leads to mesh-independent parameters and can be readily 

implemented within an isoparametric finite element formulation.

We consider the case in which both the mass density ρ and dynamic viscosity μ of the fluid 

are uniform across Ω. The effect of the immersed boundary appears as a singular force 

distribution in the equation of momentum balance. In this case, the governing equations are
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ρ ∂u
∂t (x, t) + u(x, t) ⋅ ∇u(x, t) = − ∇ p(x, t) + μ∇2u(x, t) + f (x, t) (1)

∇ ⋅ u(x, t) = 0, (2)

f (x, t) = ∫
Γ0

F(X, t)δ(x − χ (X, t))dA, (3)

∂ χ
∂t (X, t) = ∫

Ω
u(x, t)δ(x − χ (X, t))dx, (4)

in which u(x, t) is the velocity, p(x, t) is the pressure, δ(x) = ∏i = 1
d δ xi  is the d-dimensional 

delta function, F(X, t) is the interfacial force along the immersed boundary, and f(x, t) is the 

corresponding singular Eulerian force density. Notice that interaction between the interface 

and the fluid occurs along Γt = χ(Γ0, t). Additionally in Eq. (4), U(X, t) = ∂χ(X, t)/∂t = 

u(χ(X, t), t) because the velocity is continuous across the boundary as a result of the no-slip 

and no-penetration conditions along the interface.

For a rigid interface or an interface with prescribed kinematics, the interfacial force density 

is a Lagrange multiplier for the imposed motion. In this study, we consider a penalty 

formulation similar to that proposed by Goldstein et al. [63]. In this formulation, the rigidity 

constraint is inexactly imposed through an approximate Lagrange multiplier force,

F(X, t) = κ(ξ(X, t) − χ (X, t)) + η(W(X, t) − U(X, t)) . (5)

The first term on the right-hand side is a linear spring force, with κ a spring stiffness penalty 

parameter, and the second term is a damping force, with η a damping penalty parameter. 

Both forces act to provide energetic penalization if the structure deviates from its prescribed 

position. Note that as κ → ∞, the formulation imposes a hard constraint on the 

deformation. Numerical experiments using both the standard IB method and the immersed 

interface approach also demonstrate that η > 0 can help reduce numerical oscillations, 

particularly in problems with high pressure forces. In the special case of a stationary 

interface, ξ(X, t) = X and W(X, t) ≡ 0, and the penalty force becomes simply

F(X, t) = κ(X − χ (X, t)) − ηU(X, t) (6)

A separate line of research is focused on how to enforce these types of constraints exactly 

[64, 65], but doing so requires solving a coupled system of equations involving an exact 

Lagrange multiplier force along with the Eulerian velocity and pressure fields. The 

application of these types of approaches to the current sharp interface scheme is not 

addressed here.
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2.2 Physical jump conditions

Throughout this subsection, X and x are taken to be corresponding positions in the reference 

and current configuration at time t, so that x = χ(X, t). A jump in a scalar field ψ at position 

x = χ(X, t) along the interface is

〚 ψ(x, t) 〛 = lim
ϵ 0+

ψ(x + ϵn(x, t), t) − lim
ϵ 0−

ψ(x − ϵn(x, t), t) = ψ+(x, t) − ψ−

(x, t),
(7)

in which 〚·〛 indicates the jump value, n(x, t) is the outward unit normal vector along the 

interface Γt in the current configuration, and ψ+(x, t) and ψ−(x, t) are the limiting values as 

approaching the interface position x from the exterior region Ωt
+ and interior region Ωt

−, 

respectively. This definition can be extended for jumps in vectors in a component-wise 

manner.

For an incompressible Newtonian fluid, the fluid stress is

σf(x, t) = − p(x, t)𝕀 + μ ∇u(x, t) + ∇uT(x, t) . (8)

Because the boundary is infinitesimally thin, the interfacial force is balanced by a 

discontinuity in the fluid traction τf = σf(x, t) ⋅ n(x, t) along the interface,

ȷ−1(X, t)F(X, t) = 〚 τf(x, t) 〛 = τf
+(x, t) − τf

−(x, t) (9)

in which j is the Jacobian determinant that converts the surface force density from force per 

unit area in the reference configuration to force per unit area in the current configuration. 

(The calculation of j is detailed in Sec. 3.3.)

Both velocity and pressure distributions are affected by the forces imposed along the 

immersed boundary. Away from the interface, these quantities can be assumed to be smooth, 

with the only possible discontinuities occurring at the immersed boundary. The no-slip and 

no-penetration conditions require the velocity at the immersed interface to be continuous,

〚 u(x, t) 〛 =0. (10)

Taking the dot-product of both sides in Eq. (8) by n(x, t), and using Eq. (9), it is 

straightforward to show [48, 33]

〚 p(x, t) 〛 = − ȷ−1(X, t)F(X, t) ⋅ n(x, t) . (11)

Jump conditions for the shear stress can be derived by taking the dot-product of Eq. (8) with 

tangential directions b(x, t) and t(x, t), see Fig. 2. If n = (nx, ny, nz), b = (bx, by, bz), and t = 
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(tx, ty, tz) are the components of the local vectors in a local Cartesian coordinate system 

aligned with the interface, then

〚

μ∂u
∂x (x, t)

μ∂u
∂y (x, t)

μ∂u
∂z (x, t)

〛 =
nx bx tx

ny by ty

nz bz tz
〚

μ∂u
∂n (x, t)

μ∂u
∂b (x, t)

μ∂u
∂t (x, t)

〛 . (12)

After some manipulation, the jump conditions become

〚 μ∂u
∂x (x, t) 〛 = (I − n(x, t) ⊗ n(x, t)) ȷ−1(X, t)F(X, t)nx, (13)

〚 μ∂u
∂y (x, t) 〛 = (I − n(x, t) ⊗ n(x, t)) ȷ−1(X, t)F(X, t)ny, (14)

〚 μ∂u(x, t)
∂z 〛 = (I − n(x, t) ⊗ n(x, t)) ȷ−1(X, t)F(X, t)nz, (15)

which are convenient to use in the numerical implementation. Together, these jump 

conditions for the pressure and velocity gradient state that the discontinuity in the fluid 

stress across the interface balances the force concentrated along the interface.

We remark that although there are generally discontinuities in the velocity gradient at the 

interface, ∇ · u(x, t) ≡ 0 holds throughout Ω. This can be seen by noting that the 

incompressibility condition holds for both the interior and exterior fluids, i.e., ∇ · u±(x, t) = 

0. Applying the jump operator to both sides of this relation yields 〚∇ · u(x, t)〛 = 0. 

Similarly, because the trajectories of material points cannot cross the interface, there also are 

no jump conditions associated with the convective derivative Du/Dt(x, t).

3 Numerical Methods

This section describes the numerical approach, including the discretizations of the Eulerian 

and Lagrangian fields. For simplicity, the numerical scheme is explained in two spatial 

dimensions. The extension of the method to three spatial dimensions is straightforward.

3.1 Eulerian finite difference approximation

A staggered-grid (MAC) discretization is used for the incompressible Navier-Stokes 

equations, which approximates the pressure at cell centers and the velocity and forcing terms 

at the edges (in two dimensions) or faces (in three dimensions) of the grid cells. Standard 

second-order accurate centered approximation schemes are used for the divergence, 

gradient, and Laplace operators. The discrete divergence of the velocity D · u is evaluated at 

the cell centers, whereas the discrete pressure gradient Gp and the components of the 

discrete Laplacian of the velocity Lu are evaluated at the cell edges (or, in three dimensions, 
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faces). A staggered-grid version [66, 67] of the xsPPM7 variant [68] of the piecewise 

parabolic method (PPM) [69] is used to approximate the nonlinear advection terms. 

Previously described methods for physical boundary conditions [67, 8] are used along the 

boundaries of the computational domain Ω. In some tests, we use a locally refined Eulerian 

discretization approach described by Griffith [8] that employs Cartesian grid adaptive mesh 

refinement (AMR).

To determine the effects of the known jump conditions, we classify all Eulerian grid 

locations as regular or irregular. Regular points are those for which none of the associated 

finite difference stencils cross the immersed boundary. Because the solution is continuous 

away from the interface, the discretization at these points does not need to be modified. For 

irregular points, however, at least one of the finite difference stencils associated with that 

point will cross the immersed boundary, and because the solution is discontinuous across the 

interface, standard discretizations that do not account for these jumps lead to large errors 

that do not decrease under grid refinement. This motivates the application of the jump 

conditions through correction terms in the discretization.

Using a Taylor series expansion [32, 47], it can be shown that if the interface cuts between 

two Cartesian grid points at location x◦, such that xi,j,k ≤ x◦ < xi+1,j,k, with xi,j,k ∈ Ω− and 

xi+1,j,k ∈ Ω+, then for a piecewise differentiable quantity ψ we have, for instance,

∂ψ
∂x x

i + 1
2, j, k

=
ψ i + 1, j, k − ψ i, j, k

Δx + sgn nx

Δx ∑
m = 0

2 d+ m

m! 〚 ∂mψ
∂xm 〛

x0

+ O Δx2 ,
(16)

∂2ψ
∂x2 xi, j, k =

ψ i + 1, j, k − 2ψ i, j, k + ψ i − 1, j, k

Δx2

+ sgn nx

Δx2 ∑
m = 0

3 d+ m

m! 〚 ∂mψ
∂xm 〛

x0

+ O Δx2 ,
(17)

in which Δx is the grid spacing in the x direction, ψi,j,k = ψ(xi,j,k), d+ = xi+1,j,k − x◦ > 0, and 

nx is the x-component of the normal vector n = (nx, ny, nz) at the intersection point x◦.

We now demonstrate how these corrections can be applied to irregular stencils of the 

pressure and the viscous terms in the x-component of the Navier-Stokes equations for the 

two-dimensional staggered mesh arrangements shown in Fig. 3. The extension to three 

spatial dimensions is straightforward. We consider only the lowest-order jump conditions, 

accounting for discontinuities in the pressure and the derivative of the velocity. Let Gp = 

(Gxp, Gyp) be the discrete pressure gradient. The modified discretization including the 

correction term for the x-component of this vector, e.g. as shown in Fig. 3(a), is
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Gxp
i + 1

2, j
=

pi + 1, j − pi, j
Δx − 〚 p(x, t) 〛

Δx . (18)

Similarly we represent the finite difference approximation of the vector Laplacian of u = (u, 

v) by Lu = (Lxu, Lyv), in which Lx and Ly are in fact the same differencing operator applied 

to different components of the velocity vector. The modified discretization of the Lxu, e.g. as 

shown in Fig. 3(b), is

Lxu
i − 1

2, j
=

u
i + 1

2, j
− 2u

i − 1
2, j

+ u
i − 3

2, j

Δx2

+
u

i − 1
2, j + 1

− 2u
i − 1

2, j
+ u

i − 1
2, j − 1

Δy2 +
hα

Δx2 〚 ∂u
∂x 〛

α
−

hβ

Δy2 〚 ∂u
∂y 〛

β
,

(19)

in which the positive values of hα and hβ are defined as hα = x
i + 1

2, j
− xα and 

hβ = yβ − y
i − 1

2, j − 1
.

For the remainder of the paper, we assume an isotropic Cartesian grid, so that Δx = Δy = Δz 
= h.

3.2 Lagrangian discretization

To define a finite element approximation, consider 𝒯h as a triangulation of Γ0, the reference 

configuration of the interface, with elements Ue such that 𝒯h = ∪e Ue, in which e indexes 

the mesh elements. Xl l = 1
M  are the nodes of the mesh and ϕl(X)

l = 1
M  are the corresponding 

nodal (Lagrangian) basis functions. Using the finite element basis functions and the time-

dependent physical positions of the nodes of the Lagrangian mesh χl(t) l = 1
M , the 

approximation to the interfacial deformation χh(X, t) is defined by

χ h(X, t) = ∑
l = 1

M
χ l(t)ϕl(X) . (20)

From this representation of the deformation, it is straightforward to evaluate approximations 

to geometrical quantities such as the surface normal or surface Jacobian determinant by 

differentiating Eq. (20). Because we use C0 basis functions in the present work, quantities 

that are obtained in terms of 
∂ χh
∂X  are discontinuous in both the reference and current 

configurations, as shown in Fig. 4.
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3.3 Projected Jump conditions

Because the normal direction to the interface is generally discontinuous on a C0 mesh at the 

mesh nodes, pointwise jump conditions determined from the mesh geometry and the surface 

Jacobian j are generally discontinuous, see Fig. 4. Instead of using these pointwise values 

directly, we project the jump conditions onto the subspace Sh = span ϕl(X)
l = 1
M . Given a 

function ψ ∈ L2(Γ0), its L2 projection Phψ onto the subspace Sh is defined by requiring Phψ 
to satisfy

∫
Γ0

ψ(X) − Phψ(X) ϕl(X)dA = 0,    ∀l = 1, …, M . (21)

The L2 projection of a vector-valued quantity is determined component-wise. Because the 

L2 projection is defined via integration, the function ψ does not need to be continuous or 

even to have well-defined nodal values. By construction, however, Phψ will inherit any 

smoothness provided by the subspace Sh. In particular, for C0 Lagrangian basis functions, 

Phψ will be at least continuous. In our numerical scheme, we set Ch
n(X, t) to be the L2 

projection of the normal component of the surface force per unit current area, j−1Fh(X, t), 

onto Sh, and we set Ch
t (X, t) to be the projection of the tangential component of the force. 

Solving for the projected jump conditions require solving linear systems of equations 

involving the mass matrix M with components Mkl = ∫ ϕkϕl dA. In practice, Eq. (21) is 

approximated using a numerical quadrature rule. To simplify notation, the subscript “h” is 

mostly dropped in the remainder of the paper when showing numerical approximations to 

the Lagrangian variables

In implementing the jump conditions, it is convenient to evaluate them in the Cartesian 

directions. To do so, it is necessary to determine the normal and tangents to the interface. We 

let vectors eι and eν be tangents to the local element coordinates ι and ν, so that

eι =

∂x
∂ι
∂y
∂ι
∂z
∂ι

 and eν =

∂x
∂ν
∂y
∂ν
∂z
∂ν

. (22)

The derivatives of the global coordinates with respect to local coordinates can be determined 

using the basis functions via

∂ χ
∂ι (X, t) = ∑

l = 1

M
χ l(t)

∂ϕl(X)
∂ι  and ∂ χ

∂ν (X, t) = ∑
l = 1

M
χ l(t)

∂ϕl(X)
∂ν . (23)

Kolahdouz et al. Page 11

J Comput Phys. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The area-weighted normal vector n in the global coordinate is then obtained by evaluating n 
= eι × eν. Similarly for the normal in the local coordinate, N, we use the Lagrangian 

material coordinates,

Eι =

∂X
∂ι
∂Y
∂ι
∂Z
∂ι

 and Eν =

∂X
∂ν
∂Y
∂ν
∂Z
∂ν

, (24)

yielding N = Eι × Eν. The surface Jacobian, which is the area ratio between the two 

coordinates systems, is obtained via

ȷ = dA
da = N

n
. (25)

In the present study, j ≈ 1 because we allow for only infinitesimal deformations of the 

interface.

3.4 Intersection algorithm

Intersections between the Cartesian finite difference stencils and the interface are determined 

by a ray-casting algorithm. In two dimensions, this is done by finding the intersections of 

Cartesian-oriented lines with first-order parametric elements, which amounts to solving a 

single linear equation. In three-dimensional cases, we use the Möller-Trumbore ray-triangle 

intersection algorithm, which is a fast method to calculate intersections with surface 

triangles [70], and a similar efficient approach for convex planar quadrilateral is used to find 

intersections of stencils with rectangular surface elements [71]. Although there should be at 

most one intersection between a given finite difference stencil and the interface, finite 

precision effects may yield spurious multiple intersections, or may completely miss 

intersections between the finite difference stencil and the interface. To avoid these situations, 

before determining these intersections, we perturb the positions of the control points of the 

interface mesh away from the cell centers, nodes, edges, and faces of the background 

Cartesian grid by a factor proportional to ϵmach, in which ϵmach is machine precision. This 

is to ensure that we do not have to use specialized methods for treating apparent multiple 

intersections. This perturbation in the position of the interface is much smaller than the 

accuracy of the overall method, and it avoids the need to implement specialized discrete 

geometry algorithms that explicitly treat such spurious intersections.

3.5 Velocity interpolation

The goal here is to determine a velocity-restriction operator 𝒥 = 𝒥[χ, F] to determine the 

Lagrangian mesh velocity U from the Eulerian grid velocity u. The velocity interpolation 

used herein consists of two steps. Ultimately, we project the interpolated velocity onto the 

Lagrangian basis functions to determine the motion of the interface, and so the first step of 
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the interpolation procedure is to evaluate the Lagrangian velocity V at the quadrature points 

along the interface that are used to compute the L2 projection of the interpolated velocity. 

The second step projects the velocity field V onto the space Sh spanned by the nodal finite 

element basis functions to determine the mesh motion U.

Because the projection step is standard, we focus here on evaluating V at a generic reference 

position X on the interface, with corresponding physical position x = χ(X, t). Our approach 

is to use modified bilinear (or, in three spatial dimensions, trilinear) interpolation that 

accounts for the known discontinuities in the velocity gradient at the interface. Considering 

the two-dimensional schematic detailed in Fig. 5, the general formula for the x-component 

of the velocity, Vx, at the interfacial location is

V x(X, t) = (1 − ζ)(1 − λ)u
i − 1

2, j − 1
+ C

i − 1
2, j − 1

+ ζ(1 − λ)u
i + 1

2, j − 1

+ C
i + 1

2, j − 1
+ ζλu

i + 1
2, j

+ C
i + 1

2, j
+ (1 − ζ)λu

i − 1
2, j

+ C
i − 1

2, j
,

(26)

in which λ =

x − x
i − 1

2, j − 1
h  and ζ =

y − y
i − 1

2, j − 1
h  and Δx = Δy = h is the (isotropic) 

Cartesian grid spacing. The corrections C
i − 1

2, j − 1
, C

i + 1
2, j − 1

, C
i + 1

2, j
 and C

i − 1
2, j

 have the 

following forms:

C
i − 1

2, j − 1
=

h(1 − ζ)(1 − λ) ζnx 〚 ∂u
∂x 〛 + λny 〚 ∂u

∂y 〛 x
i − 1

2, j − 1
∈ Ω+,

0 x
i − 1

2, j − 1
∈ Ω−,

(27)

C
i + 1

2, j − 1
=

−hζ(1 − λ) (1 − ζ)nx 〚 ∂u
∂x 〛 − λny 〚 ∂u

∂y 〛 x
i + 1

2, j − 1
∈ Ω+,

0 x
i + 1

2, j − 1
∈ Ω−,

(28)

C
i + 1

2, j
=

−hζλ (1 − ζ)nx 〚 ∂u
∂x 〛 + (1 − λ)ny 〚 ∂u

∂y 〛 x
i + 1

2, j
∈ Ω+,

0 x
i + 1

2, j
∈ Ω−,

(29)
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C
i − 1

2, j
=

h(1 − ζ)λ ζnx 〚 ∂u
∂x 〛 − (1 − λ)ny 〚 ∂u

∂y 〛 x
i − 1

2, j
∈ Ω+,

0 x
i − 1

2, j
∈ Ω−,

(30)

Notice that the jump conditions for the velocity gradient can be determined from the 

interfacial force F. This modified bilinear interpolation is similar to the approach of Tan et 

al. [72, 73]. An important difference is in the value used for the distance from the Cartesian 

grid locations to the interface in the Taylor series expansion of the correction terms. The 

approach by Tan et al. uses the distance between the grid points and the interfacial point (|r| 
in Fig. 5). Here, this is modified by projecting the location vector r to the normal vector n 
and using |r · n| instead. Taking into account for the normal vector naturally provides a more 

accurate approximation to the actual distance between the grid point and the interface.

V (X, t) can be evaluated at any X ∈ Γ0, but generally, V (X, t) ∉ Sh = span{ϕl(X)}. 

Therefore, the second step of the interpolation is to set U = PhV, component-by-component. 

This completes the construction of U = 𝒥[ χ , F]u.

3.6 Calculating the fluid traction

Tests of the present method will evaluate components of the fluid traction along the 

interface. For simplicity, we focus on evaluating exterior tractions, but the evaluation of 

interior tractions is similar. To obtain an approximation to the exterior pressure at position x 
along the interface, we use

ph
+(x, t) = 〚 p(x, t) 〛 + ℐ[p] x−, t (31)

in which p− = ℐ[p] x−, t  is the interior pressure interpolated to a position x− away from the 

interface in the opposite direction of the normal vector n and at a distance equal to 1.2 times 

the diagonal size of one grid cell. Here, ℐ is the unmodified bilinear (or trilinear) 

interpolation operator. By construction, x− is sufficiently far from the interface to ensure that 

uncorrected interpolation may be used without degradation in accuracy. To compute the 

exterior wall shear stress, the one-sided normal derivative of the velocity is calculated using 

the interfacial velocity reconstruction described in Sec. 3.5 along with the velocity value at a 

neighboring location in the direction of the normal vector x+. As with the pressure, 

unmodified bilinear (or trilinear) interpolation is used to obtain the velocity away from the 

interface. A one-sided finite difference formula is used to obtain an approximation to the 

normal derivative as

∂u
∂n h

+
(x, t) = ℐ[u] x+, t − u(x, t)

h
. (32)

where the distance h  is chosen to be slightly larger than the diagonal size of the Cartesian 

mesh (1.05 times the diagonal size), so that regular bilinear (or trilinear) interpolation can be 
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used to evaluate ℐ[u] x+, t . A second-order formula using a three-point stencil can also used 

that requires interpolating an additional point in the normal direction. However, preliminary 

numerical experiments (data not shown) suggest the computation using only two points 

suppresses oscillations that appear to be associated with the higher-order stencil. Moreover, 

as shown in our tests, this simple scheme is adequate to achieve the designed first-order 

accuracy of the wall shear stress.

Note that as with velocity interpolation, the pressure and wall shear stress can be evaluated 

at arbitrary locations along the interface. As before, to obtain nodal values of these quantities 

along the interface, we use the L2 projection of the interfacial values.

3.7 Time-integration scheme

Starting from the values of χn and un at time tn and p
n − 1

2  at time t
n − 1

2 , we must compute 

χn+1, un+1, and p
n + 1

2 . To do this, we first determine a preliminary approximation to the 

structure location at time t
n + 1

2  by

χ n + 1 − χ n

Δt = Un = 𝒥nun (33)

with 𝒥n = 𝒥 χn, Fn  is the discrete velocity restriction operator described in Sec. 3.5. We also 

define an approximation to χ at time t
n + 1

2  by

χ
n + 1

2 = χ n + 1 + χ n

2 . (34)

Next, we solve for χn+1, un+1, and p
n + 1

2  via

ρ un + 1 − un

Δt + A
n + 1

2 = − Gp
n + 1

2 + μL un + 1 + un

2 + f
n + 1

2 , (35)

D ⋅ un + 1 = 0, (36)

χ n + 1 − χ n

Δt = U
n + 1

2 = 𝒥
n + 1

2 un + 1 + un

2 , (37)

in which G, D ·, and L are, respectively, the discrete gradient, divergence, and Laplace 

operators, A
n + 1

2 = 3
2 An − 1

2 An − 1 is obtained from a high-order upwind spatial 
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discretization of the nonlinear convective term u·∇u [67], and f
n + 1

2  is discrete Eulerian 

body force on the Cartesian grid that corresponds to the sum of all the correction terms 

computed using the Lagrangian force F = F[ χ
n + 1

2 , Un, t
n + 1

2]. The semi-implicit Crank-

Nicolson form in Eq. (35) requires only linear solvers for the time-dependent incompressible 

Stokes equations. This system of equations is solved via the flexible GMRES (FGMRES) 

algorithm with an approximate factorization preconditioner based on the projection method 

that uses inexact subdomain solvers [67]. In the initial time step, a two-step predictor-

corrector method is used to determine the velocity, deformation, and pressure, see Griffith 

and Luo [74] for further details. Note that similar to the standard IB method, we can relate f 
and F by a force-spreading operator 𝒮 = 𝒮[ χ ] such that f = 𝒮[ χ ]F. Unlike the conventional 

IB method, however, the present force-spreading and velocity-restriction operators are not 

adjoints.

3.8 Standard IB formulation

For tests in this study that use the conventional IB method, we approximate the force using 

the nodal forces {Fl(t)} and the shape functions, so that

Fh(X, t) = ∑
l = 1

M
Fl(t)ϕl(X) . (38)

Using Eq. (5), the discretized Lagrangian penalty force Fh(X, t) can then be directly 

evaluated from χh and the interface motion Uh. These forces are spread to the background 

grid using a discretized integral transform with a regularized delta function kernel. The 

adjoint of this operator is used to determine the velocity of the mesh from the Cartesian grid 

velocity field. In the present study, we use a piecewise linear regularized delta function. 

Details are provided by Griffith and Luo [74].

3.9 Software implementation

The present approach is implemented in the open-source IBAMR software [75], which is a C

++ framework for FSI modeling using the IB formulation. IBAMR provides support for 

large-scale simulations through the use of distributed-memory parallelism and adaptive mesh 

refinement (AMR). IBAMR relies upon other open-source software libraries, including 

SAMRAI [76, 77], PETSc [78, 79, 80], hypre [81, 82], and libMesh [83, 84], for various key 

functionalities.

4 Numerical results

Verification examples in two and three spatial dimensions, including comparisons to 

benchmark computational and experimental studies, are used to investigate the accuracy of 

the proposed IIM. We consider tests involving internal and external flow conditions, treating 

both stationary boundaries and boundaries with prescribed kinematics. All the interfaces in 

two and three-dimensions are covered by linear (P1) Lagrangian elements. Wherever there is 

an exact solution to compare against, the analytic interface geometry is used to determine 
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the exact solution. Those computations use only the discrete interface geometry, which in 

our tests are described using either one-dimensional line elements (in two spatial 

dimensions) or two-dimensional triangular or quadrilateral surface elements (in three spatial 

dimensions). Analytic information about the interface geometry is only used to determine 

the discrete representation of the reference configuration of the interface. When assessing 

the accuracy of the computed fluid traction, we always consider the traction on the side of 

the interface with the nontrivial flow.

In all cases, the penalty forces that approximately impose the interface kinematics act to 

support physical forces exerted by the flow on the interface, and the physical forces are a 

property of the model. Thus, under grid refinement, we expect that the penalty forces will 

converge to the physical loading forces. Notice also that the penalty forces are proportional 

to the displacement ξ(X, t) − χ(X, t) between the prescribed and computed interface 

positions. If we wish to achieve ∥ξ(X, t) − χ(X, t)∥ = O(h2), it is necessary that the penalty 

parameter κ also satisfies κ = O(1/h2), so that an applied penalty force of the form F = 

κ(ξ(X, t) − χ(X, t)) satisfies ∥F∥ = O(1) under grid refinement. Because we maintain Δt = 

O(h) in our convergence tests, which keeps the advective Courant-Friedrichs-Lewy (CFL) 

number fixed under grid refinement, it is convenient to choose κ = κ0/Δt2. We choose κ0 by, 

first, choosing the finest grid spacing to be considered in the convergence study, say hmin, 

along with the corresponding time step size Δtmin. We then empirically determine 

approximately the largest value of κ0 that allows the scheme to remain stable when h = hmin 

and Δt = Δtmin. We then use the prescribed relationship between κ and Δt to determine κ for 

all coarser cases. This allows us to ensure that the numerical parameters are stable for all 

grid spacings considered in each test while using scalings that ensure that the method 

achieves its designed order of accuracy. All computations use a tight relative convergence 

threshold of ϵrel = 1e–10 for all iterative linear solvers.

When assessing the accuracy of discontinuous quantities, such as the Eulerian pressure p, 

small perturbations in the interface position can result in O(1) differences in the computed 

value at spatial locations x that are close to the interface, even if the interface position is 

computed very accurately. At points within a mesh width of the interface, the pointwise 

errors can differ by the value of the jump in the solution at the interface. These geometrical 

errors can result from approximation error as well as the finite precision effects. To assess 

the impact of these unavoidable geometrical effects on the accuracy of the computed 

solutions, we report pointwise errors in the pressure both over the full domain Ω, and over 

the subregion Ω* that excludes a band with a width of two grid cells around the interface. 

Pointwise errors in the quantity denoted p* are computed over Ω*. The numerical method is 

also shown to capture discontinuous quantities such as the pressure and wall shear stress on 

the interface itself, which indicates that errors in the location of the interface that effect the 

pointwise values of the Eulerian fields do not spoil the ability of the method to impose jump 

conditions accurately on those fields.

4.1 Pressure-driven flow

The first example considers steady-state pressure-driven flow inside a channel. Results are 

presented for both two-dimensional plane-Poiseuille channel flow as well as three-
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dimensional Hagen-Poiseuille flow inside a circular pipe. In each case, both grid-aligned and 

skew structure configurations are used. For these tests, the interface comes into contact with 

the exterior boundary of the computational domain, ∂Ω, and errors at these junctions can 

dominate some pointwise errors. Because we wish to examine the accuracy of the method 

for fully developed flows, and not to assess the treatment of numerical boundary conditions 

for the flow solver, we perform our error analyses over a slightly smaller region that 

excludes positions near ∂Ω that are within 10% of the length of the computational domain.

4.1.1 Plane-Poiseuille flow—We first consider a two-dimensional domain Ω = [0, L]2. 

A horizontal channel of width H extends across the middle of the domain. The two channel 

ends at x = 0 and x = L are subject to constant pressure p0 and −p0 boundary conditions, 

establishing a constant pressure gradient of 2p0/L across the channel. The prescribed-

pressure boundary condition is imposed by means of applying combined normal-traction and 

zero-tangential-slip boundary conditions. At the remaining parts of the left (x = 0) and right 

(x = L) sides of Ω along with the entire bottom (y = 0) and top (y = L) boundaries, solid wall 

(zero-velocity) boundary conditions are imposed. The channel walls are modeled using one-

dimensional linear (P1) Lagrangian elements with an element size twice that of the Eulerian 

grid spacing, which results in a mesh ratio of Mfac = 2. Note that in this context and 

throughout the rest of this paper, Mfac is the ratio of Lagrangian element size to the Eulerian 

grid spacing. The steady-state solution of pressure-driven flow for such a channel is 

described by the plane Poiseuille equation,

u(y) =
p0H
μL y − y0 1 −

y − y0
H , (39)

v=0, (40)

p x = p0 − 2p0x/L, (41)

in which y0 is the height of the lower wall of the channel. Remaining simulation parameters 

include ρ = 1, μ = 0.01, L = 5, H = 1, y0 = 2 and p0 = 0.2, resulting in a maximum velocity 

of Umax = 1, an average velocity of U = 2/3, and the Reynolds number Re = ρHU
μ ≈ 66.66. 

The time step size is Δt = 0.1h, yielding a maximum advective CFL number of 

approximately 0.1–0.2. The penalty parameters are κ = 10−3/Δt2 and η = 0.

Along with the horizontal plane-Poiseuille flow, an inclined version of the channel is also 

studied in which the immersed boundary is not aligned with the Cartesian directions. In this 

slightly more challenging scenario, the channel is at an angle θ = π/12 with the horizontal 

direction. At the inlet and outlet of the channel, the rotated exact solution is used to 

determine normal traction and tangential velocity boundary conditions, so that the flow 

conditions are the same as in the aligned configuration. At the remaining parts of ∂Ω, solid-

wall boundary conditions are imposed. Other than the rotation in the geometry, all other 

simulation parameters are the same as the horizontal case.
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To provide a qualitative comparison of the present immersed interface method to the 

conventional IB method, Fig. 6 shows the velocity and pressure in the horizontal channel for 

a relatively coarse grid spacing of h = 0.156 using both numerical approaches. Fig. 7 is 

similar, but considers the skew configuration at a finer grid resolution of h = 0.078. As 

compared to the IB method, the present immersed interface scheme yields sharply resolved 

pressure and velocity fields.

To further analyze the improvement in accuracy offered by jump condition-based 

discretization approaches, Fig. 8 shows the incremental changes in the accuracy of the 

scheme as the jump conditions are systematically incorporated. The horizontal channel with 

a grid spacing of h = 0.078 is considered, and pressure and velocity profiles are plotted at x 
= 3.5. In the figure, Step 1 indicates results obtained by a simplified version of the present 

method in which only the normal component of the interfacial force is used to determine 

pressure jump conditions. The tangential component of the force is transmitted to the 

background grid using a standard IB approach with a piecewise linear kernel function. In 

addition, the velocity is also interpolated to the interface using the conventional IB approach 

with a piecewise linear kernel function. Thus, in Step 1, only pressure discontinuities are 

sharply resolved, and discontinuities in the velocity gradient are regularized. This scheme is 

similar to the IIM of Lee and LeVeque [33]. The result demonstrates that adding the 

correction due to the pressure discontinuity yields a significant improvement in the accuracy 

of the pressure as compared to the conventional IB method, but the velocity profile at the 

immersed boundary still suffers from low accuracy. Step 2 indicates results obtained by a 

version of the simplified method that is modified so that the tangential portion of the force is 

also used to impose jump conditions in the velocity gradient along the interface, but the 

velocity is still interpolated to the interface using the conventional IB approach with a 

piecewise linear kernel function. Notice that there remains a sizable difference between the 

Step 2 velocity profile and the exact solution, which results from the use of uncorrected 

interpolation to determine the velocity of the interface. Full Method indicates results 

obtained by the full immersed interface method presented in this work. It is clear that if all 

jump conditions are included both in applying the forces and in interpolating the velocities, 

the resulting method is in excellent agreement with the analytical solutions for both velocity 

and pressure. The accuracy of the scheme is degraded by omitting any of these corrections.

Grid convergence studies are performed for both the horizontal and inclined configuration. 

The errors in the computed Eulerian velocity and pressure in L2 and L∞ norms are 

summarized in Fig. 9. These errors are also tabulated and reported in A. Second-order 

convergence of the velocity is observed in the L2 norm for both the horizontal and inclined 

cases, and the global order of accuracy in the L2 norm of the pressure appears to be between 

first- and second-order. As already discussed, errors and convergence rates for discontinuous 

quantities such as the pressure are sensitive to the precise location of the discontinuity, and 

small perturbations in the position of the interface can result in large errors when compared 

to the analytic solution obtained with the exact interfacial geometry. Consequently, we report 

L∞ errors for both the full Eulerian pressure field p and also for the field p* that is obtained 

by excluding grid cells within 2h of the interface. Although the convergence of p in the L∞ 

norm is slow, p* shows first-order pointwise convergence rates.
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Fig. 10 reports the errors in the computed Lagrangian displacement, velocity, pressure, and 

wall shear stress, and tabulated errors are provided in A. At least second-order convergence 

is observed for the displacement in the L2 and L∞ norms and for the velocity in the L2 

norm. The L∞ norm of the velocity error in the inclined channel test appears to converge at 

slightly less than second order. Also at least 1.5-order accuracy is achieved in the pressure in 

the L2 and L∞ norms along with first-order convergence in the wall shear stress in the L2 

and L∞ norms.

4.1.2 Hagen-Poiseuille flow—The steady-state solution for a three-dimensional 

axisymmetric Hagen-Poiseuille flow in the x-direction is

u(r) =
p0

2μL R2 − r2 , (42)

v = 0, (43)

w = 0, (44)

p(x) = p0 − 2p0x/L, (45)

in which r = x − x0
2 + y − y0

2 and R is the radius of the pipe. The physical domain is Ω = 

[0, L]3. A horizontal pipe of length L extends across the middle of the domain and is 

described using quadrilateral surface elements with Mfac = 2, see Fig. 11(a). A pressure 

difference of 2p0 is applied across the pipe. As in the two-dimensional case, the boundary 

conditions at the inlet and outlet are imposed through applying a combination of normal-

traction and zero-tangential-slip boundary conditions [67]. Solid-wall boundary conditions 

are imposed along the remaining parts of ∂Ω. The computational domain is discretized using 

an adaptively refined Cartesian grid. With N grid levels and a refinement ratio of two 

between levels, the Cartesian grid spacing on the finest grid level is hfinest = 2−(N−1)hcoarsest, 

with hcoarsest  = L
8  being the grid spacing on the coarsest level. The time step size is Δt = 

0.05hfinest, giving a maximum advective CFL number of approximately 0.05–0.1, and the 

spring stiffness is set to κ = 2.2×10−3/Δt2. Other material and simulation parameters are L = 

5, R = 0.5, ρ = 1, μ = 0.01, and p0 = 0.4, resulting in a Reynolds number of Re = 100.

As in the plane flow case, we also consider an inclined configuration. In the skew case, the 

structure is placed in the same cubic Cartesian domain but is rotated around the z-axis with 

an angle of θ = π/12; see Fig. 11(b). At the inlet and outlet, we specify normal traction 

boundary conditions and tangential velocity boundary conditions that are consistent with the 

exact solution, and solid wall boundary conditions are imposed along the remainder of ∂Ω. 

Other simulation parameters are the same as the grid-aligned case.

To illustrate the improvement of the present IIM over the conventional IB method, Fig. 12 

shows the pressure fields obtained using both methods on a relatively coarse locally refined 

grid with N = 3 levels, which yields an effective grid spacing of h = 0.156. Cross sectional 
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views of the planes z = 2.5, y = 2.5, and x = 1 are shown. The IIM clearly yields a more 

sharply resolved pressure field. The solution accuracy of the velocity using the present 

immersed interface approach is qualitatively evaluated in Fig. 13. As in the two-dimensional 

case, the IIM sharply resolves the velocity field. This figure also examines the maximum 

structural displacement magnitude on the surface of the cylinder. The maximum value is on 

the order of 3.3 × 10−3, which is approximately 1/50 of the Cartesian grid cell width hfinest.

Finally, a convergence study is performed by systematically increasing the number N of 

AMR levels. Fig. 14 reports the L2 and L∞ errors in Eulerian velocity and pressure. The 

method yields second-order convergence rates for the velocity in the L2 norm for both grid-

aligned and skew configurations. Slightly less than second-order accuracy is observed in the 

L2 norm of the pressure, and although less than first-order convergence is observed for p in 

the L∞ norm over the entire domain, first-order pointwise convergence is recovered in the 

restricted domain Ω*. Fig. 15 summarizes the convergence results on the Lagrangian mesh. 

Second-order convergence rates are achieved for the displacement in both L2 and L∞ error 

norms. Second-order convergence is also observed for the Lagrangian displacement and 

velocity in the L2 norm, whereas between first- and second-order convergence is observed 

for the velocity in the L∞ norm. The Lagrangian pressure converges at approximately 

second order in the L2 norm and between first- and second-order in the L∞ norm. First-order 

convergence is observed for the wall shear stress in both the L2 and L∞ norms. See A for 

tabulated errors of this example.

4.2 Circular Couette flow in two and three dimensions

This section considers the steady shear-driven Couette flow of a fluid confined between two 

rotating circular cylinders in two and three spatial dimensions. This problem is an excellent 

example to test the tangential portion of the interfacial force on a curved geometry. Fig. 16 

provides a schematic of the geometry and dimensions of the circular Couette flow in two 

dimensions Analytical solutions for the steady-state velocity and the pressure for the two 

cylinders co-centered at (x0, y0) are

u(x, y) =
−ω1 y − y0 , 0 ≤ r ≤ R1,

− y − y0 A + B
r2 , R1 < r < R2,

(46)

v(x, y) =
ω1 x − x0 , 0 ≤ r ≤ R1,

x − x0 A + B
r2 , R1 < r < R2,

(47)

and
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p(x, y) =

ω1
2r2

2 + p0, 0 ≤ r ≤ R1,

A2r2

2 − B2

2r2 + AB ⋅ lnr2, R1 < r < R2,
(48)

in which A =
ω2R2

2 − ω1R1
2

R2
2 − R1

2 , B =
ω1 − ω2 R1

2R2
2

R2
2 − R1

2 , r = x − x0
2 + y − y0

2, and p0 is an arbitrary 

constant value. We choose R1 = 0.5, R2 = 2.0, ω1 = 2, and ω1 = −2. The computational 

domain is Ω = [−1, 1]2, and (x0, y0) = (0, 0) so that only the inner cylinder is embedded in 

the physical domain. Dirichlet conditions for the velocity are imposed along ∂Ω using the 

analytic relation. The time step size is set to Δt = 0.05h, yielding a CFL number between 

0.05 and 0.1. The penalty parameters are chosen to be κ = 7 × 10−3/Δt2 and η = 0. Other 

simulation parameters are Mfac = 2, ρ = 1, and μ = 0.01. The Reynolds number, based on the 

velocity and diameter of the inner circle, is Re =
2ρR1

2ω1
μ = 100.

A three-dimensional extension of the problem is also considered. The same simulation 

parameters are used as in the two-dimensional case, except that here, the domain is Ω = [−1, 

1]×[−1, 1]×[−2, 2]. Periodic boundary condition are applied in the z-direction. The 

computational domain is discretized using an N-level locally refined Cartesian grid with h = 

hfinest = 2−(N−1)hcoarsest and hcoarsest  = L
8  being the coarsest level. Because Re is relatively 

low, we do not observe Taylor vortices, but the additional dimension helps to further verify 

the implementation and consistency of results in two and three spatial dimensions.

Fig. 17 compares the performance of the present IIM and the IB method for the two-

dimensional steady-state velocity and pressure profiles of the present approach along x = 0 

using grid spacing h = 0.0625. The agreement between the analytic solution and the results 

generated by the IIM is outstanding.

We also perform a convergence study for both the two- and three-dimensional cases. As seen 

in Fig. 18 the method successfully achieves global second-order convergence rate of the 

Eulerian velocity in both two and three dimensions while yielding slightly less than second-

order accuracy in the L∞ norm. At least 1.5-order global convergence rates are obtained for 

the Eulerian pressure along with first-order convergence rates for the Eulerian pressure on 

Ω*. The method also achieves pointwise second-order accuracy in the Lagrangian 

displacement and velocity along with between first- and second-order pointwise 

convergence in the Lagrangian pressure and wall shear stress as seen in Fig. 19. Note that 

the Lagrangian pressure and wall shear stress are computed from the side between the two 

cylinders.

4.3 Flow within eccentric rotating cylinders

This section considers the two-dimensional flow in the small gap between two eccentric 

rotating cylinders. This example yields nontrivial fluid dynamics and includes immersed 
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interfaces that are nearly in contact. Fig. 20 provides a schematic of the problem geometry 

and dimensions. The parameter set including the dimensions of the problem are the same as 

Fai and Rycroft [85]. The computational domain is taken to be Ω = [−1, 1]2, and R1 = 3/4 

and R2 = 3/4×(1+1/24) are the radii of inner and outer cylinders, respectively. The inner 

cylinder is centered at the origin, and the outer cylinder is centered at (e, 0) = (3/128, 0). The 

outer cylinder is set to be stationary while the inner cylinder rotates angular velocity ω1 = 

8.33 × 10−4. Asymptotic analytical solutions can be derived for the velocity and pressure of 

the flow within long eccentric cylinders using lubrication theory [86],

u(x, y) =

−ω1y, x2 + y2 < R1,

−ω1y 1 − γ −
3ϵ γ − γ2 (2x + 3ϵ x2 + y2 + ϵ2x

2 + ϵ2 (1 + ϵx)
, x2 + y2 ≥ R1 and  (x − e)2 + y2 ≤ R2,

0, (x − e)2 + y2 > R2,

(49)

v(x, y) =

ω1x, x2 + y2 < R1,

ω1x 1 − γ −
3ϵ γ − γ2 2x + 3ϵ + ϵ2x

2 + ϵ2 ( x2 + y2 + ϵx
, x2 + y2 ≥ R1 and  (x − e)2 + y2 ≤ R2,

0, (x − e)2 + y2 > R2,

(50)

and
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p(x, y) =

ω1
2 x2 + y2

2 + p0, x2 + y2 < R1,

6ϵμR1
c2

2y x2 + y2 + ϵxy

2 + ϵ2 x2 + y2 + ϵx
x2 + y2 ≥ R1 and  (x − e)2 + y2 ≤ R2,

0, (x − e)2 + y2 > R2,

(51)

in which the nondimensional thickness is ϵ = (R2 – R1)/R1, the radial clearance is c = R2 − 

R1, and p0 is an arbitrary constant. The reduced radial coordinate parameter is 

γ = x2 + y2 − R1 x2 + y2 / R2 − R1 + ex . A combination of zero normal-traction and zero 

tangential velocity boundary conditions is imposed on ∂Ω.

The steady state velocity and pressure solutions of the standard IB method and the present 

approach are obtained using two different mesh sizes. Velocity and pressure profiles are 

respectively visualized along sections A and B shown in Fig. 20. As in the previous 

example, a piecewise linear regularized delta function is used to spread the force in the 

standard IB method. The penalty parameters are chosen to be κ = 2.0×10−4/Δt2 and η = 0. In 

the first case, a relatively coarse 128×128 Cartesian grid is used, resulting in the two 

cylinders coming as close as h/2. Fig. 21 compares the computed results to the asymptotic 

solution using this coarse Cartesian grid resoltion. Although the gap is clearly underresolved 

in this case, the IIM gives much better accuracy in the velocity field than the standard IB 

method, which yields large overshoots near the boundaries. We also use a relatively fine 512 

× 512 Cartesian grid is used, resulting in a minimal gap of size 2h between the cylinders. 

Fig. 22 shows that the IIM yields accurate approximations of both the velocity and pressure 

in this case.

4.4 Flow past a stationary cylinder

Flow past a stationary cylinder is a widely used benchmark problem for testing numerical 

methods involving immersed boundaries. Here, the immersed boundary is a disc centered at 

the origin with diameter D = 1. The physical domain is Ω = [−15, 45] × [−30, 30], a square 

of length L = 60. This domain configuration corresponds to the problem setup in Taira and 

Colonius [87]. A uniform inflow velocity U = (1,0) is imposed on the left boundary (x = 

−15), and zero normal traction and tangential velocity is imposed at the right boundary (x = 

45) as an outflow condition. Along the bottom (x = −30) and top (x = 30) boundaries, the 

normal velocity and tangential traction are set to zero.
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We set ρ = 1 and use the inflow velocity U as the characteristic velocity. The Reynolds 

number is Re = ρUD
μ . Reynolds numbers between 20 to 200 are considered. The 

computational domain is discretized using a locally refined grid with N = 6 nested grid 

levels and a refinement ratio of two between levels. The Cartesian grid spacing on the 

coarsest level is hcoarsest  = L
64 , and hfinest = 2−(N−1)hcoarsest is the grid spacing on the finest 

grid level. The time step size is Δt = 0.05hfinest, yielding a maximum advective CFL number 

in the range 0.1–0.2. Values of κ and η are tuned to ensure both rigidity of the structure and 

stability of the dynamics.

To quantitatively assess the computed dynamics, we compute nondimensional quantities 

including the drag coefficient CD and lift coefficient CL as,

CD, CL =
−∫ Γ0

F(X, t)dA

1
2 ρU2D

, (52)

and the Strouhal number,

St =
f sD
U , (53)

in which Fx and Fy are the x and y components of the penalty force, and fs is the vortex 

shedding frequency. Table 1 lists the drag coefficient (CD), recirculation length (Lwake), and 

angle of separation (θs) for Re = 20 and Re = 40. For this range of Reynolds numbers, the 

flow separates from the back of the cylinder, and a pair of vortices form that gradually 

approach a steady state. Comparisons of the results obtained by our method with previous 

numerical and experimental results show excellent quantitative agreement in all flow 

characteristics.

A transition from steady flow to alternate vortex shedding occurs for 40 < Re < 50. The 

present IIM recovers this transition, as demonstrated in Fig. 23. Although an initial 

instability decays over time at Re = 40, the same instability at Re = 50 eventually leads to 

the well-known von Karman vortex street. Vortex shedding continues for Re = 100 and Re = 

200, and the flow becomes increasingly unsteady. Fig. 24 details the lift and drag 

coefficients at Re = 100.

Fig. 25 shows representative interfacial displacement and velocity magnitudes at Re = 200. 

The maximum displacement magnitude is approximately 2.6% that of the background grid 

spacing (hfinest  = 60
64 × 25 = 0.0293), and the velocity magnitude is approximately 0.016% that 

of the free stream flow velocity (U = 1).

Fig. 26 compares the vorticity fields generated by the immersed interface and IB methods at 

Re = 200. It is clear that the IIM gives a very sharply resolved vorticity profile while 

allowing for essentially no flow in the interior of the structure. This is in clear contrast to the 
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conventional IB method, which generates spurious flow regions inside the cylinder, as seen 

in Fig. 26(b).

Table 2 compares CL, CD, and St with previous experimental and computational studies at 

Re = 100 and Re = 200. The force coefficients fall within the range of values reported in 

previous studies.

We also investigate the effects of varying the relative mesh spacing parameter Mfac. A range 

of relative mesh spacing values are considered. Fig. 27 shows the lift and drag coefficients at 

Re = 200 with Mfac = 1.5, 2, 3, and 4. The results are consistent across a relatively large 

range of Mfac values. This mesh insensitivity is important when modeling complex 

geometries, for which large variations in the element sizes are likely. We remark that it is not 

possible to use arbitrarily small values of Mfac with the present method. To see why this is, 

recall that forces are transmitted from the interface to the background Cartesian grid through 

jump conditions that are determined by intersecting the finite difference stencils against the 

interface mesh. Forces that are associated with elements that are not intersected by any finite 

difference stencil will have no physical effect on the flow dynamics. This is physically 

unstable, and if it occurs in a simulation, the computation also will generally become 

unstable. Consequently, we consider values of Mfac that are large enough to ensure that all 

surface elements are pierced by at least one finite difference stencil.

4.5 Flow past a spinning cylinder

We also consider the performance of the method in determining the lift coefficient for flow 

over a spinning cylinder. The computational domain and the Eulerian boundary conditions 

are the same as the case of the stationary cylinder in Sec. 4.4. The cylinder is prescribed to 

rotate about its central axis at nondimensional rotation rate α = ωR
U , in which ω is the angular 

velocity. Fig. 28 compares the lift coefficient generated by the present method to previous 

work [94, 95, 74, 96, 97] for α in the range 0–3 at Re = 5 and 20. The CL values generated 

by the present IIM are in excellent agreement with prior work for the entire range of α 
values considered.

Fig. 29 shows the vorticity fields for α = 1, 2, 2.5, 3.5, and 4.4 at Re = 200. As previously 

demonstrated by Mittal and Kumar [98], the time history of CL reveals vortex shedding 

behavior for α < 1.9. At higher rotation rates, the flow is expected to achieve a steady state 

except for 4.34 < α < 4.70, for which the flow undergoes a different kind of instability, such 

that only one-sided vortex shedding occurs. Fig. 29 demonstrates that these flow conditions 

are accurately predicted using the present IIM.

4.6 Flow past a stationary sphere

This section examines flow past a stationary sphere at low to moderate Reynolds numbers. 

We consider a sphere with diameter of D = 1 centered at the origin and placed in the 

computational domain Ω = [−15, 45] × [−30, 30] × [−30, 30]. A uniform inflow velocity U = 

(1, 0, 0) is imposed at x = −15, and zero normal traction and tangential velocity is imposed 

at x = 45 as an outflow condition. Along the other boundaries, the normal velocity and 

tangential traction are set to zero.
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We set ρ = 1 and use the inflow velocity U as the characteristic velocity. The Reynolds 

number is Re = ρUD
μ , and we consider Reynolds numbers from 20 to 500. The computational 

domain is discretized using an N-level locally refined grid with a refinement ratio of two 

between the grid levels. The Cartesian grid spacing on the coarsest level is hcoarsest  = L
64 , 

and hfinest = 2−(N−1)hcoarsest is the grid spacing on the finest grid level. The time step size is 

Δt = 0.05hfinest, yielding a maximum CFL number of approximately 0.1–0.2. The surface of 

the sphere is described using bilinear quadrilateral surface elements with Mfac = 2. The 

spring stiffnesses and damping parameter at Re = 20 are taken to be κ = 1000 and η = 5. The 

values for Re = 100 are κ = 300 and η = 0.5. At higher Reynolds numbers of Re = 200 and 

Re = 500, only spring forces are used, and the spring stiffness in these cases are chosen to κ 
= 250 and κ = 200, respectively. We compute the force coefficients as

CD, CL
y , CL

z =
−2∫ Γ0

FdA

Aproj
, (54)

in which Aproj = π/4 is the projected area of the sphere with D = 1. Table 3 compares results 

generated by the present method to previous computational and experimental studies [99, 

100, 42, 101, 55] for Re between 20 to 500. We observe excellent agreement between the 

values produced by the present method and these previous works.

To test the ability of the method in predicting the dynamics of the flow around the sphere in 

the transitional regime, simulations are performed at Re = 200, 260, and 300. It is well 

established that the onset of the unsteady vortex shedding regime occurs for 290 < Re < 400 

[103, 104]. Fig. 30 shows that unsteady vortex shedding occurs using the present approach at 

Re = 300. Fig. 30 also shows the magnitude of the wall shear stress on the surface of the 

sphere.

4.7 Flow inside the inferior vena cava

The inferior vena cava (IVC) is a large vein through which deoxygenated blood from the 

lower and middle body returns to the right atrium of the heart. As a demonstration of the 

capability of the present method to handle complex geometries, we consider flow through a 

model of the human IVC. This geometry used in this section is a modified version of the 

patient-averaged model by Rahbar et al. [105] that has been recently studied by Craven et al. 

[106] and Gallagher et al. [107]. Fig. 31(a) shows the geometry of the IVC. The 

morphological features of the IVC including the flow mixing at the junction of the iliac 

veins, infrarenal curvature, and non-circular vessel cross sections that all contribute to the 

complex hemodynamics and make this model a suitable demonstrative case to test the 

robustness of the present algorithm. The infrarenal IVC downstream of the iliac bifurcation 

has an average hydraulic diameter of Dh = 2.8 cm. A high flow rate of 100 cm3/s is used, 

which corresponds to exercise flow conditions with a maximum Reynolds number of Re = 

1500. In accord with the experimental observations of Gallagher et al. [107] in the same 

model and under the same flow conditions, here we assume that the flow is laminar. The 

density of the fluid is set to ρ = 1.817 g/cm3, and the viscosity is μ = 5.487 × 10−2 g/cm s. 

For comparison, an additional simulation is performed with the finite volume method using 

Kolahdouz et al. Page 27

J Comput Phys. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) solver in OpenFOAM 

(version 1812) with second-order accurate spatial discretization schemes. Importantly, the 

OpenFOAM simulation was performed using a body-fitted block-structured mesh that was 

generated to approximately match the spatial resolution of the IIM mesh (see Fig. 31 panels 

b and c) to enable a consistent comparison.

Steady fully-developed parabolic velocity boundary conditions are imposed at the upstream 

inlets of the iliac veins. The two inlets are circular with a diameter of D = 2.44 cm, which 

then transition to an elliptical shape a short distance downstream. Because our current IIM 

implementation requires applying the Eulerian boundary conditions at the outer faces of the 

surrounding Cartesian domain, we have slightly extended the IVC geometry at the inlets to 

be able to apply the corresponding fully developed conditions at the resulting enclosed 

intersection ellipses such that the flow conditions are the same as in the OpenFOAM 

simulation; see Fig. 31(a). The surface of the IVC is described using bilinear quadrilateral 

surface elements with Mfac ≈ 2, as shown in Fig. 32. The surface mesh of the IVC used in 

the IIM simulation was constructed using Trelis Mesh Generation Toolkit, which is based on 

the CUBIT software [108], and the mesh of the OpenFOAM simulation was generated using 

the Pointwise software. The IVC is embedded in a rectangular computational domain of size 

Lx × Ly × Lz = 50 × 25 × 50cm3. This Eulerian domain is discretized using a three-level 

locally refined grid with a refinement ratio of four between the grid levels, resulting in a grid 

spacing of hcoarsest  = 25
16 = 1.5625 cm on the coarsest level and hfinest  = 25

16 × 42 ≈ 0.098 cm on 

the finest grid level. A fixed time step size of Δt = 10−4 sec is used. At the outlet, the normal 

traction and tangential velocities are set to zero. Solid-wall boundary conditions are imposed 

along the remainder of ∂Ω.

Fig. 33 shows the Lagrangian displacement and velocity magnitudes of the stationary IVC 

using the present IIM. The maximum displacement of the mesh stays within 18% of the 

Eulerian grid spacing, and the maximum velocity is approximately 0.032% that of the mean 

value velocity at the inlet (U ≈ 10.7cm/s). Numerical experiments show that the fully-

developed flows through the iliac veins remain almost completely undisturbed until they 

reach the confluence of the veins, where the two streams merge and form a high-velocity 

region in the center of the IVC lumen, with a pair of counter-rotating vortices on either side. 

This is demonstrated in Fig. 34(a), where velocity contours of both the IIM computation and 

the OpenFOAM simulation at cross section A are shown. Significant swirl and mixing occur 

after the confluence of the iliac veins. The velocity contours and the flow patterns are 

compared between the present method and the OpenFOAM simulation for four slices 

labeled B, C, D, and E past the confluence region. Fig. 34 shows there is a good agreement 

in both velocity magnitudes and the flow patterns between the two solutions.

To further quantify and compare the amount of swirl and mixing in the solution, we compute 

the helicity density H = u·ω. This parameter is an indicator of local embolus particle 

transport in cardiovascular flows [109]. Fig. 35 illustrates the contours of helicity for the two 

solutions using the present IIM approach and OpenFOAM at the critical cross section E 

previously shown in Fig. 31. Once again, overall there is good agreement between the two 

solutions.
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Finally, contours of wall shear stress magnitudes are plotted in Fig. 36 for both the present 

approach and the OpenFOAM simulation. The overall distribution appears to be similar 

particularly in the region prior to the confluence of the veins and where the minimum wall 

shear stress occurs at the junction. However, slight differences are observed in the location 

where the maximum wall shear stress happens. This is likely due to minor differences in the 

mesh resolution between the two cases at the iliac vein confluence due to the requirement 

for point-matching in the block-structured body-fitted OpenFOAM mesh, which yields a 

slightly coarser resolution than the IIM mesh in this region. Future work should more 

rigorously compare the two simulation methods by performing a full mesh refinement study, 

which is beyond the scope of the present work.

5 Summary and conclusions

This work describes an immersed interface method that sharply resolves fluid dynamics 

problems in complex geometries using a general finite element mesh description of the 

interface. Like the IB method, the IIM does not require geometrically conforming spatial 

discretizations, which enables the use of fast Cartesian grid linear solvers. The primary 

contribution of the present work is to extend the IIM to treat general interface geometries 

that are described only in terms of C0-continuous surface representations. In particular, the 

present method does not require any analytic description of the interface geometry. Methods 

for accurately modeling flows involving C0-continuous immersed boundaries described by 

standard finite element meshes, without analytic information about the interfacial geometry, 

are needed to address applications involving geometries determined from experimental or 

clinical image data.

As in the original immersed interface methods, jumps in the pressure and velocity gradient 

are determined from interfacial forces imposed along the immersed boundary. In this work, a 

continuous representation of these jump conditions is determined on the C0 representation of 

the interface by projecting them onto continuous Lagrangian basis functions supported along 

the interface. Although this requires the solution of a linear system of equations, this solve 

occurs only on the surface mesh and can be performed in an algorithmically optimal way 

using simple iterative methods. Further, an accurate velocity interpolation scheme based on a 

modified bilinear (or, in three spatial dimensions, trilinear) scheme is developed that 

accounts for the imposed discontinuity in the velocity gradient. Although the method uses 

only the lowestorder jump conditions, it is demonstrated to maintain global second-order 

accuracy in the Eulerian velocity and between first- and second-order global accuracy in the 

Eulerian pressure along with second-order accuracy in the pointwise deformation and 

velocity of the interface, and at least first-order accuracy in the pointwise fluid stress along 

the interface. Benchmark examples in two and three spatial dimensions demonstrate that 

very high fidelity flow simulations are possible using this scheme and, further, that it is 

necessary to account for all of these lowest-order jump conditions to maximize the accuracy 

of the scheme.

Another novel aspect of the present method is that it uses only the lowest-order jump 

conditions. It is common in immersed interface methods described in the literature to impose 

higher-order jumps conditions, including the jump in the first normal derivative of the 
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pressure and the second normal derivative of the velocity. These higher-order corrections 

require the evaluation of terms such as the curvature and surface divergence of the force. 

Note that directly evaluating the curvature on the surface in a pointwise fashion requires C2 

continuity. C0-continuous surfaces do not provide enough regularity to obtain continuity of 

even the normal vector between elements. To address this difficulty, specialized treatments 

have been developed that yield accurate approximations of higher-order geometrical 

quantities, including the surface normal and curvature, on C0 continuous surface 

representations. For triangulated surfaces, one approach is to adopt alternative basis 

functions, such as those used by subdivision surfaces [110], which provide enough regularity 

to yield accurate pointwise approximations to curvature and surface derivatives by directly 

differentiating the shape functions. Another approach is to use methods of discrete 

differential geometry using averaging Voronoi cells [111] or finite element stabilization 

techniques [112]. In the immersogeometric FSI methodology [113], higher order spline-

based surface representation can be used, following the original work on isogeometric 

analysis [114]. Nonetheless, if global second-order accuracy in the velocity and first-order 

accuracy in the pressure and wall shear stress are sufficient, empirical tests reported in this 

paper demonstrate that only the lowest-order jump conditions are required. Further, these 

results demonstrate that these jump conditions may be determined and imposed using 

simple, low continuity-order interface representations. Work is underway to extend the 

present method to volumetric (codimension zero) problems of moving and flexible objects 

as well as thin flexible structures described using plate and shell models, and to apply this 

methodology to a range of applications in engineering, applied science, and medicine.
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A Convergence data

Table 4:

Convergence results of the Eulerian velocity and pressure for two-dimensional horizontal 

plane-Poiseuille considered in Sec. 4.1.1.

velocity pressure

h Error Order Error Order

L2
1.56 × 10−1 4.4886 × 10−2 - 2.9764 × 10−2 -

7.80 × 10−2 1.0044 × 10−2 2.16 1.2007 × 10−2 1.31
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velocity pressure

h Error Order Error Order

3.90 × 10−2 1.3822 × 10−3 2.86 2.5519 × 10−3 2.23

1.95 × 10−3 3.6201 × 10−4 1.93 2.3269 × 10−4 3.46

L∞

1.56 × 10−1 4.6171 × 10−2 - 3.4157 × 10−2 -

7.80 × 10−2 1.0396 × 10−2 2.15 1.2673 × 10−2 1.43

3.90 × 10−2 2.5911 × 10−3 2.00 2.7193 × 10−3 2.22

1.95 × 10−3 8.4275 × 10−4 1.62 2.6682 × 10−4 3.35

Table 5:

Convergence results of the displacement, velocity, pressure and WSS on the surface mesh of 

the two-dimensional horizontal plane-Poiseuille flow considered in Sec. 4.1.1.

displacement velocity pressure WSS

h Error Order Error Order Error Order Error Order

L2

1.56 × 
10−1

4.2943 × 
10−3 - 8.6485 × 

10−3 - 4.2904 × 
10−2 - 1.9004 × 

10−2 -

7.80 × 
10−2

1.0702 × 
10−3 2.00 2.1488 × 

10−3 2.01 1.5327 × 
10−2 1.49 8.9271 × 

10−3 1.09

3.90 × 
10−2

2.8847 × 
10−4 1.89 8.6136 × 

10−4 1.32 1.8084 × 
10−3 2.55 4.2621 × 

10−3 1.07

1.95 × 
10−3

7.1420 × 
10−5 2.01 2.1852 × 

10−4 1.98 2.0321 × 
10−4 3.15 2.1631 × 

10−3 0.98

L∞

1.56 × 
10−1

5.0088 × 
10−3 - 1.0645 × 

10−2 - 1.0489 × 
10−2 - 1.1273 × 

10−2 -

7.80 × 
10−2

1.0452 × 
10−3 2.26 2.9337 × 

10−3 1.86 4.3378 × 
10−3 1.27 5.3873 × 

10−3 1.07

3.90 × 
10−2

2.4787 × 
10−4 2.08 1.5121 × 

10−3 0.96 6.8581 × 
10−4 2.66 2.5205 × 

10−3 1.09

1.95 × 
10−3

6.1995 × 
10−5 2.00 4.0972 × 

10−4 1.88 1.0069 × 
10−4 2.78 1.2724 × 

10−3 0.99

Table 6:

Convergence results of the Eulerian velocity and pressure for two-dimensional inclined 

plane-Poiseuille flow considered in Sec. 4.1.1.

velocity pressure pressure on Ω*

h Error Order Error Order Error Order

L2

7.80 × 10−2 1.3072 × 10−3 - 7.4462 × 10−4 - -

3.90 × 10−2 3.1417 × 10−4 2.06 2.2671 × 10−4 1.72 -

1.95 × 10−3 7.6507 × 10−5 2.04 9.4735 × 10−5 1.26 -

9.75 × 10−4 1.9933 × 10−5 1.94 4.0041 × 10−5 1.24 -

L∞
7.80 × 10−2 5.8251 × 10−2 - 4.5021 × 10−2 - 5.2985 × 10−2 -

3.90 × 10−2 3.0388 × 10−2 0.94 2.1777 × 10−2 1.48 1.9759 × 10−2 1.42
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velocity pressure pressure on Ω*

h Error Order Error Order Error Order

1.95 × 10−3 1.5299 × 10−2 0.99 1.5221 × 10−2 0.52 1.0058 × 10−2 0.97

9.75 × 10−4 7.6174 × 10−3 1.00 1.4029 × 10−2 0.12 5.0311 × 10−3 1.00

Table 7:

Convergence results of the displacement, velocity, pressure and WSS on the surface mesh of 

the two-dimensional inclined plane-Poiseuille flow considered in Sec. 4.1.1.

displacement velocity Pressure WSS

h Error Order Error Order Error Order Error Order

L2

7.80 × 
10−2

1.0256 × 
10−3 - 5.4813 × 

10−3 - 3.4355 × 
10−2 - 1.0341 × 

10−2 -

3.90 × 
10−2

2.5688 × 
10−4 2.00 8.1599 × 

10−4 2.75 1.4422 × 
10−2 1.25 4.9935 × 

10−2 1.05

1.95 × 
10−3

6.5622 × 
10−5 1.97 2.3934 × 

10−4 1.77 4.0782 × 
10−3 1.82 2.3804 × 

10−2 1.07

9.75 × 
10−4

1.6489 × 
10−5 1.99 6.2818 × 

10−5 1.93 1.1990 × 
10−3 1.77 1.1239 × 

10−3 1.08

L∞

7.80 × 
10−2

1.3363 × 
10−3 - 7.0881 × 

10−3 - 2.9897 × 
10−2 - 6.9130 × 

10−3 -

3.90 × 
10−2

2.9123 × 
10−4 2.20 1.1809 × 

10−3 2.59 1.2979 × 
10−2 1.20 3.1308 × 

10−3 1.14

1.95 × 
10−3

7.0620 × 
10−5 2.04 4.1602 × 

10−4 1.51 4.5329 × 
10−3 1.52 1.7871 × 

10−3 0.81

9.75 × 
10−4

1.8191 × 
10−5 1.96 1.4445 × 

10−4 1.53 1.5480 × 
10−3 1.55 8.7958 × 

10−4 1.02

Table 8:

Convergence results of the Eulerian velocity and pressure for three-dimensional horizontal 

Hagen-Poiseuille flow considered in Sec. 4.1.2.

velocity pressure pressure on Ω*

h Error Order Error Order Error Order

L2

1.56 × 10−1 1.1629 × 10−1 - 6.0942 × 10−2 - - -

7.80 × 10−2 2.9558 × 10−2 1.98 1.6789 × 10−2 1.86 - -

3.90 × 10−2 7.6507 × 10−3 2.04 2.4049 × 10−3 2.80 - -

1.95 × 10−3 1.7100 × 10−3 2.07 6.4996 × 10−4 1.89 - -

L∞

1.56 × 10−1 4.8008 × 10−2 - 1.1099 × 10−1 - 1.1099 × 10−1 -

7.80 × 10−2 2.3307 × 10−2 1.04 6.9275 × 10−2 0.68 2.4625 × 10−2 2.17

3.90 × 10−2 4.7934 × 10−3 2.28 4.4148 × 10−2 0.65 3.0722 × 10−3 3.00

1.95 × 10−3 1.2291 × 10−3 1.96 2.5007 × 10−2 0.82 7.5856 × 10−4 2.02
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Table 9:

Convergence results of the displacement, velocity, pressure and WSS on the surface mesh of 

the three-dimensional horizontal Hagen-Poiseuille flow considered in Sec. 4.1.2.

displacement velocity pressure WSS

h Error Order Error Order Error Order Error Order

L2

1.56 × 
10−1

5.8931 × 
10−3 - 4.4541 × 

10−3 - 1.7140 × 
10−1 - 2.3026 × 

10−2 -

7.80 × 
10−2

8.5408 × 
10−4 2.79 4.8937 × 

10−4 3.19 4.1685 × 
10−2 2.04 1.2835 × 

10−2 1.09

3.90 × 
10−2

2.1148 × 
10−4 2.01 4.0652 × 

10−4 0.26 5.2332 × 
10−3 2.99 5.8642 × 

10−3 1.07

1.95 × 
10−3

5.2629 × 
10−5 2.00 9.9410 × 

10−5 2.03 1.2725 × 
10−3 2.04 2.7800 × 

10−3 0.98

L∞

1.56 × 
10−1

4.6561 × 
10−3 - 8.5493 × 

10−3 - 1.1037 × 
10−1 - 1.4015 × 

10−2 -

7.80 × 
10−2

7.4997 × 
10−4 2.63 1.6748 × 

10−3 2.35 2.4535 × 
10−2 1.27 7.5266 × 

10−3 0.90

3.90 × 
10−2

1.5650 × 
10−4 2.26 1.0312 × 

10−3 0.70 3.0398 × 
10−3 2.66 3.5189 × 

10−3 1.10

1.95 × 
10−3

3.9278 × 
10−5 1.99 3.0996 × 

10−4 1.73 7.2375 × 
10−4 2.78 1.7256 × 

10−3 1.03

Table 10:

Convergence results of the Eulerian velocity and pressure for three-dimensional inclined 

Hagen-Poiseuille flow considered in Sec. 4.1.2.

velocity pressure pressure on Ω*

h Error Order Error Order Error Order

L2

7.80 × 10−2 2.7733 × 10−3 - 6.5465 × 10−2 - -

3.90 × 10−2 4.6659 × 10−4 2.57 1.8020 × 10−3 1.86 -

1.95 × 10−3 1.8128 × 10−4 1.36 1.0238 × 10−3 0.82 -

9.75 × 10−4 4.5095 × 10−5 2.01 3.6563 × 10−4 1.49 -

L∞

7.80 × 10−2 8.4694 × 10−3 - 4.5885 × 10−2 - 3.9710 × 10−2 -

3.90 × 10−2 2.2634 × 10−3 1.90 4.0355 × 10−2 0.19 5.7205 × 10−3 2.80

1.95 × 10−3 7.9415 × 10−4 1.51 2.1088 × 10−3 0.94 2.1088 × 10−3 1.44

9.75 × 10−4 2.2101 × 10−4 1.85 1.4058 × 10−3 0.59 1.0088 × 10−3 1.06

Kolahdouz et al. Page 33

J Comput Phys. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table 11:

Convergence results of the displacement, velocity, pressure and WSS on the surface mesh of 

the three-dimensional inclined Hagen-Poiseuille flow considered in Sec. 4.1.2.

displacement velocity pressure WSS

h Error Order Error Order Error Order Error Order

L2

7.80 × 
10−2

2.8315 × 
10−3 - 1.8397 × 

10−5 - 3.1258 × 
10−3 - 8.3374 × 

10−3 -

3.90 × 
10−2

4.1330 × 
10−4 2.78 5.0375 × 

10−6 1.87 3.0608 × 
10−4 3.35 4.7784 × 

10−3 0.80

1.95 × 
10−3

1.0007 × 
10−4 2.05 3.0499 × 

10−6 0.72 1.1570 × 
10−4 1.40 2.4453 × 

10−3 0.97

9.75 × 
10−4

2.4407 × 
10−5 2.04 7.8403 × 

10−7 1.96 3.6156 × 
10−5 1.68 1.2870 × 

10−3 0.93

L∞

7.80 × 
10−2

2.1752 × 
10−3 - 1.1652 × 

10−5 - 3.1373 × 
10−3 - 5.7894 × 

10−2 -

3.90 × 
10−2

3.3874 × 
10−4 2.68 5.4306 × 

10−6 1.10 3.3588 × 
10−4 3.22 2.9846 × 

10−3 0.96

1.95 × 
10−3

7.9366 × 
10−5 2.09 3.0997 × 

10−6 0.81 1.8660 × 
10−4 0.85 1.5948 × 

10−3 0.90

9.75 × 
10−4

1.8852 × 
10−5 2.07 1.4285 × 

10−6 1.12 9.8211 × 
10−5 0.93 8.0262 × 

10−3 0.99

Table 12:

Convergence results of the Eulerian velocity and pressure for two-dimensional circular 

Couette flow considered in Sec. 4.2.

velocity pressure pressure on Ω*

h Error Order Error Order Error Order

L2

1.2500 × 10−1 3.9912 × 10−2 - 5.7864 × 10−2 - -

6.2500 × 10−2 1.0652 × 10−2 1.91 1.6002 × 10−2 1.85 -

3.1250 × 10−2 3.6850 × 10−3 1.53 4.4463 × 10−3 1.85 -

1.5625 × 10−2 9.5675 × 10−4 1.95 1.6014 × 10−3 1.74 -

L∞

1.2500 × 10−1 1.2378 × 10−1 - 4.5941 × 10−2 - 2.7895 × 10−2 -

6.2500 × 10−2 4.0347 × 10−2 1.62 4.0176 × 10−2 0.19 1.3461 × 10−2 1.05

3.1250 × 10−2 2.2022 × 10−2 0.87 2.8997 × 10−2 0.47 6.8975 × 10−3 0.96

1.5625 × 10−2 5.7101 × 10−3 1.95 1.8695 × 10−2 0.63 3.4660 × 10−3 0.99
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Table 13:

Convergence results of the displacement, velocity, pressure and WSS on the surface mesh of 

the two-dimensional circular Couette flow considered in Sec. 4.2.

displacement velocity pressure WSS

h Error Order Error Order Error Order Error Order

L2

1.2500 × 
10−1

3.4268 × 
10−3 - 4.2827 × 

10−2 - 2.7572 × 
10−1 - 2.5266 × 

10−2 -

6.2500 × 
10−2

8.5475 × 
10−4 2.00 1.2115 × 

10−2 1.82 6.7620 × 
10−1 2.03 1.4307 × 

10−2 0.82

3.1250 × 
10−2

2.0304 × 
10−4 2.07 3.6922 × 

10−3 1.71 1.7609 × 
10−2 1.94 8.2638 × 

10−3 0.79

1.5625 × 
10−2

5.0057 × 
10−5 2.02 9.3743 × 

10−4 1.98 6.4982 × 
10−3 1.44 4.3695 × 

10−3 0.92

L∞

1.2500 × 
10−1

3.2031 × 
10−3 - 3.6900 × 

10−2 - 1.6974 × 
10−1 - 1.5876 × 

10−2 -

6.2500 × 
10−2

6.7864 × 
10−4 2.24 1.1092 × 

10−2 1.73 4.7125 × 
10−2 1.85 8.3447 × 

10−3 0.93

3.1250 × 
10−2

1.5153 × 
10−4 2.16 3.8568 × 

10−3 1.52 1.7521 × 
10−2 1.43 4.0669 × 

10−3 1.04

1.5625 × 
10−2

3.4132 × 
10−5 2.15 9.3019 × 

10−4 2.05 8.4316 × 
10−3 1.06 2.2926 × 

10−3 0.83

Table 14:

Convergence results of the Eulerian velocity and pressure for three-dimensional circular 

Couette flow considered in Sec. 4.2.

velocity pressure pressure on Ω*

h Error Order Error Order Error Order

L2

1.2500 × 10−1 7.9945 × 10−2 - 1.6719 × 10−1 - -

6.2500 × 10−2 2.1306 × 10−2 1.91 5.0511 × 10−2 1.73 -

3.1250 × 10−2 7.3705 × 10−3 1.53 1.1295 × 10−2 2.16 -

1.5625 × 10−2 1.9527 × 10−3 1.92 3.8657 × 10−3 1.55 -

L∞

1.2500 × 10−1 1.0378 × 10−1 - 4.6053 × 10−2 - 3.6172 × 10−2 -

6.2500 × 10−2 4.3354 × 10−2 1.26 4.3662 × 10−2 0.077 1.8408 × 10−2 0.97

3.1250 × 10−2 2.0026 × 10−2 1.11 3.1003 × 10−2 0.49 9.4395 × 10−3 0.96

1.5625 × 10−2 6.7114 × 10−3 1.58 2.0668 × 10−2 0.58 4.7551 × 10−3 0.99
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Table 15:

Convergence results of the displacement, velocity, pressure and WSS on the surface mesh of 

the three-dimensional circular Couette flow considered in Sec. 4.2.

displacement velocity pressure WSS

h Error Order Error Order Error Order Error Order

L2

1.2500 × 
10−1

6.8526 × 
10−3 - 8.5642 × 

10−2 - 1.16276 × 
100 - 5.8980 × 

10−2 -

6.2500 × 
10−2

1.7098 × 
10−3 2.00 2.6461 × 

10−2 1.69 2.8960 × 
10−1 2.01 3.1341 × 

10−2 0.91

3.1250 × 
10−2

4.0606 × 
10−4 2.07 7.3760 × 

10−3 1.84 7.2821 × 
10−2 1.99 1.7820 × 

10−2 0.81

1.5625 × 
10−2

1.0023 × 
10−4 2.02 1.8712 × 

10−3 1.98 2.5551 × 
10−2 1.51 9.4697 × 

10−3 0.91

L∞

1.2500 × 
10−1

3.2012 × 
10−3 - 3.7025 × 

10−2 - 3.3877 × 
10−1 - 1.6843 × 

10−2 -

6.2500 × 
10−2

6.7975 × 
10−4 2.24 1.1325 × 

10−2 1.71 8.9525 × 
10−2 1.92 9.7928 × 

10−3 0.78

3.1250 × 
10−2

1.5146 × 
10−4 2.17 3.8613 × 

10−3 1.55 3.1973 × 
10−2 1.49 5.3490 × 

10−3 0.87

1.5625 × 
10−2

3.4150 × 
10−5 2.15 9.3525 × 

10−4 2.04 1.5225 × 
10−2 1.07 2.8636 × 

10−3 0.90
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Figure 1: 
Lagrangian and Eulerian coordinate systems for a thin massless interface undergoing 

infinitesimal displacements. At time t, the physical position of a material point X ∈ Γ0 

attached to the interface and parameterized by X = X(ι, ν) is χ(X, t) ∈ Γt, in which (ι, ν) 

are curvilinear coordinates. In practice, the C0 interface discretization is the only 

geometrical information used in the numerical method.
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Figure 2: 
Unit normal (n) and tangent (t and b) vectors on the interface.
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Figure 3: 
Two-dimensional illustration of irregular stencils in the Navier-Stokes equations for the x-

component of (a) the pressure gradient Gxp
i + 1

2, j
 and (b) Laplacian of the x-component of 

the velocity Lxu
i − 1

2, j
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Figure 4: 
Two-dimensional schematic of a C0-continuous immersed boundary. Normal vectors are 

discontinuous at the junction between neighboring elements.
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Figure 5: 
Two-dimensional schematic of the interpolation scheme for the x-component of the velocity 

at the interfacial location x = χ(X, t). The cell used for calculating the modified bilinear 

interpolation stencil is highlighted in red.
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Figure 6: 
Comparison of the steady-state pressure (top panels) and velocity (bottom panels) 

distributions between the present IIM (left panels) and the standard IB method (right panels) 

for the horizontal channel with grid spacing h = 0.156. The IIM sharply resolves both the 

pressure and flow, and yields higher flow rates at comparable grid spacings than the IB 

method. See also Fig. 8.
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Figure 7: 
Comparison of the steady-state pressure (top panels) and velocity (bottom panels) 

distributions between the present IIM (left panels) and the standard IB method (right panels) 

for the inclined channel with grid spacing h = 0.078. The results are qualitatively similar to 

those of the horizontal case shown in Fig. 6, but note that here we are using a finer 

computational grid, and so both the IIM and IB results are more accurate than those of Fig. 

6.
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Figure 8: 
Comparisons of (a) velocity and (b) pressure profiles at x = 3.5 for the plane-Poiseuille flow 

with grid spacing h = 0.078. Here, Standard IB corresponds to a standard IB method with 

piecewise-linear regularized delta functions, Step 1 corresponds to a hybrid IB-IIM that only 

imposes jump conditions for the pressure, Step 2 corresponds to an IIM that imposes jump 

conditions for both the pressure and velocity gradient but uses uncorrected bilinear 

interpolation to determine the motion of the interface, and Full Method corresponds to the 

IIM described in this paper. Notice that the full method is substantially more accurate than 

the other methods considered here.
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Figure 9: 
Convergence of the L2 and L∞ norms of the error of the Eulerian velocity and pressure for 

the horizontal and inclined plane-Poiseuille flows. Simulation parameters include Re = 

66.66, Δt = 0.1h, and Mfac = 2.
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Figure 10: 
Convergence of the L2 and L∞ norms of the errors of the Lagrangian displacement, velocity, 

pressure, and wall shear stress (WSS) for the horizontal and inclined plane-Poiseuille flow, 

determined along the lower side of the channel. Simulation parameters include Re = 66.66, 

Δt = 0.1h, and Mfac = 2.
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Figure 11: 
Computational meshes used to compute flow in (a) the horizontal pipe and (b) the inclined 

pipe. A locally refined Cartesian grid is used in both cases.
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Figure 12: 
Comparison of the steady-state pressure field along the planes z = 2.5, y = 2.5, and x = 1 

obtained using the present IIM (top panel) and the standard IB method (bottom panel) with a 

relatively coarse locally refined grid comprising N = 3 levels. With the IB method, spurious 

pressure oscillations are clearly observed, whereas the interface method yields a sharp 

pressure profile throughout the computational domain.
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Figure 13: 
Maximum structural displacement magnitude for the three-dimensional slanted channel (top 

left panel). Section views of velocity magnitudes at different planes are shown in panels A, 

B, and C. In this computation, the effective fine grid resolution is hfinest = 0.156, and the 

maximum structural displacement error is approximately 3.3 × 10−3, which is approximately 

a factor of 50 smaller than hfinest.
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Figure 14: 
Convergence in the L2 and L∞ norms of the error in the Eulerian velocity and pressure for 

the horizontal and inclined three-dimensional Hagen-Poiseuille flow. Simulation parameters 

include Re = 100, Δt = 0.1hfinest, and Mfac = 2.
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Figure 15: 
Convergence in the L2 and L∞ norms of the error in the Lagrangian displacement, velocity, 

pressure, and wall shear stress (WSS) for the horizontal and inclined three-dimensional 

Hagen-Poiseuille flow. Simulation parameters include Re = 100, Δt = 0.1hfinest, and Mfac = 

2.
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Figure 16: 
Geometry and dimensions of the circular Couette flow.
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Figure 17: 
(a) u-velocity and (b) pressure profiles for the IIM and IB solutions to the two-dimensional 

Couette flow at Re = 100 and h = 0.0625. The present IIM is in outstanding agreement with 

the analytic solution.
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Figure 18: 
Convergence in the L2 and L∞ norms of the error in the Eulerian velocity and pressure for 

the two- and three-dimensional circulat Couette flows. Simulation parameters include Re = 

100, Δt = 0.05hfinest, and Mfac = 2.

Kolahdouz et al. Page 59

J Comput Phys. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 19: 
Convergence in the L2 and L∞ norms of the Lagrangian displacement, velocity, pressure, 

and wall shear stress (WSS) for the two- and three-dimensional circulat Couette flows. The 

Lagrangian pressure and wall shear stress are computed from the side between the two 

cylinders. Simulation parameters include Re = 100, Δt = 0.05hfinest, and Mfac = 2.
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Figure 20: 
Geometry and dimensions of the eccentric rotating cylinder test. The inner cylinder is 

centered at the origin, and the outer one is centered at (e, 0) = (3/128, 0).
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Figure 21: 
(a) v-velocity and (b) pressure profiles for the IIM and IB solutions of the two-dimensional 

flow within the eccentric rotating cylinders on a relatively coarse 128×128 Cartesian grid, 

for which the minimum distance between the cylinders is h/2. The present IIM yields results 

that are in reasonable quantitative agreement with the asymptotic solution in this 

underresolved case.
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Figure 22: 
(a) v-velocity and (b) pressure profiles for the IIM and IB solutions of the two-dimensional 

flow within eccentric rotating cylinders on a relatively fine 512 × 512 Cartesian grid, for 

which the minimum distance between the cylinders is 2h. The present IIM yields results that 

are in excellent quantitative agreement with the asymptotic solution even in this marginally 

resolved case.
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Figure 23: 
The lift coefficient (CL) of flow past a stationary cylinder over time for (a) Re = 40 and (b) 

Re = 50. The onset of the von Karman vortex street is detected at Re = 50. Simulation 

parameters include hfinest = 0.0293, Δt = 0.05hfinest, and Mfac = 2.
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Figure 24: 
Lift (CL) and drag (CD) coefficients over time for flow past a cylinder at Re = 100. 

Simulation parameters include hfinest = 0.0293, Δt = 0.05hfinest, and Mfac = 2.
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Figure 25: 
Interfacial (a) displacement and (b) velocity magnitudes for flow around a stationary 

cylinder at Re = 200 using the present IIM, plotted at the same time as shown in Fig. 26. 

Simulation parameters include hfinest = 0.0293, Δt = 0.05hfinest, and Mfac = 2. The maximum 

displacement error is approximately 2.6% that of the background grid spacing hfinest, and the 

velocity error is approximately 0.016% that of the free stream flow velocity.
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Figure 26: 
Vorticity fields for flow past a cylinder at Re = 200 for (a) the present IIM and (b) the 

conventional IB method. Notice that the conventional IB method generates spurious interior 

flows that are eliminated with the present IIM.
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Figure 27: 
Lift (CL) and drag (CD) coefficients for flow past a cylinder at Re = 200. The method 

produces consistent results across a wide range of Mfac values.
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Figure 28: 
Lift coefficient (CL) versus nondimensional angular velocity α for the flow past a rotating 

cylinder at (a) Re = 5 and (b) Re = 20. Both cases use Mfac = 2. Results produced by the 

present method are in excellent agreement with previous numerical studies.
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Figure 29: 
Vorticity fields of flow past a rotating cylinder for four rotation rates at Re = 200. Panels (a), 

(b), and (c) show vorticity fields corresponding to α = 1.0 at t = 128, 130, and 132, 

respectively. Vorticity contours of α = 4.4 are shown in panels (d), (e), and (f) at t = 132, 

138, and 144. Periodic flows with distinct behaviors are observed for α = 1.0 and 4.4, 

whereas the solutions at α = 2.5 shown in panel (g) and at α = 3.5 in panel (h) reach steady 

state. Subfigure (i) shows time histories of the corresponding lift coefficient CL in the lower 

bottom panel.

Kolahdouz et al. Page 70

J Comput Phys. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 30: 
Iso-surface of Q-criterion [102] showing the vortex dynamics for flow past a sphere at Re = 

200, 260, and 300. The color contours on the sphere show the distribution of the wall shear 

stress, with red and blue being regions of largest and lowest magnitudes, respectively. The 

onset of the unsteady vortex shedding regime occurs in the range 290 < Re < 400. The 

unsteady behavior at Re = 300 predicted by the present method agrees with previous studies 

[103, 104].
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Figure 31: 
(a) The patient-averaged inferior vena cava (IVC) model geometry used to compare the 

performance of the present IIM scheme to a body-fitted finite volume simulation performed 

with OpenFOAM. Comparisons between the two approaches focus on the highlighted 

sections A–E. (b) The projected Eulerian and interface geometry used in the IIM simulation 

along section C. (c) The body fitted mesh used in the OpenFOAM simulation along section 

C. The number of grid cells along the major and minor axes are roughly equal for both 

simulations.
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Figure 32: 
Computational mesh of the IVC including quadrilateral surface elements and a locally 

refined Cartesian grid.
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Figure 33: 
Lagrangian (a) displacement and (b) velocity magnitudes of the rigid IVC mesh using the 

present IIM. The maximum displacement is approximately 18% that of the background grid 

spacing, and the maximum velocity value is approximately 0.032% that of the mean value 

velocity at the inlet (U ≈ 10.7cm/s).
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Figure 34: 
Velocity magnitudes and vorticity vectors for flow in the inferior vena cava (IVC) at exercise 

flow conditions using the present IIM approach (top panels) and the OpenFOAM simulation 

(bottom panels). Good agreement between the two solutions is clearly obtained at all cross 

sections. Note that no additional post-processing smoothing or filtering is performed in the 

visualization of the results from the present method.
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Figure 35: 
Local helicity density magnitudes in the IVC for (a) the present IIM and (b) the body-fitted 

OpenFOAM simulation.
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Figure 36: 
Contours of wall shear stress magnitude for flow in the IVC at the exercise flow rate for (a) 

the present IIM and (b) the OpenFOAM simulation.

Kolahdouz et al. Page 77

J Comput Phys. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kolahdouz et al. Page 78

Table 1:

Comparison of computational and experimental values for the flow past a stationary cylinder at Re = 20 and 

Re = 40. Simulation parameters include hfinest = 0.0293, Δt = 0.05hfinest, and Mfac = 2.

Re = 20 Re = 40

Lwake θs CD Lwake θs CD

Tritton (experimental) [88] - - 2.22 - - 1.48

Le et al. [50] 0.93 43.9 2.05 2.35 53.8 1.52

Xu and Wang [47] 0.92 44.2 2.23 2.21 53.5 1.66

Calhoun [89] 0.91 45.5 2.19 2.18 54.2 1.62

Present 0.93 44.4 2.10 2.31 54.1 1.58
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Table 2:

Comparison of computational and experimental values of the drag coefficient (CD), lift coefficient (CL), and 

Strouhal numbers (St) for flow past a cylinder at Re = 100 and Re = 200. Other simulation parameters include 

hfinest = 0.0293, Δt = 0.05hfinest, and Mfac = 2. All values are computational unless otherwise noted.

Re = 100 Re = 200

CD CL St CD CL St

Braza et al. [90] 1.360 ± 0.015 ±0.250 0.160 1.400 ± 0.050 ±0.75 0.200

Liu et al. [91] 1.350 ± 0.012 ±0.339 0.164 1.310 ± 0.049 ±0.69 0.192

Calhoun [89] 1.330 ± 0.014 ±0.298 0.175 1.170 ± 0.058 ±0.67 0.202

Le et al. [50] 1.370 ± 0.009 ±0.323 0.160 1.340 ± 0.030 ±0.43 0.187

Xu and Wang [47] 1.423 ± 0.013 ±0.340 0.171 1.420 ± 0.040 ±0.66 0.202

Lai and Peskin [4] - - 0.165 - - 0.190

Roshko (experimental) [92] - - 0.164 - - 0.190

Williamson (experimental) [93] - - 0.166 - - 0.197

Griffith and Luo [74] - - - 1.360 ± 0.046 ±0.70 0.195

Present 1.370 0.015 0.351 0.168 1.390 0.060 0.75 0.198
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Table 3:

Drag coefficients for three-dimensional flow past a sphere at different Reynolds numbers determined by the 

present IIM and by several prior computational [99, 55, 42] and empirical [100] studies. Simulation 

parameters include hfinest = 0.0293, Δt = 0.05hfinest, and Mfac = 2.

Re = 20 Re = 100 Re = 200 Re = 500

Fornberg [99] - 1.0852 0.7683 0.4818

Turton and Levenspiel [100] 2.6866 1.0994 0.8025 0.5617

Fadlun et al. [42] - 1.0794 0.7567 0.4758

Campregher et al. [101] - 1.1781 0.8150 0.5200

Xu and Wang [55] 2.73 1.15 0.88 -

Present 2.6940 1.0920 0.7852 0.5348
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