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Abstract

By reducing amino acid alphabet, the protein complexity can be significantly simplified,

which could improve computational efficiency, decrease information redundancy and

reduce chance of overfitting. Although some reduced alphabets have been proposed,

different classification rules could produce distinctive results for protein sequence

analysis. Thus, it is urgent to construct a systematical frame for reduced alphabets. In

this work, we constructed a comprehensive web server called RAACBook for protein

sequence analysis and machine learning application by integrating reduction alphabets.

The web server contains three parts: (i) 74 types of reduced amino acid alphabet

were manually extracted to generate 673 reduced amino acid clusters (RAACs) for

dealing with unique protein problems. It is easy for users to select desired RAACs

from a multilayer browser tool. (ii) An online tool was developed to analyze primary

sequence of protein. The tool could produce K-tuple reduced amino acid composition

by defining three correlation parameters (K-tuple, g-gap, λ-correlation). The results are

visualized as sequence alignment, mergence of RAA composition, feature distribution

and logo of reduced sequence. (iii) The machine learning server is provided to train

the model of protein classification based on K-tuple RAAC. The optimal model could

be selected according to the evaluation indexes (ROC, AUC, MCC, etc.). In conclusion,

RAACBook presents a powerful and user-friendly service in protein sequence analysis
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and computational proteomics. RAACBook can be freely available at http://bioinfor.imu.

edu.cn/raacbook.

Database URL: http://bioinfor.imu.edu.cn/raacbook

Introduction

With the development of various biotechnologies, the
number of protein sequences is growing at a rapid pace.
However, the three-dimensional structures and function
of most proteins are still not determined. For example,
in August 2019, there are 154 939 structures, 560 537
reviewed proteins and 167 761 270 unreviewed protein
sequences in Protein Data Bank (PDB) (1, 2), the Swiss-
Prot and TrEMBL (3), respectively. Obviously, the gaps
between structure data, function data and protein sequences
are increasing fast. Although X-ray crystallography is a
powerful tool in determining these structures, it is time-
consuming and expensive, and not all proteins can be
successfully crystallized. Membrane proteins are difficult
to crystallize, and most of them will not dissolve in normal
solvents. Therefore, so far few membrane protein structures
have been determined. NMR is indeed a very powerful
tool in determining the 3D structures of membrane
proteins (4–21), but it is also time-consuming and costly.
Thus, it is urgent to design efficient computational
methods based on sequence information for rapidly and
accurately identifying biological features in primary protein
sequences.

Subsequently, experimental interest in reduced alphabet
was firstly proposed in the 1960s (22). Alphabet reduction
techniques play high-potential roles for sequence alignment
and topological estimation (23), which have been widely
used in almost all of protein classification (24–32). Mean-
while, a series of 3D protein structures have been developed
by means of structural bioinformatics tools (33–45). Facing
the explosive growth of biological sequences discovered in
the postgenomic age, to timely use them for drug develop-
ment, a lot of important sequence-based information, such
as PTM (post-translational modification) sites in proteins
(46–87), protein–drug interaction in cellular networking
(88), protein–protein interactions (89), DNA-methylation
sites (90), recombination spots (91) and sigma-54 promot-
ers (92), have been deducted by various sequential bioin-
formatics tools such as the PseAAC approach and PseKNC
approach (93). Recently, success of AlphaFold on creating
3D protein models proved that the sequence-dependent
inference has incredible potential in computational pro-
teomics (94). Actually, rapid development in sequential
bioinformatics and structural bioinformatics has driven the
medicinal chemistry undergoing an unprecedented revolu-

tion (54), in which the computational biology has played
increasingly important roles in stimulating the development
of finding novel drugs (95, 96).

By clustering around 20 amino acids to smaller alpha-
bet based on some similar rules, the protein complexity
will be dramatically reduced, and some functional con-
served regions will be more clearly displayed (97). For
example, Figure 1A shows a schematic view of a pro-
tein 5TCD, which is ectonucleotide pyrophosphatase. Its
decreased levels may be involved in colon cancer. By uti-
lizing the analysis of amino acid reduction, we can clearly
find the correlation between the primary sequence and
its 3D structure (Figure 1B). The unique sequence bias of
the three-dimensional structure can be visualized in a one-
dimensional interface, which shows that reduced amino
acid clusters (RAACs) have sufficient capability to identify
the consensus domain in sequence alignment (98). Recent
work demonstrated that the specific codes endow sequence
motifs with unique structures or functions, and the dif-
ferential combination and arrangement of the motifs with
specific codes determine the protein isoforms that possesses
multiple functions (99).

With the explosive growth of biological sequences in
the postgenomic era, one of the most important but also
most difficult problems in computational biology is how
to express a biological sequence with a discrete model or
a vector, yet still keep considerable sequence-order infor-
mation or key pattern characteristic. This is because all
the existing machine-learning algorithms (such as ‘Opti-
mization’ algorithm (100), ‘Covariance Discriminant’ or
‘CD’ algorithm (101, 102), ‘Nearest Neighbor’ or ‘NN’
algorithm (103) and ‘Support Vector Machine’ or ‘SVM’
algorithm (103, 104)) can only handle vectors as elaborated
in a comprehensive review (105).

However, a vector defined in a discrete model may
completely lose all the sequence-pattern information. To
avoid completely losing the sequence-pattern information
for proteins, the pseudo amino acid composition (93) or
PseAAC (106) was proposed. Ever since the concept of
Chou’s PseAAC was proposed, it has been extensively
used in nearly all the areas of computational proteomics
(107–116). Because it has been widely and increasingly
used, four powerful open-access softwares, called ‘PseAAC’
(117), ‘PseAAC-Builder’ (118), ‘propy’ (119) and ‘PseAAC-
General’ (120), were established: the former three are
for generating various modes of Chou’s special PseAAC
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Figure 1. A schematic view of a protein 5TCD in PDB with secondary structures. Subfigure (A) shows the three-dimensional structure of this protein.

All secondary structural elements are indicated as different labels. Subfigure (B) shows its corresponding chain view, where the gray background

represents the portion of the reduced amino acid sequence that matches the protein secondary structural elements.

(121), the fourth one for those of Chou’s general PseAAC
(122), including not only all the special modes of feature
vectors for proteins but also the higher level feature vectors
such as ‘Functional Domain’ mode, ‘Gene Ontology’
mode and ‘Sequential Evolution’ or ‘PSSM’ mode (122).
Encouraged by the successes of using PseAAC to deal with
protein/peptide sequences, the concept of PseKNC (Pseudo
K-tuple Nucleotide Composition) (105) was developed
for generating various feature vectors for DNA/RNA
sequences (123–125) that have proved very useful as well.
Particularly, recently a very powerful web server called
‘Pse-in-One’ (126) and its updated version ‘Pse-in-One
2.0’ (100) have been established that can be used to
generate any desired feature vectors for protein/peptide
and DNA/RNA sequences according to the need of users’
studies.

Since the reduced amino acids perform powerful abil-
ity, we firstly developed the flexible web server for gen-
erating pseudo K-tuple reduced amino acid composition
(27). During the last 2 years, amounts of users’ feed-
back show that this online server must be updated by
providing additional online services. Therefore, we update
the online server, called RAACBook, which not only con-
tained reduced amino acid analysis but also newly added
the visualization report module, the comprehensive RAAC
repository and the machine learning online tool. It per-
formed more robust and powerful for simplifying protein
complexity, providing feature files for prediction, train-
ing classification models and showing clearer conservative
regions.

Materials and Methods

Data collection and curation

The framework for the development of the RAACBook is
described in Figure 2. The reduced amino acid alphabets
of RAACBook were derived from over 1000 PubMed’s
original literature, which were filtered by keywords as fol-
lows: ‘amino acid alphabet’, ‘reduced amino acid’, ‘amino
acid cluster’, ‘amino acid group’, ‘simplified amino acid’
etc. Till 14 August 2019, 74 types of reduced amino acid
alphabets were manually curated in RAACBook, which can
generate 673 reduced amino acid descriptors for analyz-
ing protein sequence (Supplementary Table 1). There are
more than 40 clustering algorithms involved in this online
repository, including BLOSUM matrix, maximum infor-
mation gain, data mining and physico-chemical proper-
ties. In addition, the deep learning method has been also
applied to the amino acid reduction (26). For better select-
ing desired alphabets, we developed a multilayer browser
tool, which supports filtering of different keywords. The
returned entries will link to the annotation information
of RAAC, including description, reference and visualized
clusters, which can be conveniently selected to reduced
analysis.

Implementation

The current version of the RAACBook database is con-
structed on MariaDB. The system is operated on Linux
servers with 28 physical cores, which uses Apache as a

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz131#supplementary-data
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Figure 2. The framework of the RAACBook. Block diagrams showing the modules and functions of RAACBook. Input data are on the left, output data

presented on the right. The data of the manually curated database is collected in PubMed by a keyword filter. Users can provide protein sequences

in the webpage to generate reduced sequence vector files and visualizations. The users can also upload the protein sequence datasets as input to

obtain the corresponding classifier model and evaluation.

proxy. The analysis engine and the visualization module are
developed by Python.

After users upload protein sequences to the data man-
agement and set essential parameters, each job from the
client can be submitted into the task queue with a unique
Job ID. Job ID and parameters will be stored for the user
to call again. As the function of the task queue manage-
ment, if there are not enough computing resources avail-
able, the job is put on waiting schedule. For the user, job
status is refreshed in the analysis report page. When the
job is completed, the analysis report could be generated
online.

As pointed out in (127) and demonstrated in a series of
recent publications (67, 71, 72, 82, 128–144), user-friendly
and publicly accessible web servers represent the future
direction for developing practically more useful prediction
methods and computational tools. Actually, many practi-
cally useful web servers have significantly increased the
impacts of bioinformatics on medical science (54), driv-
ing medicinal chemistry into an unprecedented revolution
(116).

Results

Overview of the RAACBook web service

To reduce complexity and understand topological estima-
tion of protein sequences, natural protein sequences with
the 20-letter amino acid alphabet can be commonly com-
pressed to simplified alphabet based on some amino acid
similar standards (98). RAACBook is an online reposi-
tory of reduced amino acid alphabets. The current ver-
sion contains RAAC database, reduction analysis, visu-
alization and machine learning of protein classification
(Figure 2). Firstly, The RAAC database provides a com-
prehensive resource of reduced amino acid alphabets. A
multilayer browser is applied for filtering the desired RAAC
from the database. Secondly, the analysis server can produce
K-tuple reduced amino acid composition by defining three
correlation parameters. The result provides reduced fasta
files, csv and libsvm vector files for downloading. For dif-
ferent protein studies, we visualized alignment of sequences,
mergence of amino acids, distribution of reduced amino
acid composition, heat map of sequence features and logo
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of reduced sequence. Thirdly, the machine learning server
enables users to build interesting classifier models, using
different machine learning algorithms based on reduced
sequence features, which can generate corresponding per-
formance evaluation and downloadable file for each model.

Reduction analysis of primary protein sequences

The major challenge in sequence-dependent inference is
to extract the most efficient features and withdraw the
information buried in primary protein sequences. To solve
that, we developed the reduction analysis and the workflow
is as below.

Data input and RAAC-type selection Users only need to upload
the primary sequence with fasta format as input with three
parameters and RAAC Type (Figure 3A, Step 1). The Types
can be filtered in a two-dimensional selection box with
the different alphabet types and cluster sizes, which are
recorded in the RAACBook database (Figure 3A, Step 2).

Parameter selection (i) K-tuple. The K-tuple value represents
the number of peptide. For example, K = 1 means a
monopeptide or amino acid, K = 2 represents a dipeptide,
K = 3 represents a tripeptide, and so on. In a typical K-
tuple analysis, one usually slides the window of width K
amino acids along the protein by one residue at a time. For
a protein with N amino acids, with k = 2, the dipeptide
frequency be counted as follows, R1R2, R2R3, R3R4,
etc. (Supplementary Figure 1A) (126,145). (ii) g-gap. The
value of gap represents the inter-gap number between
two nearest amino acid or K-tuple peptides along the
protein. That is, the gap between each K-tuple peptide
is represented. With k = 2, g = 1, the aim is to count the
dipeptide frequency along the protein by skipping one
residue in every slide as follows, R1R2, R3R4, R5R6, etc.
(Supplementary Figure 1B) (126). (iii) λ-correlation. The λ-
correlation of parameters, also called parallel correlation,
which represents the gap number of each two adjacent
amino acids in the K-tuple peptide interval. It is an integer
greater than 2 and less than L-K, which reflects the protein
sequence correlation between the nearest residue when
K-tuple is determined (Supplementary Figure 1C). Taking
K = 3, λ = 1, g = 2 as an example, the intra-gap number of
within tripeptide interval is 1, and the number of skipping
residue of tripeptide in each slide is 2. In the calculation
process, the combination is R1R3R5, R4R6R8, R7R9R11
and so on (Supplementary Figure 1D).

The biological meaning of three parameters: it is well-
known that the protein with specific domain codes endows
sequence motifs with unique consensus, and the differential
combination and arrangement determine the protein func-
tion. Here the K-tuple parameter was applied to calculate

the total composition of n-peptide in the whole protein
sequence. For example, when K = 3, the reduced tripeptide
composition of protein sequence will be counted for 5TCD
protein in Figure 1. It reflects the global composition of the
secondary structure in 5TCD protein. The g-gap was intro-
duced to compute the interspersed frequency of specific n-
peptide with position bias. For example, ‘RR’ or ‘RRR’
can represent feature preference of alpha helix, which is
usually scattered throughout the protein sequence. The λ-
correlation was defined to extract feature information of
function domain with low internal conservatism. Taking
CXXC domains as example (Supplementary Figure 2), ‘X’
can be any amino acids, but the two external C residue
is extremely conserved (146). This domain is ubiquitous
in TET, DNMT and MBD protein. When K = 2, λ = 2,
the feature preference of CXXC domain will be precisely
captured by our feature extraction. Therefore, these three
quantities will help researchers to obtain features with effec-
tive biological significance in meaningfully characterizing
proteins.

Analysis report The server will finally generate an analysis
report of reduced amino acid, which consisted of param-
eter information, reduced feature and sequence files and
visualization. The parameter information includes RAAC,
K-tuple, g-gap, λ-correlation and job id. The download
supports fasta, csv and libsvm vector files, and they are
packaged as downloadable zip file (Figure 3A, Steps 6 and
7). Filtering to the desired feature vectors and sequence files
is necessary for the prediction of protein three-dimensional
structures or the construction of protein classification mod-
els. Therefore, the sequence reduction analysis includes the
visualization to meet different studies, which consists of
three parts: the sequence visualization, the feature visual-
ization and the reduced logo visualization.

Sequence visualization includes three presentation meth-
ods (Figure 3A, Steps 8–10): firstly, in the alignment of
the natural and reduced sequences, the colors used by the
reduced amino acids are only a subset of those used by the
natural ones. With such a color reduction in visualization,
the primary structures of the proteins show clearer physical
and chemical characteristics than the natural amino acid
sequences. Also, the relevant protein complexity will be
minimally degraded with nonessential information being
suppressed, in some cases leading to more clearly display
functionally conserved regions (147). Secondly, the match-
ing relates the natural amino acids with the reduced ones.
The lines represent association, and the width of a line is
drawn in proportion to the frequency of involved amino
acids in the reduction process. In general, some amino acids
are more likely to reduce to certain amino acids, which
show the preference in protein sequences. It plays a major

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz131#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz131#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz131#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz131#supplementary-data
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baz131#supplementary-data
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Figure 3. RAACBook analysis and machine learning workflow. Subfigure (A) The workflow shows the reduction analysis of natural amino acid

sequence. Settings pane: After uploading primary sequences in fasta format (Step 1) and the alphabet types of interest were used as input (Step 2).

If only these parameters are submitted, the server can generate reduced sequence files (Step 3). If the aim is to produce sequence feature files for

machine learning, users need to select three parameters (Step 4) and submit (Step 5). Analysis panel: there are three files for download (Step 6).

The reduced amino acid sequences are visualized by clicking ‘Visualization’ button (Step 7). Sequences visualization: three charts were exhibited:

alignment between natural and reduced amino acid sequences (Step 8), mergence of natural amino acid composition (Step 9), and distribution of

amino acid composition (Step 10). Features visualization (Steps 11–13): according to different reduced alphabets and parameters, service will generate

the K-tuple reduced amino acid composition heat map of multiple sequences and the distribution of single reduced sequence peptides. Reduced logo

visualization (Steps 14–15): the figure represents each amino acid information of each position in protein sequence based on the reduced alphabet.

Subfigure (B) Machine learning workflow shows the acquisition of the classifier model by uploading datasets and setting parameters. Settings panel

(Steps 1–3): K-tuple, the alphabet type and the machine learning algorithm are selected (Step 2), after uploading fasta files containing positive and

negative datasets (Step 1). Subsequently, the machine learning service was executed (Step 3). Model evaluation: the chart of Sp, Sn, Acc, Mcc and

the diagram of the ROC curve are generated (Steps 4 and 5), and the classifier model and vector files can be downloaded (Steps 6–8).

role in structural biology, synthetic biology and new drug
development. Thirdly, the frequency map of the natural and
reduced amino acids is drawn.

Feature visualization (Figure 3A, Steps 11–13): accord-
ing to different reduced alphabets and parameters, the

server will generate the K-tuple reduced amino acid compo-
sition heat map of multiple sequences and the distribution
of single reduced sequence peptides. Generally, the tool can
provide the reference and helps users to find suitable vector
files for their protein research.
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Reduced logo visualization (Figure 3A, Steps 14 and
15): each logo is the representation of a multiple-protein
sequence alignment, including natural sequence alignment
and reduced sequence alignment. Each position of the
sequence is a stack. Each stack is a collection of each amino
acid frequency at this position (148). After the reduction,
visualization provides a richer and clearer way to depict the
sequences, such as binding sites and functional conserved
regions.

Machine learning of protein classification

As demonstrated by a series of recent publications (57, 60,
76–78, 82, 84, 88, 90–92, 128–132, 149–160) and summa-
rized in two comprehensive review papers (122, 161), to
develop a really useful predictor for a biological system,
one needs to follow Chou’s five-step rule to go through
the following five steps: (i) the valid benchmark datasets
are firstly submitted as inputs for training the classifier
model (Figure 3B, Step 1); (ii) the samples with an effective
formulation can truly reflect their intrinsic correlation with
the target to be predicted; (iii) the support vector machine
(SVM), K-nearest neighbor (KNN) and random forest (RF)
algorithm are introduced to operate the classifier; (iv) the 5-
fold cross-validation is the default test for using to evaluate
the anticipated accuracy of the classifier; and (v) estab-
lishment of a user-friendly web server for a classifier that
is accessible to the public user. A new sequence-analyzing
method or statistical predictor by observing the guidelines
of Chou’s five-step rule has the following notable mer-
its: (i) crystal clear in logic development, (ii) completely
transparent in operation, (iii) easily to repeat the reported
results by other investigators, (iv) with high potential in
stimulating other sequence-analyzing methods and (v) very
convenient to be used by the majority of experimental
scientists.

The result of the machine learning server includes
parameter information and model evaluation. The machine
learning method, job ID, K-tuple and alphabet type are
listed at the top of the report. The details of prediction for
every alphabet are shown in the model evaluation section,
including specificity (Sp), sensitivity (Sn), accuracy (Acc)
and Mathew correlation coefficient (MCC) (Figure 3B,
Step 5). The results of different alphabets are displayed
in the receiver operating characteristic (ROC) curve, and
the AUC value is given for reflecting the overall prediction
ability (Figure 3B, Step 4). Finally, researchers can use
the above indexes to select the appropriate classifier
model or feature file to apply to their study. At the
bottom of the report, users can conveniently download
the fasta, csv, libsvm files and classifier models (Figure 3B,
Steps 6–8).

Applications

The reduced amino acid alphabets combined with machine
leanings have been shown to have the ability for functional
annotation of protein, such as iDPF-PseRAAAC (28), iHSP-
PseRAAAC (149), Antimicrobial Peptide Scanner (26), Bas-
tion6 (25) and iDNA-Prot|dis (162). A recent example of
a collaborative focus within the RAACBook is the iden-
tification of secretory protein using RAAC, implemented
as the ISP-PseRAAC. This is an online implementation
of the SVM method, which can use protein sequences as
input and provides prediction scores of secreted proteins.
The valid benchmark datasets contain secretory proteins
and non-secretory proteins of the malaria parasite. We use
the SVM method to train the model by extracting three
kinds of sequence feature including amino acid compo-
sition, dipeptide composition and tripeptide composition
based on reduced amino acid sequence. Finally, based on
dipeptide compositions of alphabet type 11 with cluster size
10, the prediction result of leave-one-out cross validation
achieves 91.67% accuracy with 0.84 Mathew’s correlation
coefficient, which demonstrates that the reduced alpha-
bet has sufficient discriminatory power to predict protein
function.

New Features

The first version of RAACBook, PseKRAAC, was released
as described by Zuo (27). The innovative features of the
current version are as follows: (i) we increased the types
of reduced amino acids alphabet from 16 to 74 and built
a database for updating systematically the latest reduc-
tion type. These types contain nearly 700 clusters from
literatures, each of which has a detailed method, descrip-
tion, reference, etc. (ii) The current web server rebuilt the
user interface and background services, providing more
friendly user interaction and a stronger system. Detailed
tutorial and help are also supported throughout the use
of the web server. (iii) The reduced analysis script was
rewritten to improve efficiency, and analysis results were
shown as a report, including a variety of downloadable
files and images. In particular, we have added visualizations
of reduced amino acid, sequence features and conservative
region. (iv) We developed a machine learning tool to train
online the classifier model and generated the evaluation
report for users.

Conclusion

The major challenge in protein sequence research, however,
remains, for extracting precise information. The RAACs
performed sufficient ability for decreasing protein complex-
ity and withdrawing the conservative feature hidden in the
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noise signals that affect protein sequence researches. As new
literature on amino acid reductions is published, we will
update timely the database and server workflows to support
the latest reduced alphabets and complicated studies. In
short, RAACBook is a flexible and comprehensive web
online platform where the hidden value of a large number of
protein sequences can be explored by a wide range of users.
With continuous user feedback and further enhancement,
RAACBook has the potential to become an integral part
of routine data of protein analysis for computational and
experimental biologists.

Supplementary data
Supplementary data are available at Database Online.
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