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ABSTRACT The constrained linear genomic selection index (CLGSI) is a linear combination of genomic
estimated breeding values useful for predicting the net genetic merit, which in turn is a linear
combination of true unobservable breeding values of the traits weighted by their respective economic
values. The CLGSI is the most general genomic index and allows imposing constraints on the expected
genetic gain per trait to make some traits change their mean values based on a predetermined level,
while the rest of them remain without restrictions. In addition, it includes the unconstrained linear
genomic index as a particular case. Using two real datasets and simulated data for seven selection
cycles, we compared the theoretical results of the CLGSI with the theoretical results of the constrained
linear phenotypic selection index (CLPSI). The criteria used to compare CLGSI vs. CLPSI efficiency were
the estimated expected genetic gain per trait values, the selection response, and the interval between
selection cycles. The results indicated that because the interval between selection cycles is shorter for
the CLGSI than for the CLPSI, CLGSI is more efficient than CLPSI per unit of time, but its efficiency could
be lower per selection cycle. Thus, CLGSI is a good option for performing genomic selection when there
are genotyped candidates for selection.
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The unconstrained linear genomic selection index (LGSI) is a linear
combination of genomic estimated breeding values (GEBVs) and was
originally proposed by Togashi et al. (2011); however, Ceron-Rojas
et al. (2015) developed the LGSI theory completely and applied the
LGSI theoretical results to real and simulated data. The LGSI is useful
for predicting the net genetic merit, which in turn is a linear combina-
tion of true unobservable breeding values of the traits weighted by their
respective economic values (Hazel 1943). In LGSI, all marker effects of

the genotyped individuals in the training population are estimated
usingmarker and phenotypic data; these estimated effects are then used
in subsequent selection cycles to obtain GEBVs that are predictors of
the individual breeding values in the testing population for which there
is only marker information about the candidates for selection. In LGSI,
the GEBVs can be obtained by multiplying the genomic best linear
unbiased predictor (GBLUP) of the estimated marker effects in the
training population (VanRaden 2008) by the coded marker values
obtained in the testing population in each selection cycle. Applying
LGSI in plant or animal breeding requires genotyping the candidates
for selection to obtain marker effects and GEBVs, and then predicting
and ranking the net genetic merit of the candidates for selection.

The LGSI was developed in the genomic selection (GS) context in
which animals and plants are selected based on the GEBV of the
candidates for selection. Meuwissen et al. (2001) developed the GS
theory and showed that it increases the accuracy of predicting the
breeding values of the candidates for selection, and reduces the intervals
between selection cycles and the costs of the breeding programs.
Meuwissen et al. (2001) suggested estimating all marker effects jointly
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using linear mixedmodels and Bayesianmethods to increase the accuracy
of the predicted breeding values becausemany genes affect the quantitative
traits, which are of most concern to plant and animal breeders. Isik et al.
(2017), however, have indicated that GS has not changed the fundamental
basis of breedingmethods, since inGS the individuals are ranked based on
their estimated breeding values, which has been the selectionmethod used
by animal and plant breeders for a long time. Nevertheless, because GS
decreases the generation interval, it leads to amuch higher genetic gain per
year. For example, in the plant breeding context, a four-year breeding
cycle, which includes three years of field testing, can be reduced to only
four months, i.e., the time required to grow and cross plants (Lorenz et al.
2011). Börner and Reinsch (2012) have indicated that GS could replace
traditional progeny testing when maximizing the genetic gain per year, as
long as the accuracy of GEBV is higher than or equal to 0.45.

One of the main problems associated with the LGSI theory is that the
values of its expected genetic gainper trait (ormulti-trait selection response)
canincreaseordecrease inapositiveornegativedirectionwithoutcontrol. In
the phenotypic selection context, Kempthorne and Nordskog (1959) de-
veloped a restricted linear selection index that allows imposing restrictions
equal to zero on the expected genetic gain of some traits. Other authors
(Mallard 1972; Harville 1975; Tallis 1985) extended the Kempthorne and
Nordskog (1959) approach and developed a constrained linear phenotypic
selection index (CLPSI) that attempts to make some traits change their
expected genetic gain values based on a predetermined level, while the rest
of the traits remain without restrictions. Itoh and Yamada (1987) showed
that the Mallard (1972), Harville (1975) and Tallis (1985) indices give the
same results. The CLPSI is the most general index and includes the un-
constrained and restricted phenotypic indices as particular cases.

Céron-Rojas and Crossa (2018, Chapter 3) developed a constrained
linear genomic selection index (CLGSI); however, these authors did not
evaluate this index completely. For example, they did not give results asso-
ciated with the CLGSI expected genetic gain per trait, which is the main
parameter of this index because the breeder imposes constraints on it to
make some traits change their expected genetic gain values based on a
predetermined level, while the rest of the traits remain without restrictions.

This study had twomain objectives: first, to apply the CLGSI theoretical
results to two real datasets and to seven simulateddatasets using onlyGEBVs
for selecting non-phenotyped candidates for selection, and second, to com-
pare the relative efficiency of CLGSI and CLPSI using real and simulated
datasets in a single-stage context. The criteria we used to compare CLGSI vs.
CLPSI efficiencywere the estimated expectedgenetic gainper trait values, the
selection response, and the interval between selection cycles. One additional
criterion was that the CLGSI and CLPSI proportional constant value should
be positive (Céron-Rojas andCrossa 2018, Chapters 3 and 6 for details). The
results indicated that because the interval between selection cycles was
shorter for CLGSI than for CLPSI, CLGSI is more efficient than CLPSI
per unit of time, but its efficiency could be lower per selection cycle.

We applied the CLGSI theory assuming that the GEBV values have
multivariatenormaldistributionandthat theCLGSI(CLPSI)andthenet
genetic merit have joint bivariate normal distribution. Under this last
assumption, the regressionof thenet geneticmeritonany linear function
of the phenotypic or GEBV values is linear (Kempthorne andNordskog
1959).

MATERIAL AND METHODS

Objectives of the constrained linear selection index
Cerón-Rojas et al. (2016) and Céron-Rojas and Crossa (2018, Chapter
3) described the CLPSI theory; thus, in this work, we shall describe only
the CLGSI theory. Let mi be the population mean of the ith trait before
selection. One of the main CLGSI objectives is to change mi to mi þ di,
where di is the ith (i = 1, 2, . . ., r; r = number of constrained traits) trait

constraint or predetermined proportional gain imposed by the breeder
on the CLGSI expected genetic gain per trait. Additional CLGSI ob-
jectives are to maximize the selection response; to predict the net
genetic merit (H ¼ w9g, where w9 ¼ ½w1 w2 . . . wt � and
g9 ¼ ½ g1 g2 . . . gt � are 1 · t (t ¼number of traits) vectors of
economic weights and true unobservable breeding values, respec-
tively); to select individuals with the highest H values as parents of
the next generation; and to provide the breeder with an objective rule
for evaluating and selecting several traits simultaneously.

The constrained linear genomic selection index
Let z9 ¼ ½ z1 z2 ⋯ zt � be a vector of genomic breeding values for
t traits (Appendix 1, Equations A1 to A4 for details). The CLGSI used
to predict the individual net genetic merit of a candidate for selection is

I ¼ b1z1 þ b2z2 þ . . .þ btzt ¼ b
0
z; (1)

whereb9 ¼ ½b1 b2 . . . bt � is the CLGSI vector of coefficients and
zi (i= 1, 2, . . ., t) is the genomic value associated with trait ith. Ceron-Rojas
et al. (2015) described Equation (1) in the unconstrained LGSI.

The CLGSI selection response
The CLGSI selection response (R) can be written as

R ¼ 1
L
ksHrHI ; (2)

where k is the selection intensity, L denotes the interval between
selection cycles, sH ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

w9Cw
p

is the standard deviation of
H ¼ w9g, VarðgÞ ¼ C is the covariance matrix of g, and
r

HI
¼ w9Gbffiffiffiffiffiffiffiffiffi

w9Cw
p ffiffiffiffiffiffiffiffi

b9Gb
p is the correlation between H ¼ w9g and I ¼ b

0
z,

where w9Gb ¼ sHI is the covariance between H ¼ w9g and I ¼ b
0
z,

G ¼ VarðzÞ is the covariance matrix of genomic breeding values (Appen-
dix 1, EquationA2 for details), andsI ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
b9Gb

p
is the standard deviation

of I ¼ b
0
z. Equation (1) indicates that the genetic gain that can be achieved

in R by selecting for several traits simultaneously within a population of
plants, is the product of k, sH and rHI (Kempthorne and Nordskog 1959).
Thus, to increase selection progress, rHI should be as large as possible.
Céron-Rojas and Crossa (2018, Chapter 3) described the selection response
of the CLPSI, which is very similar to Equation (2).

The CLGSI expected genetic gain per trait
The CLGSI expected genetic gain per trait (E, or multi-trait selection
response) is the covariance between the genomic breeding value vector
z9 and the index, I ¼ b

0
z (Equation 1), weighted by the standard de-

viation of I, sI ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
b9Gb

p
, multiplied by the selection intensity (k) and

divided by the interval between selection cycles (L), i.e.,

E ¼ k
L
Gb

sI
: (3)

Equation (3) is a t · 1 vector, i.e., E9 ¼ ½ E1 E2 ::: Et �, where
Ei ¼ k

LsI
CovðI; ziÞ ¼ k

LsI
½b1s1i þ b2s2i þ⋯þ bjsji þ⋯þ btsti�

(i ¼ 1, 2, . . .,t) is the expected genetic gain of trait ith, zi is the ith

genomic breeding value, I ¼ Pt
j¼1

bjzj is the index value (Equation1) for one

individual, CovðI; ziÞ is the covariance between I and zi, and sji is the
covariance between zi and the jth (j ¼ 1, 2, . . .,t) index genomic breeding
value. We defined all the other terms of Equation (3) in Equation (2).

The CLGSI vector of coefficients
Maximizing rHI (Equation 2) is equivalent to minimizing the mean
squared difference between the net genetic merit H ¼ w9g and the
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index I ¼ b
0
z, i.e., E½ðH2IÞ2�, with respect to the vector of coefficients

b under the restriction that Equation (3) values are equal to the di
values (i = 1, 2, . . ., r) imposed by the breeder. Details of the pro-
cess used to obtain the CLGSI vector of coefficients (b) are given in
Appendix 2 (Equations A6 and A7). Here we present only the main
result. The CLGSI vector of coefficients is

b ¼ Kw; (4a)

where w9 ¼ ½w1 w2 . . . wt � is a vector of economic weights,
K ¼ ½It 2Q�, Q ¼ UDðD9U9GUDÞ21D9U9G, It is an identity matrix
of size t · t,D is a Mallard (1972) matrix described inAppendix 2, andU
is the Kempthorne andNordskog (1959)matrix described inAppendix 3.
When D ¼ U (di ¼ 0 for all traits), matrix K can be written as
KG ¼ ½It 2QG�, where QG ¼ UðU9GUÞ21U9G. In this last case, the
CLGSI is a null restricted LGSI similar to the Kempthorne and Nordskog
(1959) restricted index.WhenD ¼ U andU9 is a null matrix,b ¼ w, the
vector of economic weights or the unconstrained LGSI vector of coeffi-
cients (Ceron-Rojas et al. 2015). Thus, the CLGSI is more general than the
LGSI and includes the null restricted and the unrestricted LGSI as partic-
ular cases. The vector of coefficients b should maximize the selection
response (R, Equation 2) andmakeEquation (3) values similar to di values.

It is possible to show (Itoh and Yamada 1987; Céron-Rojas and
Crossa 2018, Chapter 3) that another way of writing Equation (4a) is

b ¼ KGw þ uUðU9GUÞ21d; (4b)

where u¼ d9ðU9GUÞ21U9Gw
d9ðU9GUÞ21d

is the proportionality constant and

d9 ¼ ½ d1 d2 ::: dr � is the vector of the constraints imposed by
thebreeder.According to Itoh andYamada (1987),u should be higher than
zero (u. 0) because when u, 0, the CLGSImoves the populationmeans
in the opposite direction to the predetermined desired direction. In addi-
tion, when u¼ 0, wewould have the CLGSIwith null constraints similar to
the Kempthorne and Nordskog (1959) restricted index. Thus, u is a good
criterion for determining when the CLGSImoves the populationmeans in
the desired direction, which will occur when u. 0.While Equation (4a) is
associated with the Mallard (1972) constrained index, Equation (4b) is
associated with the Tallis (1985) constrained index; however, Equations
(4a) and (4b) express the same result in a different mathematical way.

InAppendix 1 (Equation A5), we give a method for estimating matrix
G, and in Appendix 2 (Equation A8), we explain how to estimate b.

Maximized CLGSI selection response and optimized
expected genetic gain per trait
The maximized CLGSI selection response is

R ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
b9Gb

p
; (5)

while the optimized CLGSI expected genetic gain per trait is the same as
Equation (3). In Equation (5) we omitted L to simplify notation.Whereas
in Equation (2) the selection response can take any value, in Equation (5),
R gives the maximum value of Equation (2). In Appendix 2 (Equations
A9 and A10), we indicate how to estimate R and E.

Obtaining the genomic estimated breeding
values (GEBV)
Several authors (VanRaden 2008; Ceron-Rojas et al. 2015; Isik et al.
2017, Chapter 11; Céron-Rojas and Crossa 2018, Chapter 5) have given
detailed descriptions of how to obtain trait genomic breeding values
(GEBV) which are predictors of trait unobservable breeding values.
In CLGSI, we fitted phenotypic and marker data from the training

population in a statistical model to estimate all available marker effects;
these estimates were then used to obtain GEBV that are predictors of the
individual traits’ true genomic breeding values in a testing population for
which there is only marker information. We obtained the GEBV in the
non-phenotyped testing population bymultiplying the estimatedmarker
effects obtained in the training population by the coded marker values
obtained in the testing population at each selection cycle.

Criteria for comparing CLGSI efficiency vs.
CLPSI efficiency
The criteria used to compare CLGSI vs. CLPSI efficiency when making
genomic and phenotypic selection were as follows. First, the estimated
theta value (u) should be positive (u. 0). Second, the estimated expected
genetic gain values should be close to the constraints (di) imposed by the
breeder. Third, the estimated selection response value should be equivalent
to the true selection response value. Fourth, the size of the interval between
selection cycles (L) should be short to increase the selection gain per year.

In thiswork, we donot consider the problemassociatedwith the cost
of obtaining measures of each phenotypic trait and the process of
genotyping individual candidates for selection. However, some authors
(Schaeffer 2006; Börner and Reinsch 2012) have considered this prob-
lem in the animal breeding context.

MATERIALS

Real data
Weused two real maize (Zeamays L.) F2 populations: “JMpop1DTMA
Mexico optimum environment” and “6x1020WEMA Africa optimum
environment” (hereafter we shall refer to the first and second maize F2
populations as dataset 1 and dataset 2, respectively). The training pop-
ulation (C0) of each dataset contains genotypic data and four pheno-
typic traits: grain yield (GY, t/ha), plant height (PHT, cm), ear height
(EHT, cm), and anthesis days (AD, d). In addition, each dataset has
three sets of individuals from the training population (C0) and two
testing populations (C1 and C2).We present the number of individuals
and molecular markers in each population in Table 1. Assuming that
the breeding objective was to increase GY while decreasing PHT, EHT,
and AD, the vector of economic weights in C0, C1, and C2 for GY,
PHT, EHT, and AD was w9 ¼ ½ 5 20:3 20:3 21 � for both in-
dices and the two datasets. For illustration purposes only, in this work
we used three selection cycles (C0, C1 and C2) for both datasets to
illustrate the theoretical results and the efficiency of CLGSI and CLPSI.

For illustrationpurposes only, to select traitsGY,PHT,EHTandAD,
we imposed two setsof restrictions. Firstwe restricted traitsGYandPHT
with vector d9 ¼ ½0:5 2 1:0� andmatricesD9 ¼ ½21:0 20:5 � and
U9 ¼

�
1 0 0 0
0 1 0 0

�
(Appendices 2 and 3 for details), and later, we

restricted traits GY, PHT and EHT with vector

d9 ¼ ½ 0:5 21:0 20:5 � and matrices U9 ¼
2
4 1 0 0 0
0 1 0 0
0 0 1 0

3
5 and

D9 ¼
�
20:5 0 20:5
0 20:5 1:0

�
for both datasets and for the two indices

(CLGSI andCLPSI). The total proportion (p) of retained value for these
datasets was p ¼ 0.10 (k ¼ 1:755) for both indices and the two datasets
with the two sets of constraints.

Simulated datasets
The datasets were simulated by Ceron-Rojas et al. (2015) with QU-GENE
software (Podlich and Cooper 1998) using 2500 molecular markers and
315 quantitative trait loci (QTL) for eight phenotypic selection cycles
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(C0 to C7), each with four traits (T1, T2, T3 and T4), 500 genotypes and
4 replicates for each genotype. The authors distributed the markers uni-
formly across 10 chromosomes and theQTL randomly across the 10 chro-
mosomes to simulate maize (Zea mays L.) populations. A different
number of QTL affected each of the four traits: 300, 100, 60, and 40,
respectively. The common QTL affecting the traits generated genotypic
correlations of -0.5, 0.4, 0.3, -0.3, -0.2, and 0.1 between T1 and T2, T1 and
T3, T1 and T4, T2 and T3, T2 and T4, T3 and T4, respectively. The

economic weights for T1, T2, T3 and T4 were 1, -1, 1 and 1, respectively.
Additional details of the simulated data can be seen in Ceron-Rojas et al.
(2015).

We used seven phenotypic and genomic selection cycles (C1 to C7)
with p ¼ 0.10 (k ¼ 1:755) in each cycle. We selected all four traits in
each selection cycle. For illustration purposes only, to select traits
T1, T2, T3 and T4, we imposed two sets of restrictions. First we re-
stricted traits T1 and T2 with vector d9 ¼ ½5 2 2� and matrices

U9 ¼
�
1 0 0 0
0 1 0 0

�
and D9 ¼ ½22 25 �, and later, we restricted

traits T1, T2 and T3 with vector d9 ¼ ½ 5 22 3 � and matrices

U9 ¼
2
4 1 0 0 0
0 1 0 0
0 0 1 0

3
5 and D9 ¼

�
3 0 25
0 3 2

�
for both datasets and

both indices.

Real and simulated data availability
The real and simulated datasets are available in the Application of a
Genomics Selection Index to Real and Simulated Data repository, at

n■ Table 1 Two real maize (Zea mays L.) F2 populations and the
number of genotypes (g) and molecular markers (m) used in three
selection cycles (cycles 0, 1 and 2)

Real datasets

Dataset 1 Dataset 2

Cycle g m g m

0 247 195 181 205
1 320 195 274 205
2 303 195 274 205

n■ Table 2 Two real datasets for estimated CLGSIa parameters constructed with four traits (GY, PHT, EHT and AD) for two and three
constraints in three selection cycles

Dataset 1 with two constraints

Estimated expected genetic gain per trait Estimated maximum
Cycle Theta GY PHT EHT AD Response

0 2.32 0.76 21.51 24.05 0.71 4.73
1 1.70 0.65 21.30 23.47 0.67 4.02
2 1.57 0.61 21.22 23.63 0.56 3.96
Mean1b 1.86 0.67 21.35 23.72 0.65 4.24
Mean2c — 0.45 20.90 22.48 0.43 2.82

Dataset 1 with three constraints

Estimated expected genetic gain per trait Estimated maximum
Cycle Theta GY PHT EHT AD Response

0 2.74 0.84 21.68 20.84 0.43 5.02
1 1.99 0.72 21.44 20.72 0.41 4.27
2 1.89 0.70 21.39 20.70 0.36 4.18
Mean1b 2.21 0.75 21.50 20.75 0.40 4.49
Mean2c — 0.50 21.00 20.50 0.27 2.99

Dataset 2 with two constraints

Estimated expected genetic gain per trait Estimated maximum
Cycle Theta GY PHT EHT AD Response

0 0.84 0.42 20.83 21.30 20.36 3.08
1 0.76 0.43 20.86 20.61 20.14 2.73
2 0.68 0.41 20.82 20.43 20.11 2.54
Mean1b 0.76 0.42 20.84 20.78 20.20 2.79
Mean2c — 0.28 20.56 20.52 20.13 1.86

Dataset 2 with three constraints

Estimated expected genetic gain per trait Estimated maximum
Cycle Theta GY PHT EHT AD Response

0 0.94 0.45 20.89 20.45 20.36 3.25
1 0.86 0.44 20.88 20.44 20.12 2.99
2 0.75 0.41 20.83 20.41 20.10 2.79
Mean1b 0.85 0.43 20.87 20.43 20.19 3.01
Mean2c — 0.29 20.58 20.29 20.13 2.01
a
Constrained Linear Genomic Selection Index.

b
Mean1 is the average of the three selection cycles.

c
Mean2 = Mean1/1.5, where 1.5 is the interval between selection cycles and denotes the average of the genetic gain per year.

3984 | J. J. Cerón-Rojas and J. Crossa



http://hdl.handle.net/11529/10199. The two real datasets used in this work
are the folder named “File Real_Data_Sets_GSI” that contains four folders
called “DATA_SET-3, 4, 5 and 6”. Each of the four folders in turn contains

four Excel data files. The four Excel data files within the folder DATA_
SET-3 are as follows: DATA_SET-3_Markers_Cycle-0, 1, 2, and DATA_
SET-3_Phenotypic_Cycle-0. The first three Excel files contain the marker

n■ Table 3 Two real datasets for estimated LGSIa parameters constructed with four traits (GY, PHT, EHT and AD) without constraints for
three selection cycles

Dataset 1

Estimated expected genetic gain per trait Estimated maximum
Cycle GY PHT EHT AD Response

0 0.23 26.05 26.45 20.15 5.05
1 0.21 25.15 25.47 20.07 4.29
2 0.18 24.94 25.60 20.15 4.21
Mean1b 0.21 25.38 25.84 20.12 4.52
Mean2c 0.14 23.59 23.89 20.08 3.01

Dataset 2

Estimated expected genetic gain per trait Estimated maximum
Cycle GY PHT EHT AD Response

0 0.33 22.65 22.47 20.36 3.57
1 0.35 21.73 21.44 20.17 2.85
2 0.29 21.81 21.61 20.19 2.67
Mean1b 0.32 22.06 21.84 20.24 3.03
Mean2c 0.22 21.37 21.23 20.16 2.02
a
Unconstrained Linear Genomic Selection Index.

b
Mean1 is the average of the three selection cycles.

c
Mean2 = Mean1/1.5, where 1.5 is the interval between selection cycles and denotes the average of the genetic gain per year.

n■ Table 4 Simulated data for estimated CLPSIa and CLGSIb parameters constructed with four traits (T1, T2, T3 and T4), two constraints
and true maximum responses in seven selection cycles

CLPSI
True

maximumEstimated expected genetic gains per trait Estimated maximum
Cycle Theta T1 T2 T3 T4 Response Response

1 8.37 7.90 23.16 3.55 1.70 16.31 19.51
2 7.53 7.48 22.99 3.23 1.79 15.50 17.56
3 6.34 6.93 22.77 2.74 1.65 14.08 16.49
4 7.19 7.75 23.10 2.17 1.25 14.28 16.30
5 6.21 7.02 22.81 2.46 1.33 13.62 15.96
6 4.92 6.30 22.52 2.00 1.21 12.03 14.57
7 4.17 5.57 22.23 2.58 1.17 11.54 14.65
Mean1c 6.39 6.99 22.80 2.68 1.44 13.91 16.43
Mean2d — 1.75 20.70 0.67 0.36 3.48 4.11

CLGSI
True

maximumEstimated expected genetic gains per trait Estimated maximum
Cycle Theta T1 T2 T3 T4 Response Response

1 6.13 6.83 22.73 2.79 1.47 13.82 12.65
2 5.67 6.57 22.63 2.69 1.41 13.29 15.27
3 5.26 6.28 22.51 2.69 1.41 12.90 15.10
4 4.36 5.79 22.32 2.29 1.21 11.60 16.03
5 3.78 5.37 22.15 2.15 1.17 10.84 15.17
6 3.44 5.13 22.05 1.92 1.21 10.31 14.28
7 3.78 5.39 22.15 2.17 1.11 10.82 15.73
Mean1c 4.63 5.91 22.36 2.38 1.28 11.94 14.89
Mean3e — 3.94 21.58 1.59 0.86 7.96 9.92
a
Constrained Linear Phenotypic Selection Index;

b
Constrained Linear Genomic Selection Index;

c
Mean1 is the average of the seven selection cycles;

d
Mean2 = Mean1/ 4 for the CLPSI;

e
Mean3 = Mean1/1.5 for the CLGSI, where 4 and 1.5 are the intervals between selection cycles for CLPSI and CLGSI, respectively. Means 2 and 3 denote the average
of the genetic gains per year.
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coded values for cycles 0, 1 and 2, while the Excel file DATA_SET-3_
Phenotypic_Cycle-0 contains thephenotypic informationof cycle 0 (train-
ing population). The Excel data files of the other folders were described in
a similar manner as for folder 3. In this work, we used datasets 3 and 6 to
make selections and to estimate the theta values, the selection response
and the genetic expected gains. The results are presented in Tables 2 and 3.

Folder Simulated_Data_GSI contains two folders: Data_Pheno-
types_April-26-15 andHaplotypes_GSI_April-26-15. In turn, folder
Data_Phenotypes_April-26-15 contains two folders: GSI_Phenotypes-05
and PSI_Phenotypes-05. Within folder GSI_Phenotypes-05, there are six
Excel data files, each denoted as C2_GSI_05_Pheno, C3_GSI_05_Pheno,
C4_GSI_05_Pheno, C5_GSI_05_Pheno and C6_GSI_05_Pheno, corre-
sponding to the simulated phenotypic information for the genomic
selection index for cycles 2-7. In addition, folder GSI_Phenotypes-05
contains eight Excel datasets denoted as C0_Pheno_05, C1_PSI_05_
Pheno, C2_PSI_05_Pheno, C3_PSI_05_Pheno, C4_PSI_05_Pheno, C5_
PSI_05_Pheno, C6_PSI_05_Pheno, and C7_PSI_05_Pheno corresponding
to the phenotypic simulated information for the phenotypic selection index
for cycles 0-7. File Haplotypes_GSI_April-26-15 contains the haplotypes of
the markers for cycles 0-7 of GSI. We present the results of the simulated
datasets in Tables 4, 5 and 6.

RESULTS

Real data

The normality assumption: Figure 1 presents the frequency distribu-
tion of the GEBVs associated with traits GY (Figure 1a) and PHT

(Figure 1b) for Dataset 1, in cycle 1. In addition, Figure 2 presents the
frequency distribution of the CLGSI values for real Dataset 1 (in cycle 1)
with two constraints (Figure 2a, d9 ¼ ½ 0:5 21:0 �), whereas Figure 2b
presents the frequency distribution of the CLGSI values for real Dataset
2 (in cycle 2) with three constraints (d9 ¼ ½ 0:5 21:0 20:5 �). Based
on these results, we can assume that the GEBVs associated with traits GY
and PHT, and the CLGSI values for the two set of restrictions, approach
the normal distribution.

Estimated maximized CLGSI parameters: Tables 2 and 3 present the
estimated CLGSI and LGSI parameters, respectively. The estimated
parameters are the theta (û) values (for CLGSI only), the expected
genetic gains per trait Ê (Appendix 2, Equation A10), and the selection
responses R̂ (Appendix 2, Equation A9). In Table 2, all parameters
were estimated for datasets 1 and 2 with two (d9 ¼ ½ 0:5 21:0 �)
and three (d9 ¼ ½ 0:5 21:0 20:5 �) constraints, whereas in Table
3, the parameters were estimated, without constraints, for three selec-
tion cycles (0, 1 and 2). The estimated theta values were all positive
(Table 2) for the two real datasets, which indicates that the CLGSI
moves the population means in the desired direction, as we would
expect.

Estimated CLGSI expected genetic gains per trait: In Tables 2 and 3,
there are twomeans:Mean1 andMean2 =Mean1/L (L= interval between
selection cycles) associated with the estimated CLGSI and LGSI expected
genetic gain per trait and selection response for the two real maize (Zea
mays L.) F2 populations, respectively. Mean1 is the average of the three

n■ Table 5 Simulated data for estimated CLPSIa and CLGSIb parameters constructed with four traits (T1, T2, T3 and T4), three constraints
and true maximum responses in seven selection cycles

CLPSI
True

maximumEstimated expected genetic gains per trait Estimated maximum
Cycle Theta T1 T2 T3 T4 Response Response

1 7.30 7.12 22.85 4.27 1.55 15.79 17.47
2 6.43 6.61 22.64 3.97 1.76 14.97 16.24
3 5.32 6.03 22.41 3.62 1.52 13.58 15.15
4 4.45 5.54 22.21 3.32 1.29 12.37 13.95
5 4.78 5.76 22.30 3.45 1.28 12.80 14.28
6 3.62 4.96 21.98 2.98 1.32 11.24 13.11
7 3.65 5.00 22.00 3.00 1.23 11.24 13.14
Mean1c 5.08 5.86 22.34 3.52 1.42 13.14 14.76
Mean2d — 1.46 20.59 0.88 0.36 3.28 3.69

CLGSI
True

maximumEstimated expected genetic gains per trait Estimated maximum
Cycle Theta T1 T2 T3 T4 Response Response

1 4.43 5.50 22.20 3.30 1.40 12.41 11.76
2 3.98 5.19 22.08 3.11 1.42 11.80 13.40
3 3.92 5.15 22.06 3.09 1.44 11.74 13.47
4 3.05 4.57 21.83 2.74 1.13 10.28 14.11
5 2.72 4.30 21.72 2.58 1.16 9.75 13.47
6 2.29 3.92 21.57 2.35 1.15 8.99 13.30
7 2.57 4.18 21.67 2.51 1.12 9.48 14.36
Mean1c 3.28 4.69 21.87 2.81 1.26 10.63 13.41
Mean3e — 3.12 21.25 1.87 0.84 7.09 8.94
a
Constrained Linear Phenotypic Selection Index.

b
Constrained Linear Genomic Selection Index.

c
Mean1 is the average of the seven selection cycles.

d
Mean2 = Mean1/ 4 for the CLPSI.

e
Mean3 = Mean1/1.5 for the CLGSI, where 4 and 1.5 are the intervals between selection cycles for CLPSI and CLGSI, respectively. Means 2 and 3 denote the average
of the genetic gains per year.
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selection cycles, whereas Mean2 (Mean1/1.5, where 1.5 is the interval
between selection cycles or the time required to complete one selection
cycle (Beyene et al. 2015)) is the average of the genetic gain per year.

For dataset 1, p ¼ 0:10, k ¼ 1:755 and two constraints, the estimated
CLGSI expected genetic gains per trait for cycles 0, 1 and 2 were Ê90 ¼
½ 0:76 21:51 24:05 0:71 �, Ê91 ¼ ½ 0:65 21:30 23:47 0:67 �
and Ê92 ¼ ½ 0:61 21:22 23:63 0:56 �, respectively. Each Ê9q
(q ¼ 0, 1, 2) value was associated with the mean values of traits
GY, PHT, EHT and AD. Traits GY and PHT were constrained by
d9 ¼ ½ 0:5 21:0 � values. The Mean1 of the Ê9q value associated with
traits GY and PHT (0.67 and -1.35, respectively) overestimated the
d9 values by 35% (Table 2). However, note that the genetic gain per
year, obtained as Mean2 =Mean 1/1.5, underestimated the d9 values by
10% because the Mean2 of the Ê9q values associated with traits GY and
PHT (0.45 and -0.90, respectively) were lower than the d9 values.

When we constrained three traits (GY, PHT and EHT) by vector
d9 ¼ ½ 0:5 21:0 20:5 �, we found results similar to those for two
constraints. That is, the Mean1 of the Ê9q values associated with traits
GY, PHT and EHT (0.75, -1.50 and -0.75, respectively) overestimated
the d9 values by 50% (Table 2). However, for Mean2 = Mean1/1.5, we
found that the Ê9q values associated with traits GY, PHT and EHT (0.50,
-1.0 and -0.50, respectively) were equal to the d9 values. Thus, for
dataset 1, the values of the vector of restrictions, d9 ¼ ½ 0:5 21:0 �
and d9 ¼ ½ 0:5 21:0 20:5 �, were closer to Mean2 than to Mean1
values. This means that the estimated maximized expected genetic gain
per trait estimated the genetic gain per year better than the genetic gain
per selection cycle for dataset 1.

For dataset 2 (p ¼ 0:10 and k ¼ 1:755), with two
(d9 ¼ ½ 0:5 21:0 �) and three (d9 ¼ ½ 0:5 21:0 20:5 �) con-
straints, Mean1 for the Ê9q values associated with traits GY and
PHT and those associated with GY, PHT and EHT, were closer
to the d9values than the Mean2 values (Table 2). In this case, the
estimated expected genetic gain per trait estimated the genetic
gain per year better than the genetic gain per selection cycle.

Dataset 1 gave higher estimatedmaximized CLGSI expected genetic
gains per trait and genetic gains per year than dataset 2. Thismeans that
the number of genotypes affected the estimated values of the expected
genetic gains (Table 1). The number of genotypes in real dataset 1 for
cycles 0, 1 and 2were 247, 320 and 303, respectively, whereas for dataset
2, the number of genotypes for those cycles were 181, 274 and 274
(Table 1), respectively.

Estimated maximized CLGSI selection response: The results of the
estimated maximized CLGSI selection responses for both datasets
and constraints, were as follows. For dataset 1, the Mean1 of the
estimated maximized CLGSI selection responses for two and three
constraints were 4.24 and 4.29, respectively, while for dataset 2, those
estimated values were 2.79 and 3.01. For dataset 1, the Mean2 of the
estimated maximized CLGSI selection responses for two and three
constraints were 2.82 and 2.99, respectively, while for dataset 2, those
estimated values were 1.86 and 2.01. These results indicate that
dataset 1 gave higher estimated CLGSI genetic gains per year. Again,
we explain these results by noting that the number of genotypes in
real dataset 1 for cycles 0, 1 and 2 were 247, 320 and 303, respectively,

n■ Table 6 Simulated data for estimated LPSIa and LGSIb parameters constructed with four traits (T1, T2, T3 and T4) without constraints
and true maximum responses for seven selection cycles

LPSI
True

maximumEstimated expected genetic gain per trait Estimated maximum
Cycle T1 T2 T3 T4 Response Response

1 10.42 25.47 3.78 2.04 17.81 19.63
2 10.11 24.35 3.68 2.00 15.69 17.56
3 9.91 24.07 3.32 1.66 14.22 16.49
4 10.94 24.31 2.57 1.42 14.34 16.32
5 10.60 23.51 3.04 1.48 13.64 15.99
6 10.02 23.54 2.53 1.37 12.04 14.69
7 8.77 23.49 3.14 1.38 11.61 14.90
Mean1c 10.11 24.11 3.15 1.62 14.19 16.51
Mean2d 2.53 21.03 0.79 0.41 3.55 4.13

LGSI
True

maximumEstimated expected genetic gain per trait Estimated maximum
Cycle T1 T2 T3 T4 Response Response

1 6.60 23.50 2.70 1.60 14.40 13.26
2 6.30 23.40 2.60 1.50 13.91 15.28
3 6.10 23.30 2.70 1.50 13.61 15.37
4 5.60 23.10 2.30 1.30 12.30 16.05
5 5.20 22.80 2.10 1.30 11.40 15.17
6 4.90 22.60 1.90 1.30 10.61 14.49
7 5.20 22.70 2.10 1.20 11.21 15.82
Mean1c 5.70 23.10 2.30 1.40 12.49 15.06
Mean3e 3.8 22.07 1.53 0.93 8.33 10.04
a
Unconstrained Linear Phenotypic Selection Index.

b
Unconstrained Linear Genomic Selection Index.

c
Mean1 is the average of the seven selection cycles.

d
Mean2 = Mean1/ 4 for the LPSI.

e
Mean3 = Mean1/1.5 for the LGSI, where 4 and 1.5 are the intervals between selection cycles (L) for LPSI and LGSI, respectively. Means 2 and 3 denote the average of
the genetic gains per year.

Volume 9 December 2019 | Constrained Genomic Selection Indices | 3987



while for dataset 2, the number of genotypes for those cycleswere 181,
274 and 274 (Table 1), respectively. This means that, in effect, the
number of genotypes affected the estimated values of the selection
response.

Whenwe compared the CLGSI results (Table 2) with unconstrained
LGSI results (Table 3), we found that the estimated CLGSI expected
genetic gains per trait were different to the estimated unconstrained
LGSI expected genetic gains per trait for both datasets. However, the
estimated selection responses of both indices were very similar (Tables
2 and 3); this means that the two sets of constraints imposed on the
CLGSI when we obtained its vector of coefficients mainly affected the
CLGSI expected genetic gain per trait, as we would expect.

Simulated data

Correlation of the GEBV With the true breeding values of the
traits: Figure 3 presents the estimated correlations between the GEBVs
and true breeding values for four traits in six (C2 to C7) selection cycles.
Each selection cycle contains four columns: the first column (from left
to right) corresponds to the correlation between the GEBV and the T1
true breeding values; the second column corresponds to the correlation
between the GEBV and the T2 true breeding values, and so on. In this
figure, all correlation values tend to decrease. In C7, the correlation
values between the GEBVs and the traits’ true breeding values were
0.40, 0.55, 0.54, and 0.50 for each of the four traits, respectively, whereas
in cycle two (C2), these correlations were 0.52, 0.74, 0.69, and 0.73 for
each of the four traits, respectively. In percentage terms, the correlation
values of C7 were only 76%, 74%, 78%, and 68% of the correlation
values in C2. That is, the correlation between the GEBVs and the traits’
true breeding values decreased more for traits 2 and 4 than for traits
1 and 3. We can explain these results by the number of QTL that

affected each trait and the size of the QTL effects on the traits in each
selection cycle. In all selection cycles, the estimated correlations were
higher than or equal to 0.45; thus, the GEBVs obtained with the sim-
ulated data were good predictors of the individual breeding values, and
so the CLGSI was a good predictor of the net genetic merit because the
CLGSI is a linear combination of GEBV.

Estimated maximized CLPSI and CLGSI parameters: Tables 4 and 5
present the estimated maximized CLPSI and CLGSI parameters,
whereas Table 6 presents the unconstrained estimated maximized
linear phenotypic and genomic selection index (LPSI and LGSI, re-
spectively) parameters for seven simulated selection cycles. Céron-
Rojas and Crossa (2018, Chapters 2 and 5) have given details of how
to estimate the LPSI and LGSI parameters. We imposed two sets of
constraints on the CLPSI and CLGSI expected genetic gains for
seven selection cycles (C1 to C7). The vector for two constraints
imposed on traits T1 and T2 was d9 ¼ ½ 5:0 22:0 �, whereas the
vector for three constraints imposed on traits T1, T2 and T3 was
d9 ¼ ½ 5:0 22:0 3:0 �. The estimated theta values were all posi-
tive for the simulated dataset in the seven selection cycles for both
sets of constraints, which indicates that CLPSI and CLGSI move the
population means in the desired direction.

We shall compare the estimatedmaximizedCLPSI parameters to the
estimated maximized CLGSI parameters using the results in Tables 4
and 5. In Tables 4 and 5, there are three means: Mean1 and Mean2
(Mean3) = Mean1/L (L= interval between selection cycles) associated
with the estimatedmaximized CLPSI and CLGCI expected genetic gain
per trait and selection response, respectively. Mean1 is the average of
the seven selection cycles, whereas, for the CLPSI, Mean2= Mean1/4
(4= interval between selection cycles, L (Beyene et al. 2015)) is the

Figure 1 Distribution of the GEBVs
(genomic estimated breeding val-
ues) associated with traits GY
(Grain Yield, Fig. 1a) and PHT (Plant
Height, Fig. 1b) for real Dataset
1 in cycle 1.
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average genetic gain per year. For the CLGSI, L = 1.5 (Beyene et al.
2015), from where Mean3= Mean1/1.5. This means that the interval
between selection cycles is a characteristic of each index and that the
interval was shorter for the CLGSI than for the CLPSI.

The total proportion retained for both indices was p ¼ 0.10
(k ¼ 1.755) for all seven selection cycles. Each estimated CLPSI
and CLGSI expected genetic gain per trait Ê9q (q ¼1, 2, . . ., 7) for
two and three constraints is a vector of values associated with the
expected genetic values of traits T1, T2, T3 and T4 (Equation 3).
Some authors (Cerón-Rojas et al. 2016; Céeron-Rojas and Crossa
2018, Chapter 3) have described how to obtain Ê9q for the CLPSI. In
Appendix 2 (Equations A9 and A10), we describe how to estimate
the maximized CLGSI selection response and expected genetic gain
per trait.

Estimated and maximized CLPSI and CLGSI expected genetic gain
per trait: For two constraints (d9 ¼ ½ 5 22 �), the Mean1 of the
estimated CLPSI expected genetic gain values associated with traits
T1 and T2 were 6.99 and -2.80, respectively, whereas the Mean1 of
the estimated CLGSI expected genetic gain values associated with traits
T1 and T2 were 5.91 and -2.36, respectively. This means that the CLPSI
overestimated the d9 values by 38.80%, whereas the CLGSI overesti-
mated those values by 18.20%.

For three constraints (d9 ¼ ½ 5:0 22:0 3:0 �), the Mean1 of the
estimated CLPSI expected genetic gain values associated with traits T1,
T2 and T3were 5.86, -2.34 and 3.52, respectively, whereas theMean1 of
the estimated CLGSI expected genetic gains associated with those traits
were 4.69, -1.87 and 2.81, respectively. This means that while the CLPSI

overestimated the d9 values by 17.20%, the CLGSI underestimated those
values by only 6.20%. Thus, the expected genetic gain per trait per
selection cycle of the CLGSI was closer to the true gain than was the
expected gain of the CLPSI. In addition, because the interval between
selection cycles was higher for the CLPSI (L = 4) than for the CLGSI
(L = 1.5), the genetic gain per year associated with the expected ge-
netic gain per trait was also higher for the CLGSI than for the CLPSI
(Tables 4 and 5).

Finally, note that the estimated LPSI and LGSI expected genetic
gains per trait (Table 6) were more different from the vectors of
constraints, than the estimated CLPSI and CLGSI expected
genetic gains per trait. Thus, the two sets of constraints imposed
on the CLGSI (CLPSI) when we obtained its vector of coefficients,
affected the CLGSI (CLPSI) expected genetic gain per trait, as we
would expect.

Efficiency of the CLPSI and CLGSI selection response: In this sub-
section, we shall compare the average (Mean1) of the estimated CLPSI
andCLGSI selection response to the true selection response obtained for
both indices (Tables 4 and 5). In Appendix 2 (Equations A11a and
A11b), we indicate how we obtained the maximum true selection re-
sponse for LPSI (LGSI) and for CLPSI (CLGSI). The maximum possi-
ble true selection responses for the economic indexwas the same for the
genomic and phenotypic indices when we started the selection process,
as this did not depend on the weights used in a particular selection
index. However, from selection cycle two to selection cycle seven, the
maximum possible true selection responses for both indices were dif-
ferent (Ceron-Rojas et al. 2015).

Figure 2 Distribution of the es-
timated CLGSI (constrained lin-
ear genomic selection index)
values with two (Fig. 2a) and
three (Fig. 2b) constraints for real
Datasets 1 and 2, in cycles 1 and
2, respectively.
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Again, let p ¼ 0.10 (k ¼1.755) be the total proportion retained for
both indices for all seven selection cycles with two set of constraints, as
indicated in the last subsection. For two constraints, the average of the
estimated CLPSI selection response (13.91) explained 84.66% of the
true selection response (16.43), while the average of the estimated
CLGSI selection response (11.94) explained only 80.0% of the true
selection response (14.89) (Table 4). In a similar manner, for three
constraints, the average of the estimated CLPSI selection response
(13.14) explained 89.02% of the true selection response (14.76), while
the average of the estimated CLGSI selection response (10.63)
explained only 79.0% of the true selection response (13.41) (Table 5).
That is, in this case, the estimated CLPSI selection response was closer
to its true response than the estimated CLGSI selection response was to
its true response. Note, however, that because the interval between
selection cycles was higher for the CLPSI (L = 4) than for the CLGSI
(L = 1.5), the genetic gain per year associated with the selection re-
sponse was higher for the CLGSI than for the CLPSI (Tables 4 and 5)
for both constraints.

Finally, when we compared the estimated CLPSI and LPSI selection
responses, we observed that they were very similar. The same was true
when we compared the estimated CLGSI and LGSI selection responses
(Tables 4 and 6). This means that the two sets of constraints imposed
on the expected genetic gains of both indices did not affect the selection
response of the indices, at least for this dataset.

DISCUSSION

CLGSI (CLPSI) expected genetic gain per trait and
selection response
For the two real and simulated datasets, the CLGSI and CLPSI results
indicated that CLGSI was more efficient than CLPSI per unit of time,
but not per selection cycle, when the criterion for comparing the
efficiency of both indices was the estimated selection response.

However, when the criterion used to compare the efficiency of both
indices was the estimated expected genetic gain per trait, the CLGSI
was more efficient than the CLPSI per unit of time and per selection
cycle. In addition, we found that when we compared the estimated
CLPSI selection response with the LPSI selection response, they were
very similar. The same was true for CLGSI and LGSI when we
compared their selection responses. This means that the two sets of
constraints imposed on the CLGSI (CLPSI) when we obtained its
vector of coefficients, mainly affected the estimated and maximized
CLGSI (CLPSI) expected genetic gain per trait, not its estimated
selection response.

Interval between selection cycles
For the two real and simulated datasets, the time required to
conduct a selection cycle is a function of the time required to
collect the data needed to estimate the index parameters. ForCLPSI,
the interval between selection cycles was 4, while for the CLGSI it was
1.5 (Beyene et al. 2015). The interval between selection cycles was
the main factor that made CLGSI a more efficient index than
CLPSI when we measured the efficiency of both indices by the
genetic gains per year. It could also be the main justification for
implementing genomic selection programs instead of phenotypic
selection programs.

Accuracy of the GEBV and the CLGSI values
For the simulated datasets, the average of the accuracy of the GEBV and
the estimated correlation of the CLGSI with the net genetic merit were
higher than or equal to 0.5. The accuracy of the GEBV in cycle 2 was
0.67,while in cycle 7 itwas 0.5. The average of the estimated correlation
of the CLGSI with the net genetic merit (data not presented) for the
seven selection cycles was 0.8 for two constraints and 0.72 for three
constraints. Thus, the correlation between the estimated CLGSI and

Figure 3 Correlations between the genomic estimated breeding values (GEBVs) and the true breeding values for four traits (T1, T2, T3 and T4) in
six (C2 to C7) selection cycles. For each selection cycle, each column correspond to the correlations between the GEBV and the true breeding
values for traits T1, T2, T3, and T4, respectively.
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the net genetic merit decreases when the number of constraints
increased. Céron-Rojas and Crossa (2018; Chapters 5 and 6) have
given a method for estimating the correlation of the CLGSI with
the net genetic merit. In addition, Cerón-Rojas et al. (2016) found
similar results in the CLPSI context. These results indicated the reli-
ability of the GEBV for predicting the breeding value of the traits and
of the CLGSI for predicting the net genetic merit; thus breeders can
use the CLGSI as a good option for performing GS when there are
genotyped individuals.

The multivariate normality assumption
Based on the normality assumption of the estimated CLGSI
(CLPSI) and GEBV values, we developed and applied the CLGSI
(CLPSI) to real and simulated data. The histograms of the GEBV
and the CLGSI values indicated that these values approached the
normal distribution. The multivariate normality distribution is
very important for breeding plant and animal quantitative traits
because these traits show continuous variability and are the result of
many gene effects interacting among themselves and with the
environment. That is, quantitative traits are the result of unobserv-
able gene effects distributed across plant or animal genomes, which
interact among themselves and with the environment to pro-
duce the observable characteristic plant and animal phenotypes
(Falconer and Mackay 1996). Under the multivariate normal dis-
tribution assumption, the traits under selection can be described
using only means, variances, and covariances. In addition, if the
traits are not correlated, they are independent; linear combina-
tions of traits are also normal; and even when the trait phenotypic
values do not have that distribution, the normal distribution serves
as a useful approximation, especially in inferences involving sample
mean vectors, which, by the central limit theorem, have multivar-
iate normal distribution (Rencher 2002). By this reasoning, the
fundamental assumptions in this work were that the GEBVs have
multivariate normal distribution, while the net genetic merit and
the index have bivariate normal distribution. Under the latter
assumption, the regression of the net genetic merit on any linear
function of the phenotypic values was linear.

Criteria for evaluating the relative efficiency of the indices
Weused fourmain criteria to compareCLGSI vs.CLPSI efficiencywhen
performing genomic and phenotypic selection. Those criteria were the
estimates of the theta values, the expected genetic gain per trait values,
the selection response, and the interval between selection cycles. For
real and simulated data, the estimated theta values were always positive,
as we would expect. The estimated expected genetic gain per trait in-
dicated how close these estimates were to the constraints imposed by
the breeder for each trait, whereas the estimated selection response
predicts the mean value of the net genetic merit in the progeny pop-
ulation. The interval between selection cycles is the time required to
collect information to evaluate the index and complete one selection
cycle. The four criteria were useful for evaluating and comparing the
efficiency of both indices.

CONCLUSION
We compared the relative efficiency of a CLGSI vs. a CLPSI. We de-
termined the efficiency of both indices based on four criteria using real
and simulated datasets. In both type of datasets, we found that the
CLGSI genetic gain per year was higher than the CLPSI genetic gain
per year because the CLGSI interval between selection cycles was
shorter than the CLPSI interval. Therefore, breeders should use the
CLGSI when performing selection.
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APPENDIX 1

Genomic breeding values
In the training population, the ith phenotypic value (yi) can be denoted as yi ¼ gi þ ei, where gi is the breeding value (i.e., the average additive

effects of the genes an individual receives from both parents) and ei is the residual. It is assumed that gi and ei are independent and that both have
normal distribution with an expectation equal to zero and variance s2

gi and s2
ei , respectively. The vector of genomic breeding values

z9i ¼ ½ zi1 zi2 ⋯ zin � associated with the vector of observations y9i ¼ ½ yi1 yi2 ⋯ yin � (n ¼ number of observations for trait i, i ¼1,
2,. . .,t; t ¼ number of traits) of the candidates for selection for trait i can be written as

zi ¼ Xui; (A1)

whereX is an n ·mmatrix (n ¼number of observations andm ¼number of markers in the population) of coded marker values (22 2q, 12 2q and
22q for genotypesAA,Aa, and aa, respectively) associated with the additive effects of the quantitative trait loci (QTL), and ui is anm · 1 vector of the
additive effects of the QTL associated withmarkers that affect the ith trait. It is assumed that zi has multivariate normal distribution (MVN) withmean
0 and covariance matrix Gs2

zi , where s
2
zi is the additive genomic variance of zi and G ¼ XX9=c is the n · n additive genomic relationship matrix;

c ¼ Pm
j¼1

2qjð12 qjÞ in an F2 population; q is the frequency of allele A and 12 q is the frequency of allele a in the jth marker (j ¼ 1; 2; :::;m).

Let gij (i ¼1, 2,. . .,t, t ¼number of traits; j ¼ 1; 2; :::; n, n ¼number of observations) be the jth element of the vector of true genotypic breeding
values g9i ¼ ½ gi1 gi2 ⋯ gin �; then the covariance between zij and gij is Covðgij; zijÞ ¼ s2

zi . That is, the covariance between zij and gij is equal to
the additive genomic variance of zij (Dekkers 2007). Let z9 ¼ ½ z1 z2 ⋯ zt � and g9 ¼ ½ g1 g2 ⋯ gt � be 1 · t vectors of genomic and true
breeding values, respectively, for t traits; then

G ¼ VarðzÞ ¼ Covðz; gÞ (A2)

is the covariance matrix of genomic breeding values.

Estimating marker effects
Let u9 ¼ ½ u91 u92 ⋯ u9t � be a vector 1 · nt associated with t traits. The ith vector ui (i ¼1, 2,. . .,t) of marker effects in the training

population can be estimated as ûi ¼ c21X9½Gþ yIn�21ðyi 2 1miÞ, where y ¼ s2
ei

s2
gi
; s2

gi , s
2
ei , and the other parameters were defined earlier. In

addition, we can estimate vector u9 ¼ ½ u91 u92 ⋯ u9t � in the multi-trait context as

û ¼ c21W9½ðIt5GÞ þ ðN5InÞ�21ðy2m51Þ; (A3)

where W ¼ It5X, “5” denotes the Kronecker product (Schott 2005); c and X were defined in Equation (A1); N ¼ RC21, R and C are the
residual and genotypic covariance matrices for t traits, respectively; y9 ¼ ½ y91 y92 ⋯ y9t �� MVN(m, V) is a vector of size 1 · tn, with
covariance matrix V ¼ C5Gþ R5In; It and In are identity matrix of size t · t and n · n, respectively; m9 ¼ ½m1 m2 ⋯ mt � is a vector
1 · t of means associated with vector y, and 1 is a vector n · 1 of 1’s.

Estimating genomic breeding values
We can estimate the vector z9 ¼ ½ z91 z92 ⋯ z9t � 1 · nt of genomic breeding values for t traits in the testing population as

ẑ ¼ Wû: (A4)

Equation (A4) is the vector of GEBV for the multi-trait case andW ¼ It5X (Equation A3). Thus, in the testing population, the only thing that
will change in Equation (A4) will be the coded values inmatrixX, while ûwill be the same in each selection cycle. In Equations (A3) and (A4), we
assumed that m, C and R are known.

Estimating the genomic covariance matrix G

Let ẑj ¼ Xûj and ẑi ¼ Xûi (Equation A4) be the genomic estimated breeding values (GEBVs) of zj ¼ Xiuj and zi ¼ Xui (Equation A1),
respectively, and denote by m̂j and m̂i the arithmetic means of the values of ẑj and ẑi. We can estimate matrix G (Equation A2) when there is no
phenotypic information, as

Ĝ ¼ �
ŝji

�
; (A5)

where ŝji ¼ 1
gðẑj 2 1m̂jÞ9G21ðẑi 2 1m̂iÞ9 is the covariance between ẑj ¼ Xiûj and ẑi ¼ Xûi values (j; i ¼1, 2, . . ., t); g is the number of genotypes;

1 is a g · 1 vector of 1’s and G ¼ c21XX9 is the additive genomic relationship matrix (Ceron-Rojas et al., 2015, for details).

APPENDIX 2

The CLGSI vector of coefficients

Let D9 ¼

2
664
dr 0 . . . 0 2d1
0 dr . . . 0 2d2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . dr 2dr21

3
775 be a Mallard (1972) matrix ðr2 1Þ· r of constrained values, where di is the ith element of vector

d9 ¼ ½ d1 d2 . . . dr � (r is the number of traits constrained) of constrained values imposed by the breeder on the expected genetic gain of the trait
(Equation 3), and let U9 be a Kempthorne and Nordskog (1959) matrix ðt2 rÞ · t (t ¼number of traits) of 1’s and 0’s described in Appendix 3.
To obtain the CLGSI vector of coefficients (b) that maximizes Equations (2) and (3), we will minimize the mean squared difference between
H ¼ w9g and I ¼ b

0
z (E½ðH2IÞ2�) with respect to b under the restriction D9U9Gb ¼ 0.
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LetM9 ¼ D9U9G and suppose that G,U9,D9 and w are known. To minimize E½ðH2IÞ2� under the restrictionM9b ¼ 0, we need to minimize
the function

Fðb; vÞ ¼ b9Gb2 2w9Gbþ 2v9M9b (A6)

with respect to vectors b and v9 ¼ ½ v1 v2 ⋯ vr21 �, where v is a vector of Lagrange multipliers. Equation (A6) derivative results are:�
G M
M9 0

��
b
v

�
¼

�
Gw
0

�
, from where the vector that minimizes E½ðH2IÞ2� under the restriction M9b ¼ 0 is

b ¼ Kw; (A7)

whereK ¼ ½It 2Q�,Q ¼ UDðD9U9GUDÞ21D9U9G and It is an identity matrix of size t · t. If in Equation (A7), di ¼ 0 for all traits, thenD ¼ U
and the CLGSI will be similar to the Kempthorne and Nordskog (1959) index, but in the genomic selection context. When D ¼ U and U9 is a
null matrix,b ¼ w, the vector of economic weights or the unconstrained LGSI vector of coefficients (Ceron-Rojas et al., 2015). Thus, the CLGSI
is more general than the LGSI and includes the LGSI as a particular case.

Estimating the CLGSI vector of coefficients
We can estimate b ¼ Kw(Equation A7) as

b̂ ¼ K̂w; (A8)

where K̂ ¼ ½It 2 Q̂�, Q̂ ¼ UDðD9U9ĜUDÞ21D9U9Ĝ. We defined all the parameters of Equation (A8) earlier.

Estimating the maximized CLGSI selection response and expected genetic gain per trait
The estimated maximized CLGSI selection response (Equation 5) is

R̂ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
b̂9Ĝb̂

q
; (A9)

while the estimated optimized CLGSI expected genetic gain per trait (Equation 3) is

Ê ¼ k
Ĝb̂ffiffiffiffiffiffiffiffiffiffiffiffi
b̂9Ĝb̂

q : (A10)

Maximized true selection responses
Weobtained themaximized true selection response for theunconstrained linear phenotypic andgenomic selection indices (LPSI andLGSI, respectively) as

RP ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
w9Cw

p
and RG ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffi
w9Gw

p
; (A11a)

respectively, where matrices C and G are the covariance matrix of true genotype values associated with the phenotypic (C) and the genomic values
(G, Equation A2) in each selection cycle, k is the selection intensity and w is a vector of economic weights. In addition, the maximized true selection
responses for CLPSI and CLGSI are

RP ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bC9CbC

p
and RG ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bG9GbG

p
; (A11b)

respectively, where bC ¼ KCw and bG ¼ KGw are the vector of coefficients;KC ¼ ½It 2QC �,KG ¼ ½It 2QG�,QC ¼ UDðD9U9CUDÞ21D9U9C, and
QG ¼ UDðD9U9GUDÞ21D9U9G (Equation A7). Matrices C and G were defined in Equation (A11a). We obtained these last parameters only for the
simulated datasets.

APPENDIX 3

The U9 matrix of restrictions
In addition to matrixD, to obtain the CLGSI (CLPSI) vector of coefficients, we need the matrixU9 ðt2 rÞ · t(t ¼ number of traits; r ¼number

of traits restricted), which is a matrix of 1’s and 0’s (1 indicates that the trait is restricted and 0 that the trait is not restricted), and depends on the
number of restricted traits. Thus, suppose that we restrict only one of t traits; then, we can restrict the first of them asU9 ¼ ½ 1 0 0 ⋯ 0 �, the
second asU9 ¼ ½ 0 1 0 ⋯ 0 �, the third asU9 ¼ ½ 0 0 1 ⋯ 0 �, etc.When we restrict two of t traits, matrixU9 could be constructed as

follows.We can restrict the first and second traits asU9 ¼
�
1 0 0 ⋯ 0
0 1 0 ⋯ 0

�
, the first and third traits asU9 ¼

�
1 0 0 ⋯ 0
0 0 1 ⋯ 0

�
, the second

and third traits as U9 ¼
�
0 1 0 ⋯ 0
0 0 1 ⋯ 0

�
, etc. If we restrict three of t traits, matrixU9 will have the following form when the first, second and

third traits are restricted:U9 ¼
2
4 1 0 0 0 ⋯ 0
0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0

3
5; if the first, second and fourth traits are restricted,U9 ¼

2
4 1 0 0 0 ⋯ 0
0 1 0 0 ⋯ 0
0 0 0 1 ⋯ 0

3
5, if the

second, the third and the fourth traits are restricted,U9 ¼
2
4 0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
0 0 0 1 ⋯ 0

3
5, etc. The procedure used to constructmatrixU9 is valid for any

number of restricted traits (Cerón-Rojas and Crossa 2018, Chapter 3, for details).
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