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ABSTRACT Lineage specification in early development is the basis for the exquisitely precise body plan of multicellular organisms. It is
therefore critical to understand cell fate decisions in early development. Moreover, for regenerative medicine, the accurate specification
of cell types to replace damaged/diseased tissue is strongly dependent on identifying determinants of cell identity. Long noncoding
RNAs (IncRNAs) have been shown to regulate cellular plasticity, including pluripotency establishment and maintenance, differentiation
and development, yet broad phenotypic analysis and the mechanistic basis of their function remains lacking. As components of
molecular condensates, IncRNAs interact with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and
microRNAs. With functions ranging from controlling alternative splicing of mRNAs, to providing scaffolding upon which chromatin
modifiers are assembled, it is clear that at least a subset of INCRNAs are far from the transcriptional noise they were once deemed. This
review highlights the diversity of INcRNA interactions in the context of cell fate specification, and provides examples of each type of
interaction in relevant developmental contexts. Also highlighted are experimental and computational approaches to study IncRNAs.
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INEAGE specification decisions in early development pro-

vide a blueprint of the body plan in multicellular organ-
isms. Model systems such as embryonic stem (ES) cells are
often employed in the study of early cell fate decisions. Un-
derstanding cell fate is also critical for regenerative medicine,
as cell-based approaches pose significant therapeutic promise.
Toward this end, induced pluripotent stem (iPS) cells, which
display characteristics of ES cells, and can be patient-derived,
have the potential to be differentiated into a myriad of
different cell types.

Understanding determinants of cell fate is critical both for
understanding early development, and to guide lineage com-
mitment of pluripotent stem cells to enable the replacement
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of diseased cell types in patients. While central transcrip-
tional regulators of pluripotency including OCT4, SOX2,
and NANOG, which maintain the pluripotent state, and spec-
ification factors such as SOX1, MEOX1, and SOX17 (Kan et al.
2004; Shimoda et al. 2007; Wang et al. 2013) are relatively
well understood, many key cell-fate determinants remain
functionally undefined. Importantly, recent developments
in transcriptomics have demonstrated that, although the ma-
jority of the mammalian genome is transcribed, protein coding
sequences amount to <2% of transcribed genomic sequence
(Dinger et al. 2008; Alexander et al. 2010; Harrow et al. 2012),
with the number of noncoding RNA (ncRNA) genes equaling,
or possibly even outnumbering, protein-coding genes based on
estimates from GENCODE and FANTOM (Hon et al. 2017;
Frankish et al. 2019). Already, certain noncoding transcripts,
including microRNAs (miRNAs) and long noncoding RNAs
(IncRNAs; designated as transcripts >200 nt) have been im-
plicated in cell fate decisions for unspecialized cells, including
pluripotent stem cells; however, the vast majority of ncRNAs
remain understudied.

Using pluripotent cells and their derivatives for illustra-
tions, this review centers on IncRNAs, with a focus on the
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multimodal interactions through which they regulate cell fate
specification. These interactions identify IncRNAs as impor-
tant factors in early developmental processes and suggest that
they should be considered in the design of regenerative
medicine strategies.

LncRNAs: Interactions as Functional Determinants

The presence and number of IncRNAs appear to correlate
with organismal complexity, and their expression patterns
show subcellular, cellular, and tissue specificity, which sug-
gests context-dependent roles, particularly in the determina-
tion of cell fate (Mattick 2001). Different classes of IncRNAs
are defined based on transcription direction and location (for
example: sense, bidirectional, antisense, intronic, intergenic;
Figure 1) relative to other genes (Mattick and Rinn 2015).
While this location classification might be suggestive of
mechanism, IncRNA genomic location does not always
strictly dictate function (Mattick and Rinn 2015; Quinn and
Chang 2016). On the other hand, intermolecular interactions
with other RNAs, proteins and chromatin have revealed
emerging functional themes, and demonstrated the far-
reaching regulatory potential of IncRNAs. Here, we examine
the implication of these interactions in cell fate determina-
tion and early developmental processes.

Much of the function of IncRNAs depend on their ability
to base pair to other RNAs or DNA through conventional
or Hoogsteen base pairing, to form complex intramolecular
and intermolecular secondary and higher order structures
(Mercer and Mattick 2013). The structures formed by
IncRNAs regulate and direct interaction with RNA-binding
proteins (RBPs) to regulate, negatively or positively, their
cellular targets. These proteins are central to IncRNA mech-
anisms of action and regulation of their function (Rinn and
Ule 2014).

Localization of a IncRNA transcript can be suggestive of
its functional role and contribution to gene regulation. While
cytoplasmic IncRNAs tend to function post-transcriptionally,
many nuclear IncRNAs regulate gene expression at the tran-
scriptional level (Rinn and Chang 2012; Mercer and Mattick
2013). Within the nucleus, expression of a gene requires
chromatin decompaction, particularly in heterochromatic re-
gions. The compaction state is determined by chemical mod-
ifications of nucleosomal histone proteins, controlled by
histone-modifying enzymes. LncRNAs have been shown to
interact with chromatin modifiers (readers, writers, erasers)
and remodelers to facilitate changes in the chromatin’s bio-
chemical and accessibility landscape at specific gene loci
through both cis- and trans-acting mechanisms (Figure 2)
(Rinn and Chang 2012).

Additionally, IncRNAs have also been shown to have a
number of post-transcriptional and cytoplasmic functions in
many developmental processes. These include functioning
in mRNA stability and translation regulation through pro-
tein, miRNA, and mRNA interactions (Figure 2) (Batista and
Chang 2013; Yoon et al. 2013; Quinn and Chang 2016).
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These interactions provide a basis for IncRNA functional clas-
sification, but can also be targeted to direct cell fate.

Interactions with proteins: chromatin regulation

The plasticity of pluripotent stem cells is related to the high
ratio of euchromatin to heterochromatin (Gaspar-Maia et al.
2011), making more chromatin accessible to transcription
factors, RNA polymerase, and other proteins necessary for
transcription. Pluripotent stem cells also have a high propor-
tion of poised chromatin (Fisher and Fisher 2011), which
facilitates the rapid gene derepression required for lineage
commitment. Extensive binding of IncRNAs to epigenetic reg-
ulators that control chromatin accessibility defines one cate-
gory of IncRNA function (Mercer and Mattick 2013). Studies
using ES cells and other cell types have shown that ~30% of
intergenic IncRNAs were bound by at least one epigenetic
regulator (Khalil et al. 2009), indicating widespread impact
of IncRNAs on cell identity at the transcriptional level.

LncRNASs can act in cis by binding to neighboring genes and
facilitating recruitment of chromatin modifier/remodelers
to the target locus (Bassett et al. 2014). The act of IncRNA
transcription can also have a cis-regulatory function in gene
expression, and influence genome organization (Bassett et al.
2014; Engreitz et al. 2016; Melé and Rinn 2016). LncRNAs
can function in trans as well, either by serving as a recruit-
ment or scaffolding factor on which chromatin modifying
proteins assemble, or by modulating the stability of the chro-
matin regulatory protein complex (Rinn and Chang 2012;
Bassett et al. 2014).

Cis-regulatory IncRNAs control expression of neighboring
genes. In the context of cell fate specification, these IncRNA
genes are often located adjacent to key developmental regu-
lators that determine cell fate and organismal development
(Bassett et al. 2014; Engreitz et al. 2016; Melé and Rinn
2016). This mechanism is commonly used for antisense and
divergent IncRNAs that are typically <5 kb from, and tran-
scribed in the opposite direction relative to, a transcribed
gene. For example, Evxlas and its neighboring protein-
coding gene, Evx1, demonstrate highly correlated expression
in murine ES cells (Luo et al. 2016). Depletion of Evxlas
indicated unidirectional regulation of the protein-coding
neighbor by the IncRNA where Evxlas bound to its own pro-
moter and facilitated binding of Mediator to activate tran-
scription at the locus (Luo et al. 2016). This example
highlights how IncRNAs can act in cis, tethered to their pro-
moter, to modify gene expression near their transcription site.

Another illustration of cis influence of a IncRNA is exem-
plified by Chaserr’s regulation of Chd2—a chromatin remod-
eler with roles in cell differentiation in mice (Rom et al.
2019). Chaserr’s transcript is produced upstream of the tran-
scription start site of Chd2, where it collaborates with CHD2
protein to repress Chd2’s expression in a negative feedback
loop to maintain cellular levels of CHD2 (Rom et al. 2019).

yylncT—a member of the divergent subclass of IncRNAs
known as yin yang (yy) IncRNAs—supports expression of its
gene neighbor, Brachyury (T) by localizing to its locus during
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mesoderm commitment in human ES cells (Frank et al
2019). yylncRNAs are primarily encoded from genomic loci
of key cell-fate regulators, thus mirroring their developmen-
tal expression patterns, and, as a class, they illustrate a broad
mechanism through which IncRNAs safeguard cell-fate deci-
sions (Frank et al. 2019).

A handful of cis-acting IncRNAs are also known to repress
gene expression over long genomic distances. In the most
extreme example, the IncRNA Xist silences gene expression
over the entire 165 million base pair X chromosome early
during the development of female mammals, as part of the
dosage compensation process called X-chromosome Inactiva-
tion (XCI) (recently reviewed by Sahakyan et al. 2018).

Xist induces stable gene silencing through two parallel
pathways. In the first, Xist silences actively transcribed genes
through an incompletely defined mechanism that involves
the protein SPEN and the RNA element Repeat A, which is
a tandem repeat located at the 5’ end of Xist. In parallel, and
subsequent to Repeat-A-mediated silencing, Xist induces the
spread of Polycomb Repressive Complexes (PRCs) over tran-
scriptionally inactive chromatin (Nesterova et al. 2019; Zylicz
et al. 2019). In a mechanistic sense, this spread of PRCs over
the X is likely a major means by which Xist orchestrates stable
silencing that is inherited through subsequent cell divisions
(Wang et al. 2001; Kalantry et al. 2006; Sahakyan et al.
2018). Other cis-repressive IncRNAs that depend on PRCs
for their silencing functions, such as Kcnqlotl, Airn,
Morrbid, and Haunt, may utilize similar mechanisms to bring
PRCs to chromatin (Regha et al. 2007; Terranova et al. 2008;
Yin et al. 2015; Kotzin et al. 2016; Schertzer et al. 2019).
Indeed, both Kcnglotl and Airn were recently shown to re-
quire the Xist cofactor HNRNPK to induce the spread of PRCs
in mouse trophoblast stem cells (Schertzer et al. 2019).

In addition, the PRCs, particularly PRC2, have been shown
to interact with many RNAs, and the functional consequence
of this interaction has not always been clear. For example, the
PRC2 component SUZ12 has been shown to interact with a
IncRNA to repress a differentiation-inducing transcriptional
program in human ES cells. Here, the IncRNA tsRMST uses
multiple mechanisms, including coregulation with SUZ12
and NANOG, to block expression of lineage specification
genes and impede WNT5A-induced epithelial-mesenchymal

distance from the nearest protein
coding gene.

transition (Yu and Kuo 2016). SUZ12 and the central pluri-
potency regulator SOX2 also interacts with IncRNA_ES1 and
[ncRNA_ES2 to contribute to pluripotency maintenance (Ng
et al. 2012) through unclear mechanisms.

Other IncRNAs, at least partially through their interaction
with PRC2, have been implicated in processes supporting
lineage commitment. For example, the IncRNA Braveheart
interacts with PRC2, and, perhaps in part due to a conse-
quence of this interaction, Braveheart directs murine plurip-
otent cells to a cardiac fate by moderating a mesoderm and
cardiac-specific transcription factor network (Klattenhoff
et al. 2013). Nevertheless, through a specific structured ele-
ment, Braveheart interacts with the CNBP/ZNF9 nucleic acid
binding protein, and at least a portion of Braveheart function
can be ascribed to the CNBP/ZNF9 interaction (Xue et al.
2016). Moreover, and surprisingly, even though depletion
of Braveheart results in myogenic defects through its control
of central cardiomyogenic regulators including Mesp1,
Hand1, Nkx2.5, and Tbx20, and general loss of sarcomere
gene expression, Braveheart null mice were grossly pheno-
typically normal (Han et al. 2018). Conversely, genetic abla-
tion of the IncRNA Fendrr, which has also been shown to
interact with PRC2, results in mouse embryonic lethality at
around E13.75 due to myocardial defects (Grote et al. 2013).
Here, it has been proposed that Fendrr’s interaction with both
PRC2 and Trithorax Group/MLL complexes modulates chro-
matin signatures in control of lateral mesoderm differentia-
tion (Grote et al. 2013). PRC2 function has also been
reported to be regulated in trans, in mouse ES cells and hu-
man iPS cells, by the relatively abundant IncRNAs Rian, Mirg,
and Meg3/Gtl2, which are produced from an imprinted clus-
ter (Kaneko et al. 2014). Examples of these IncRNAs with
clear roles for repressing transcription in cis also exist
(Sanli et al. 2018). Additionally, many IncRNAs produced
from the developmentally important Hox gene clusters also
bind PRC2, the most notable of which may be the IncRNA
HOTAIR. The extent to which IncRNA/PRC2 interactions in
the Hox clusters contribute to gene regulation in mammalian
development, whether the regulation occurs in cis or in trans,
and what the mechanisms are, however, remain unclear (Li
et al. 2013, 2016; Tsai et al. 2010; Amandio et al. 2016;
Selleri et al. 2016; Portoso et al. 2017).
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Figure 2 Schematic illustration of the different modes of action for INcRNAs. Localization of IncRNAs to the nucleus or cytoplasm can dictate different
mechanisms of action. Based on their ability to bind to DNA and interact with proteins, INcRNAs can guide transcription regulators and epigenetic
modulators (A); act as scaffolds to assemble chromatin regulatory factors (B); titrate away regulators of transcription by acting as decoys (C); regulate
domain- or chromosome-wide chromatin state to regulate transcriptional output (D); act as ceRNAs to capture regulatory factors such as miRNAs away
from target genes (E); contribute to the stabilization of protein complexes, proteins, and mRNAs (F); and influence alternative splicing (G).

Importantly, both crosslinking immunoprecipitation (CLIP)
studies of PRC2 as well as those that have studied the RNA-
binding properties of PRC2 in vitro have found that PRC2 binds
RNA with little sequence specificity and nanomolar affinity
(Kaneko et al. 2013, 2014; Davidovich et al. 2015; Wang
et al. 2017). Collectively, these studies suggest that one func-
tion of IncRNAs, and perhaps chromatin-bound RNAs in gen-
eral, is to tether PRC2 to transcriptionally active regions of
chromatin. This tethering may keep PRC2 in a poised state,
in close proximity to future target genes, where it can initiate
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stable gene silencing upon receipt of the appropriate cues
(Kaneko et al. 2013, 2014; Davidovich et al. 2015; Wang
et al. 2017). High-affinity and nonspecific interactions with
RNA may also govern PRC1 function in an analogous fashion
(Bernstein et al. 2006; Bonasio et al. 2014).

LncRNAs have been shown to interact with a wide variety of
chromatin modulatory factors. In addition to PRCs, these
include histone methylases (Hendrickson et al. 2016). The
H3K4 methylase MLL family is necessary for activating the
expression of certain genes (Yang et al. 2014). WDRS5 is a



protein-subunit of MLL, recruiting the complex to target sites
for activation (Yang et al. 2014). WDR5 engages with several
IncRNAs that have been implicated in the self-renewal of ES
cells (Yang et al. 2014). When the RNA-binding site of WDR5
was mutated in mouse ES cells, rendering it unable to bind
IncRNAs, WDR5 was significantly less stable (Yang et al.
2014). This loss of stability resulted in a severe decrease in
H3K4me3 marks on the promoters of pluripotency-related
genes, and a loss of the ES cell state in 50% of colonies
(Yang et al. 2014).

Interactions between IncRNAs and chromatin readers are
exemplified by the interaction between DIGIT and BRD3 in
the regulation of endoderm differentiation (Daneshvar et al.
2016, 2019). Here, DIGIT supports BRD3 recruitment to
H3K18ac at regions in the genome enriched during endo-
derm differentiation in human ES cells (Daneshvar et al.
2019).

In addition to chromatin remodelers and modifiers, anal-
ysis of IncRNA interactomes has also identified transcription
factors as key players in IncRNA function. Panct]—a nuclear-
functioning sense IncRNA transcribed from an intron of the
gene coding for its protein interacting partner, TOBF1—
exemplifies this type of trans interaction in mouse ES cells
(Chakraborty et al. 2017). Panctl was shown to facilitate the
binding of TOBF1 to pluripotency marker promoters by way
of sequence-directed binding to Oct-Sox motifs, thus recruit-
ing transcription factors such as Oct4 to promote target ex-
pression (Chakraborty et al. 2017). This interaction illustrates
the role of a IncRNA in efficient binding of pluripotency-
associated transcription factors to their target sites without
direct interaction (Chakraborty et al. 2017).

The aforementioned examples demonstrate the breadth of
IncRNA-protein interactions that influence transcription in
developmental processes, and on which cell specification is
at least partly dependent. Many of the described IncRNA
interactions involve key transcription factors and epigenetic
regulators that affect developmental progression. Modula-
tion of specific IncRNAs could therefore be a viable avenue
for specific regulation of target expression in developmental
contexts.

Interactions with proteins: stability and sequestration

LncRNAs enhance or repress protein function through a va-
riety of mechanisms including sequestration, binding support,
and degradation, as in the aforementioned case of WDR5 and
its reliance on IncRNAs for stability (Yang et al. 2014). Con-
versely, in other contexts, IncRNAs have been shown to be
dependent on their protein partners for stability to carry out
their functions, and regulate their half-life. This is the case for
[ncR492—a noncoding transcript that inhibits neural differ-
entiation in mouse ES cells (Winzi et al. 2018). Knockdown of
[ncR492 resulted in increased expression of neural markers
such as Pax6 and Nestin during differentiation. Proteomic
analysis indicated that IncR492 directly interacts with HuR—
a mRNA binding protein with functions in the (de)stabilization
of mRNA transcripts. Overexpression and knockdown of HuR

moderated the expression of [ncR492, increasing and reducing
the prevalence of the IncRNA, respectively—a pattern that
suggests HuR supports the stability of the IncR492 transcript.
Finally, both IncR492 and HuR positively influence WNT sig-
naling, which has a known inhibitory effect on neural differ-
entiation (Haegele et al. 2003), outlining the axis by which
IncR492 and HUR function (Winzi et al. 2018).

LncRNAs can impede protein function through binding and
sequestration. In the context of pluripotency, the chromatin
mark H3K56 acetylation activates core pluripotency-related
genes and is required for the maintenance of the undifferen-
tiated ES cell state. SIRT6 is a chromatin-binding protein that
removes this chromatin modification and functionally re-
presses pluripotency-related genes to promote exit from the
stem cell state (Etchegaray et al. 2015). LncPRESS]1 functions
as a molecular decoy for SIRT6, sequestering the protein,
which binds to the 3’-end of the IncRNA in human ES cells.
This interaction in the nucleus prevents SIRT6 from binding
promoters of pluripotency-related genes and repressing tran-
scription via deacetylation (Jain et al. 2016). Another regu-
latory interaction in this network is illustrated by P53, which
antagonizes [ncPRESS1, freeing SIRT®6 to further repress plu-
ripotency markers in human ES cells (Jain et al. 2016).

Emerging data indicate that regulatory IncRNA-protein
interactions occur in specialized microenvironments that dis-
play characteristics of phase-separated particles (Hnisz et al.
2017; Daneshvar et al. 2019). These liquid-like condensates
are able to exchange molecules dynamically with their sur-
roundings (Bergeron-Sandoval et al. 2016; Boeynaems et al.
2018; Lu et al. 2018). The preceding interactions demon-
strate the role IncRNA-protein interactions play in integral
processes throughout differentiation and development. Such
interactions can be investigated as points of manipulation for
control of differentiation processes, especially when they lo-
calize to distinct microdroplets, and when the mechanisms
for the interactions have been clearly defined.

Interactions with RNA

Similar to the prevalence of IncRNA-protein interactions,
IncRNA-RNA interactions are prolific and have widespread
effects on cell identity. Interestingly, IncRNAs interplay with
multiple other RNA types, from mRNA to other ncRNA, in-
cluding miRNAs and circular RNAs. Through different mech-
anisms, these IncRNA-RNA interactions can affect IncRNA
function through repressing or supporting downstream
targets.

Canonical functions of mRNAs are determined by their
availability and potential to be translated. In addition to long-
characterized protein factors, the half-life of a mRNA is de-
termined by various co- and post-transcriptional regulatory
factors, including IncRNAs. LncRNA interaction with mRNAs
or mRNA-regulatory factors can stabilize or facilitate the
degradation of the mRNA molecules, increasing or decreasing
translational output (Faghihi et al. 2008, 2010; Gong and
Magquat 2011). For example, Sirt1-AS interacts with Sirtl
mRNA to promote its stability, thereby inhibiting myogenic

Multimodal IncRNA Interactions 1097



differentiation in favor of myoblast proliferation in mice
(Wang et al. 2016).

LncRNAs have also been shown to alter the translation
output of mRNAs by affecting alternative splicing. A prime
example of this mechanism of action is the interaction of
Zeb2-NAT—an antisense IncRNA—with its sense transcript,
protein-coding Zeb2. Zeb2-NAT was demonstrated to bind
Zeb2’s 5’ UTR, which contains an intron where the internal
ribosome entry site for the ZEB2 protein resides (Beltran et al.
2008). Without protection of the first intron by IncRNA bind-
ing, ZEB2 protein levels are significantly diminished. In mice,
Zeb2-NAT and ZEB2 prevent fibroblasts from being effectively
reprogrammed to the pluripotent state, possibly by support-
ing senescence due to E-cadherin downregulation (Beltran
et al. 2008; Bernardes de Jesus et al. 2018). Conversely, un-
der conditions of decreased Zeb2-NAT expression, the mouse
fibroblasts readily transitioned to ES cell-like cells in media
conditions that support the pluripotent state (Bernardes de
Jesus et al. 2018). Further, mouse ES cells in Zeb2-NAT knock-
down conditions were able to maintain the pluripotent state
in differentiation-inducing contexts (Bernardes de Jesus et al.
2018).

Perhaps even more impactful, based on their numerous
targets, is the influence of IncRNAs on miRNAs. These small
ncRNAs (~22 nt long) are key post-transcriptional regula-
tory factors that influence target transcript translational re-
pression and/or degradation (Heinrich and Dimmeler 2012).
miRNA function has been implicated in the establishment
and maintenance of ES cell pluripotency and differentiation
(Heinrich and Dimmeler 2012). Generally, miRNAs and as-
sociated proteins assemble to form the RNA-induced silenc-
ing complex (RISC), in which the miRNA serves as a guide to
target specific mRNAs, which are degraded in proportion to
the degree of complementarity with the miRNA (Gregory
et al. 2005). LncRNAs can affect the efficiency of these
processes as well, since they can dictate the abundance
of individual miRNAs by supporting miRNA stability or by
causing their degradation, for example through template-
mediated degradation (Fuchs Wightman et al. 2018). Addi-
tionally, IncRNAs can alter miRNA function by behaving as a
sponge or competing endogenous RNA (ceRNA) that seques-
ters the miRNA, thus preventing degradation of the miRNA
target genes to support or promote exit from the stem cell
state (Liu et al. 2014, see Table 1).

Linc-RoR (Regulator of Reprogramming) exemplifies the
ceRNA mechanism in the context of reprogramming and the
maintenance of pluripotency. Deviation from precise linc-RoR
levels results in the differentiation of human ES cells to me-
soderm and/or endoderm if its levels are depleted, or the
inability of cells to properly differentiate if linc-RoR levels
are elevated. Linc-ROR was shown to be a ceRNA for miR-
145-5p, suppressing the miRNA’s negative regulation of stem
cell regulatory factors such as OCT4 and SOX2 (Loewer et al.
2010; Wang et al. 2013).

While linc-ROR guides reprogramming, [ncRNA-1064 was
shown to support neural differentiation (Weng et al. 2018).
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Knockdown of IncRNA-1064 led to a decrease in neural line-
age markers and reduced neural differentiation of mouse ES
cells in vitro and in vivo in a murine teratoma model (Weng
et al. 2018). Mechanistic analysis revealed I[ncRNA-1064 con-
tains multiple miRNA target sites, with the most favorable
being for mir-200c (Weng et al. 2018). IncRNA-1064-medi-
ated sequestration of miR-200c transcripts enables ZEB1/2 to
reach their gene targets to signal for neural differentiation
(Weng et al. 2018). This interaction is similar to that of
IncRNA AK048794, which functions as a ceRNA with miR-
592 (Zhou et al. 2016). In mouse ES cells, miR-592 was found
to bind the 3’ UTR of FAM91A1, reducing its protein levels
and those of pluripotency regulators Oct4, Sox2, and Nanog,
although the downstream mechanism is less clear. Alto-
gether, these studies describe instances of IncRNAs function-
ing as ceRNAs, sequestering miRNAs, and preventing
degradation of miRNA targets to either support or undermine
pluripotency. Often, IncRNAs acting as ceRNAs can be a part
of a multi-component network, such as the case of AK048794
(Zhou et al. 2016).

Because of their prevalence and well-delineated mecha-
nism, IncRNA control of miRNA levels and availability could
be harnessed to modulate miRNA levels in therapeutic con-
texts, particularly for cases where a wholesale loss of the target
miRNA would be phenotypically disadvantageous (Kleaveland
et al. 2018). Effective ceRNA activity would require a minimum
threshold level for the IncRNA. Therefore, one important con-
sideration pertaining to ceRNA/sponge function may be the
relative abundance of the IncRNA, miRNA, and mRNA target.
This is because the number of miRNA and target molecules
would typically outnumber that of a IncRNA (Palazzo and Lee
2015). Another key consideration is whether, and how, RNA
structure changes in response to the binding of proteins, other
RNAs, or even small molecule metabolites to regulate the activ-
ity of ceRNA, as this could influence access to specific sites/
sequences on the RNA. This is an aspect of IncRNA regulation
that has escaped sustained attention so far, but is likely to be
an important aspect of ceRNA, and, more generally, IncRNA
regulation.

Multimodal interactions

Since IncRNA functions can vary widely, it could be expected
that their functions are multifaceted (Figure 3) and not nec-
essarily dependent on a single mechanism even in a single
cell type. Previously characterized as a IncRNA, Tug1, is pro-
duced from a highly conserved locus (Young et al. 2005), and
is involved in many developmental processes including pho-
toreceptor specification, axonal differentiation, and osteo-
genesis regulation, where some functions have been found
to be mediated by protein interactions with key cell-fate reg-
ulators such as LIN28 (Young et al. 2005; Guo et al. 2018; He
et al. 2018). While knockout mice are viable, they display
sterility with complete penetrance due to defects in sper-
matogenesis (Lewandowski et al. 2019). Intriguingly, in ad-
dition to having two distinct noncoding functions, one of
Tug1’s functions is dependent on an encoded micropeptide.



Table 1 Paradigmatic modes of IncRNA interaction and functional output using ES cells, differentiation and developmental processes as

models for cell fate specification

InNcRNA Mode of action Interactor(s) Result Reference
Airn Transcriptional Igf2r Silences Igf2r cluster to guide development Santoro et al. (2013)
AK028326 Transcriptional Oct4 Positively regulates Oct-4 to promote self-renewal Sheik Mohamed et al.
(2010)
Apela RNA Transcriptional p53, hnRNPL Interacts with hnRNPL to repress p53-induced apoptosis M. Li et al. (2015)
Braveheart Transcriptional PRC2 (Suz12), MesP1  Regulates cardiac lineage commitment in ES cells Klattenhoff et al. (2013)
Chaserr Transcriptional CHD2 Influences cell differentiation through regulation of Chd2 Rom et al. (2019)
Deanr1 Transcriptional SMAD2/3, FoxA2 Recruits SMAD2/3 to the FOXA2 promoter to promote Jiang et al. (2015)
endoderm differentiation
DIGIT Transcriptional GSC, BRD3 Supports endoderm differentiation Daneshvar et al. (2016)
Evxlas Transcriptional Evx1 Promotes Evx1 expression to regulate mesendodermal dif- Luo et al. (2016)
ferentiation
Fendrr Transcriptional PRC2, Trithorax Targets promoters for proper heart and body wall formation  Grote et al. (2013)
group
FIRRE Transcriptional CTCF Preservation of silencing of inactive X chromosome Yang et al. (2015)
Haunt Transcriptional HOXA Inhibits HOXA expression and ES cell differentiation, whereas  Yin et al. (2015)
the Haunt locus is an enhancer for HOXA
HERVH Transcriptional Oct4 Recruits Oct4 to maintain pluripotency Lu et al. (2014)
HOTTIP Transcriptional WDR5 Binds WDR5 to activate developmental regulators Wang et al. (2011)
LncPress1 Transcriptional SIRT6 Binds SIRT6 to promote expression of pluripotency-related Jain et al. (2016)
genes
IncR492 Transcriptional HuR Associates with HuR to promote pluripotency Winzi et al. (2018)
INcRNA_ES1 Transcriptional SUZ12, SOX2 Interacts with SUZ12 and SOX2 to prevent differentiation Ng et al. (2012)
INncRNA_ES2 Transcriptional SUZ12, SOX2 Interacts with SUZ12 and SOX2 to prevent differentiation Ng et al. (2012)
Meg3/Gtl2 Transcriptional PRC2 (JARID2) Regulates recruitment of PCR2 to chromatin in iPS cells Kaneko et al. (2014)
Panct1 Transcriptional TOBF1 Regulates recruitment of TOBF1 to Oct-Sox Motifs to support ~ Chakraborty et al. (2017)
the pluripotent state
pRNA Transcriptional TIPS, TTF1 Interaction with TIPS, TTF1 contributes to heterochromatin ~ Savic et al. (2014)
formation required for differentiation
RMST Transcriptional SOX2 Associates with SOX2 to regulate neural differentiation Ng et al. (2013)
tsSRMST Transcriptional PRC2, NANOG, WNT  Associates with PRC2, NANOG, WNT to repress differentia-  Yu and Kuo (2016)
tion
TUNA Transcriptional NCL, PTBP1, Associates with specified RBPs to Lin et al. (2014)
(megamind) hnRNP-K activate pluripotency genes and
neural differentiation genes
yyT Transcriptional Brachyury Regulates Brachyury (T) in mesoderm specification Frank et al. (2019)
AK048794 ceRNA miR-592 Sponges miR-592 to support pluripotency Zhou et al. (2016)
Cyrano ceRNA mir-7 Inhibit mir-7 to support self-renewal Smith et al. (2017)
H19 ceRNA let-7 microRNAs Modulates let-7 to impede muscle differentiation Kallen et al. (2013)
HPATS ceRNA let-7 microRNAs Modulates let-7 to promote pluripotency Durruthy-Durruthy et al.
(2016)
linc-ROR ceRNA miR-145 Inhibits miR-145 suppression of self-renewal genes Wang et al. (2013)
INcCRNA-1064  ceRNA miR-200c Inhibits miR-200c to regulate neural differentiation Weng et al. (2018)
MD1 ceRNA miR-133, miR-135 Supports differentiation by inhibiting miR-133, miR-135 Cesana et al. (2011)
T-UCstem1 ceRNA miR-9, PRC2 Maintains self-renewal by modulating miR-9 and PRC2 Fiorenzano et al. (2018)
HOTAIR Scaffold PRC2, LSD1 Originally proposed to coordinate PRC2 and LSD1 complexes  Tsai et al. (2010), Li et al.
for proper embryonic development, although contested in (2013), Amandio et al.
the more recent literature (2016), Li et al. (2016),
Selleri et al. (2016),
Portoso et al. (2017)
XIST Scaffold X chromosome, Inactivates X chromosome for dosage control (Brown et al. 1991)
PRC2
Cyrano Multimodal/Other  Stat3, signaling net-  Supports ES cell maintenance Smith et al. (2018)
work
Tug1 Multimodal/Other  Lin28A, Fragile X Regulates various differentiation processes including osteo- ~ Young et al. (2005), Guo
mental retardation genesis, neuronal differentiation and spermatogenesis et al. (2018), 1; He
protein et al. (2018), 1;
Lewandowski et al.
(2019)
Zeb2-NAT Other Zeb2 Facilitates Zeb2 processing to regulate EMT and pluripotency  Beltran et al. (2008);

Bernardes de Jesus
et al. (2018)
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Specifically, the Tugl locus represses downstream genes in a
cis-manner, while Tugl RNA itself regulates genes that then
are dysregulated upon knockout. Additionally, the 5’ con-
served region of the Tugl gene encodes a peptide, TUG1-
BOAT that influences mitochondrial membrane potential
(Lewandowski et al. 2019).

The IncRNA Cyrano (OIP5-AS1, 1700020114Rik, linc-oip5,
Oip5os1) is another illustration of multimodal function.
While IncRNAs generally display limited sequence conserva-
tion even between closely related species, a 300 nt region
shows very high conservation in tetrapods, with ~100 nucle-
otides conserved between zebrafish and humans (Ulitsky
et al. 2011). Uniquely, there is a sequence stretch that has
nearly perfectly complementarity to miR-7 in all tetrapods
examined, which regulates miR-7 degradation (Kleaveland
et al. 2018). The conserved sequence folds into a conserved
secondary structure within which embeds the mir-7 binding
sequence and partially masks it by base pairing (G. Varani
unpublished results). How the RNA structure affects protein
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recruitment and degradation remains unclear, however, and
it might be that the structure itself is incidental to miR-7
degradation. Still, it provides tantalizing suggestions that
secondary and higher order structure might be essential com-
ponents of IncRNA regulatory activities.

Cyrano shows rare maternal and zygotic expression during
early development (Karlic et al. 2017), and in various mam-
malian cells it is a proliferation regulator (Smith et al. 2017;
Deng et al. 2018; X. Liu et al. 2018; Naemura et al. 2018).
Using proteomic analyses, Cyrano was found to interact with
a developmental/signaling protein network, through which
it partially supports mouse ES cell characteristics (Smith et al.
2018). Further, Cyrano inhibition of mir-7, which targets the
pluripotency regulator Nanog, as well as Itga9, contributes to
regulation of stemness and cellular adhesion (Smith et al.
2017).

Cyrano has also been shown to exist in a multi-component
RNA network with the circular RNA Cdrlas and several
miRNAs, where it maintains appropriate Cdrlas levels in



the brain to control neuronal activity and neuropsychiatric
behavior in mice (Piwecka et al. 2017; Kleaveland et al.
2018). However, despite displaying strong expression and
significant molecular and cellular phenotypes, Cyrano is an
example of a IncRNA that does not show an overt develop-
mental phenotype with differing knockout strategies (Han
et al. 2018; Kleaveland et al. 2018), which raises the question
of whether there could be compensatory mechanisms for its
function.

LncRNA Properties that Underlie Their Intermolecular
Interactions

Sequence

A challenge in the IncRNA field is identifying the function of a
IncRNA based on analysis of its sequence content alone, which
is most easily accessible. This challenge stems from the fact
that most proteins interact with RNA through sequence motifs
that are degenerate and have hidden structural preferences
(Dominguez et al. 2018). Compounding the difficulty is that
the order of protein-binding modules within a IncRNA is
likely to be less important than the mere presence of the
binding modules themselves. Thus, two IncRNAs may encode
identical functions through different sequence solutions.

An additional obstacle lies in the fact that existing se-
quence alignment algorithms, which, in large part, have been
designed to detect linear sequence relationships between
evolutionarily related nucleic acid or protein species, often
fail to detect significant homology between IncRNAs (Altschul
et al. 1990; Rice et al. 2000; Edgar and Batzoglou 2006;
Wheeler and Eddy 2013). In order to address this problem,
Kirk and colleagues recently developed a method called
SEEKR (Sequence evaluation through k-mer representation)
to quantify nonlinear sequence similarity between IncRNAs
(Kirk et al. 2018). Rather than evaluating similarity between
IncRNAs based on the extent of linear sequence homology,
SEEKR functions by counting the abundance of all possible
combinations of sequence substrings at a given length, k,
within a IncRNA, and then scaling these abundances by the
extent to which they differ from the mean abundance of each
k-mer in the group of IncRNAs being analyzed. The extent of
nonlinear similarity between IncRNAs as defined by SEEKR
was found to correlate significantly with IncRNA subcellular
localization and with protein binding, although the ability to
predict either of these two properties from k-mer content
alone was minimal. Using a transgenic assay to monitor the
ability of a IncRNA to induce Xist-like repression, it was
found that k-mer content, but not linear sequence homology,
strongly correlated with the ability of IncRNAs to induce this
type of repression. In a subsequent study, Sprague and col-
leagues found substantial levels of nonlinear sequence simi-
larity between functional domains in Xist, and domains in the
IncRNA Rsx, a marsupial IncRNA that has been proposed to be
a functional analog of Xist that arose through convergent evo-
lution (Grant et al. 2012; Sprague et al. 2019). Collectively,

these data support the notions that different IncRNAs can en-
code similar function through different spatial arrangements
of related, but not necessarily identical, sequence motifs, and
that k-mer based classification provides an approach to detect
such similarities. The weak-to-modest predictive power of
k-mer content in most scenarios hints at ubiquitous and diffi-
cult-to-model roles for RNA structure in IncRNA function (Kirk
et al. 2018). Nevertheless, k-mer based classification schemes,
which have been broadly used in other biological contexts
(Blaisdell 1989; Burge et al. 1992; Kari et al. 2015; Lees
et al. 2016; Pandey et al. 2018), represent promising avenues
that may ultimately aid in the functional classification of
IncRNAs from sequence content alone, much in the way that
functional domains can now be routinely identified in proteins
(UniProt Consortium 2015).

Structure

LncRNAs function through sequence-specific interactions
with proteins that recognize stretches of sequence, as well
as with other RNAs or DNAs by base pairing through Watson—
Crick or Hoogsteen structures or by forming triple helices.
However, intermolecular recognition is often dependent on,
or regulated by, specific secondary and tertiary structural
features of the IncRNA. Intriguingly, when chemical modifi-
cation techniques have been used to probe IncRNA structure,
it has generally revealed high levels of base pairing, more than
in mRNAs and comparable to the ribosome or self-splicing
introns—contexts in which secondary structure is complex
and essential (Somarowthu et al. 2015; Hawkes et al
2016). Conversely, in cells, RBPs such as hnRNPs (Dreyfuss
et al. 1993) might keep IncRNAs less tightly folded. Further-
more, the observation of secondary structure does not neces-
sarily imply function, especially in the absence of clear
evolutionary conservation through covariation, as observed
for the ribosome. Similarities shared with the ribosome and
RNA enzymes could indicate a IncRNA architecture com-
posed of structured domains, possibly flexibly connected,
that establish interactions with other RNAs, chromatin, or
specific protein complexes to bring them within functional
proximity. While this modular structure hypothesis is appeal-
ing because it would provide for intricate functional specific-
ities even in the absence of sequence conservation, it remains
to be investigated at the molecular level.

It also remains to be investigated the extent to which
secondary structures are functional, and whether they co-
alesce to form tertiary and higher order structures and inter-
actions. Thus far, relatively few IncRNAs have been
characterized at the secondary structure level, including
H19 (Hurst and Smith 1999; Juan 2000), Xist (Wutz et al.
2002; Fang et al. 2015; Lu et al. 2016; Smola et al. 2016;
F. Liu et al. 2017), Braveheart (Xue et al. 2016), HOTAIR
(Somarowthu et al. 2015), COOLAIR (Hawkes et al. 2016),
or lincRNA-p21 (Chillén and Pyle 2016) and several others.

Afew studies indicate nevertheless that IncRNA structure is
important for regulation, and the principles learned through
these examples might be more broadly applicable to other
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IncRNAs. One study showed that regulation of transcription of
the E-cadherin gene is regulated by a sense IncRNA in epithe-
lial cells that is independently transcribed upstream of the
promoter (Pisignano et al. 2017). The structure of this RNA is
controlled by a SNP that modifies local RNA secondary struc-
ture and affects loading of epigenetic enzymes that then reg-
ulate the downstream promoter. How common regulation
through conformational switching is remains unclear, but
RNA is structurally malleable and physically well-suited for
this mechanism of gene regulation. Riboswitches, for exam-
ple, are RNA structures that toggle between distinct confor-
mational states upon binding of small molecules and are
widespread in bacterial gene regulation (Mandal and
Breaker 2004). Riboswitch-like mechanisms of regulation
might be present in IncRNAs as well, but their prevalence
and function remain to be investigated. A study indicates
regulation by conformational switching is provided by the
roX IncRNA, which targets the MSL complex to the
Drosophila melanogaster X chromosome as part of the dosage
compensation process that occurs in male flies. MSL is
recruited to roX IncRNA by a conserved stem-loop structure;
once bound by the MSL-component MLE, this stem-loop un-
folds to form an alternate RNA structure that appears to trap
MSL on roX (Ilik et al. 2013, 2017; Quinn et al. 2016). In the
case of Xist, structured regions, but also regions notable for
their absence of structure, likely serve to recruit different
subsets of proteins along the length of the IncRNA (Wutz
et al. 2002; Fang et al. 2015; Smola et al. 2016; F. Liu et al.
2017). Here, toggling between different conformational
states might define the subset of proteins that associate with
the IncRNA under distinct cellular conditions.

Resource Toolkit for LncRNA Interaction Profiling

RNAs are largely dependent on proteins for their produc-
tion, processing, transport, and localization. Based on reagent
availability and ease-of-study, approaches to investigate RNA—
protein interactions have historically been protein-centric.
As the diversity and functionality of IncRNAs emerged and
expanded, these tools, including RNA-immunoprecipitation
(RIP), CLIP and its variations, including HITS-CLIP, PAR-
CLIP, iCLIP, and Fast-iCLIP, have begun to reveal the magni-
tude of protein—IncRNA interactions (Ule et al. 2005; Hafner
et al. 2010; Konig et al. 2010; Flynn et al. 2015; J.-H. Liet al.
2015; Zarnegar et al. 2016). Similarly, efforts are ongoing to
define the complete repertoire of RNA-binding proteins using
proteomics-based methods such as OOPS, R-DeeP, XRNAX,
and DIF-FRAC, which often incorporate RNA dependency in
their analysis (Mallam et al. 2018; Caudron-Herger et al.
2019; Queiroz et al. 2019; Trendel et al. 2019), and reveal
surprisingly widespread RNA-dependent protein function-
ality, even for well characterized proteins such as CTCF
(Caudron-Herger et al. 2019).

The expanding RNA functionalities highlight the need for
RNA-centered methods to empirically determine binding
partners of IncRNAs (Table 2). New computational resources
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that enable queries on previously identified interactors, and
those that allow for prediction of new interacting candidates
have therefore seen remarkable growth in just the last few
years.

Experimental methods

Capture hybridization analysis of RNA targets: Capture
hybridization analysis of RNA targets (CHART) methodology
allows for the identification of chromatin and protein inter-
actors of IncRNAs. First, regions that are accessible for probe-
based isolation are mapped using RNase H-dependent
digestion. DNA oligonucleotides can then be used to isolate
the RNA in an affinity purification step, followed by high-
throughput sequencing to determine DNA segments con-
tacted by the IncRNA, or mass spectrometry, to determine
the protein interactome of the candidate IncRNA (Simon et al.
2011).

Chromatin isolation by RNA purification: Similar to
CHART, chromatin isolation by RNA purification (ChIRP)
or dChIRP (Chu et al. 2011; Quinn et al. 2014) uses a
probe-based affinity approach built on biotinylated oligonu-
cleotides that tile the IncRNA. Isolated interactors that bind
the IncRNA (ChIRP), or bind to a specific domain (dChIRP),
can be analyzed by high-throughput sequencing, or by meth-
ods that detect proteins, such as mass spectrometry or West-
ern blotting.

RNA antisense purification: The RNA antisense purification
(RAP) method (McHugh et al. 2015), instead of using short
probes (~20 nt) as in CHART or ChIRP, utilizes longer probes
of ~60 nt to increase the stability of the interaction in affinity
pulldowns.

RNA pulldown: The above-mentioned methods to investigate
IncRNA-partner molecules in intact cells were preceded by
probe-based isolation of RNAs in cell extracts in pulldown
experiments similar to protein coimmunoprecipitation.

Mapping RNA-genome interactions: Mapping RNA-genome
interactions (MARGI) uses proximity ligation to connect
chromatin-associated RNAs to their genomic targets, thus
revealing native RNA-chromatin interactions. Variations in
the approach were designed to differentiate between direct
interactions (diMARGI), mediated by protein or RNA-te-
thered interactions, of RNA-DNA chimeras, or passive inter-
actions (pxMARGI) (Sridhar et al. 2017).

Global RNA interaction with DNA by deep sequencing:
Global RNA interaction with DNA by deep sequencing (GRID-
Seq) harnesses in situ ligation to identify genome-wide con-
tacts between RNA and chromatin. The developers of this
method included mouse ES cells and found distinct cis- and
trans- chromatin interacting RNAs tied to cell-specific gene
expression patterns. GRID-Seq particularly enriches for chro-
matin interactions with nascent RNAs (Li et al. 2017).



Table 2 Methods to Investigate IncRNA function in cell fate determination

Approach Type Readout Output
Differential expression analysis Experimental Indirect Gene expression differences between cell types with
differentiation, or in a condition of interest
Expression correlation (+/— target or effector) Experimental Indirect Network generation to identify similarly expressed
gene clusters, including candidate target molecules
or possible upstream regulators
Affinity purification/proximity ligation and deep Experimental Direct Chromatin targets
sequencing (CHART/ChIRP/RAP/MARGI/GRID-Seq/
CHAR-Seg/Radicl-Seg/PIRCh-Seq)
Affinity purification and mass spectrometry/Western Experimental Direct Protein interactions
blot (CHART/ChIRP/RAP)
Single molecule fluorescence in situ hybridization Experimental Direct Subcellular localization and colocalization with targets
(SmFISH) +/— immunofluorescence or effectors
Conservation analysis Experimental Direct Applicability of function across species
Structural analysis Experimental Direct Secondary structure and functional domain identifi-
cation; 3D structure
Bioinformatics tools Computational Indirect Predict interactions, assess k-mer content, make

structural inferences

Chromatin associated RNA sequencing: Chromatin associ-
ated RNA sequencing (CHAR-Seq) is an in situ proximity
ligation approach coupled with enzymatic chromatin diges-
tion to detect RNA-DNA contacts genome-wide. After se-
quencing, CHAR-Seq maps the genomic interacting sites of
multiple classes of chromatin-associated RNAs including na-
scent transcripts, ncRNAs involved in regulation of dosage
compensation, and trans-interacting RNAs involved in RNA
processing (Bell et al. 2018).

RNA and DNA interacting complexes ligated and se-
quenced: RNA and DNA interacting complexes ligated and se-
quenced (RADICL-Seq) identifies genome-wide RNA-chromatin
interactions in cross-linked nuclei. Thus far, it has been applied to
two cell types—mouse ES cells and mouse oligodendrocyte
progenitors—that can differentiate toward multiple cell fates.
This approach revealed cell-type specific RNA—chromatin inter-
actions, and was able to identify unique genome occupancy
patterns for different classes of transcripts (Bonetti et al. 2019).

Profiling interacting RNAs on chromatin: Profiling interact-
ing RNAs on chromatin (PIRCh-Seq) is an antibody-dependent
approach that profiles RNA—chromatin interactions, with less
enrichment of nascent RNAs cotranscriptionally tethered by
RNA polymerases to chromatin. PIRCh-Seq has been used to
identify the chromatin-associated transcriptome in both hu-
man and mouse ES cells and fibroblasts, as well as mouse
neuronal progenitors, where the authors found cell- and al-
lele-specific RNA—chromatin interactions (Fang et al. 2019).

Microscopy: As previously discussed, IncRNA localization can
provide functional clues. The advent of single molecule im-
aging approaches facilitates the localization of RNA relative to
other interacting molecules. For example, labeled FISH probes
used in single molecule fluorescence in situ microscopy
(smFISH) (Cabili et al. 2015; Dunagin et al. 2015), followed
by immunofluorescence microscopy with three-dimensional

and quantitative fluorescence image analysis allows for the
visualization of colocalized IncRNA and protein interactors
within subcellular domains (Lino Cardenas et al. 2018). Vari-
ations, including merFISH (Chen et al. 2015) and seqFISH
(Shah et al. 2016), depend on barcoding in sequential rounds
of hybridization to enable the detection of many transcripts
simultaneously. The resulting data complexity creates the need
for computational tools such as trendsceek (Edsgérd et al
2018) to analyze these data. We can expect IncRNA monitor-
ing in spatial transcriptomics to increase as different function-
alities continue to emerge.

Bioinformatics

NPInter: Hao et al. (2016) is a repository of functional inter-
actions between noncoding RNAs and interacting partners
including small and large RNAs, DNA and proteins. At the
core of NPInter is a manual curation process based on pub-
lished literature, with a primary focus on experimentally
verified physical interactions, supplemented with in silico
predictions supported by high-throughput sequence data.
The latest version contains >900,000 interactions between
noncoding RNAs and other biomolecules from 22 organisms.
For RNAs, accession IDs from NONCODE, Ensembl, and
RefSeq are supported, and integration with the UCSC Ge-
nome Browser facilitates visualization of binding sites for
human, mouse, and yeast genomes.

POSTAR: Huetal (2017), Zhu et al. (2018) is a database that
enables exploration of post-transcriptional regulatory interac-
tions, based primarily on ~1200 CLIP-Seq data sets. The aim of
POSTAR is to contribute a better understanding of how RBPs
impact post-transcriptional regulatory processes in six species.
Its integration with the UCSC Genome Browser facilitates
rapid visualization of RBP binding sites within transcripts.

RAID: The RAID database (Zhang et al. 2014; Yi et al. 2017),
formerly CLIPdb, incorporates experimentally derived and
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computationally predicted RNA interactions from the pub-
lished literature, as well as other databases. RAID includes
data for 60 species and >1.2 million individual RNA—protein
and 4 million RNA-RNA interactions, respectively. A score
that is based on the evidence supporting the interaction in-
dicates the confidence in each interaction.

RNA-protein interaction prediction: Using protein and RNA
sequence data, the family of RPISeq machine learning qual-
ifiers (Muppirala et al. 2011) provides RNA-protein interac-
tion probabilities. Different versions of the tool provide the
probability of interaction between a specific RNA and pro-
tein, a specific RNA and up to 100 proteins, or a specific pro-
tein and up to 100 RNAs. Additionally, the sequence of a
specific protein can be used to query the RPIntDB, which
contains >30,000 individual RNA-protein interactions.

RNA-protein interaction predictor: RPI-Pred (Suresh et al.
2015) is a Support Vector Machine based prediction tool that
uses RNA and protein sequence information and protein
structural fragment data. Users can also test multiple candi-
dates including assessing the potential of a single RNA to
interact with multiple proteins or multiple RNAs interacting
with a single protein.

StarBase: This RNA-centric resource (Yang et al. 2011; Li
et al. 2014) details interactions between various classes of
long and short RNAs, as well as between RNAs and proteins
as extracted from CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP,
CLASH), degradome-seq, and RNA-RNA interactome data.
Users are also able to impute downstream effects of these
interactions based on accompanying gene expression data.

Combined approaches

Structure determination and analysis: The secondary struc-
ture of RNA can be predicted from thermodynamic principles,
but inaccuracy in the parameters means that experimental
input is required to generate a reliable model. This is most
often provided in the form of constraints on secondary struc-
ture generated from either evolutionary considerations (con-
servation of base pairs, ideally by covariation) and/or direct
experimental mapping of secondary structure using either
enzymatic, or, most often, chemical techniques such as SHAPE
and dimethyl sulfate (DMS) mapping (Kirk et al. 2018), psor-
alen crosslinking (Lu et al. 2016), and high throughput liga-
tion followed by deep-sequencing (Ramani et al. 2015).
Detection can be achieved efficiently through deep-sequencing,
although capillary electrophoresis, and even polyacrylamide
gels, can be used at much lower cost when studying single
IncRNAs. Because folding in vitro and in cells might differ
because of kinetic constraints on cotranscriptional RNA fold-
ing and the presence of RBPs (Leamy et al. 2016), techniques
are being developed to probe RNA secondary structures in
cellular contexts as well. Here, the primary limitation is
sensitivity and the requirement to have sufficient RNA
for detection, which could require overexpression since most
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IncRNAs are present at relatively low copy number. Higher
resolution methods such as SAXS (Small Angle X-ray Scatter-
ing) (Rambo and Tainer 2013) or X-ray crystallography and
NMR currently have very low throughput and can be used
only to investigate a few paradigmatic RNAs or systems of
particularly high biological interest.

Conclusion and Perspectives

This review summarizes multiple lines of evidence showing
that IncRNAs regulate cellular plasticity and cell fate deter-
mination, often through combination of multiple mecha-
nisms. By adding a further layer of complexity to gene
regulation, they broadly contribute to gene expression regu-
lation to either (i) maintain a blanket undifferentiated state,
(ii) promote exit toward a specified cell type, (iii) reprogram
cells to a pluripotent ground state, or (iv) contribute to cell
specification control in organismal development. LncRNAs
perform these complex functions in integrated networks with
a diverse set of cellular players with which they interact
physically and/or functionally.

Progress toward the phenotypic assessment of IncRNA
depletion occurs through loss-of-function and gain-of-
function approaches (Liu and Lim 2018), facilitated by the
advent of CRISPR/Cas9 technologies. Indeed, high-throughput
screens using CRISPR interference identified >300 IncRNAs
that impacted iPS cell growth, with a smaller subset influ-
encing pluripotency maintenance as determined by OCT4
expression (S. J. Liu et al. 2017). Functional ablation ap-
proaches include poly-A signal insertion proximal to the tran-
scription start site, although a drawback of this insertion is
residual background expression, as well as deletion of the
IncRNA locus, which results in total loss of IncRNA function,
but which may also affect unannotated regulatory elements.
Even the genetic manipulation of smaller sequences such
as promoters or single exons for well-annotated intergenic
IncRNAs should be carried out with caution to avoid modifying
regulatory genomic sequences. It should also be noted that DNA-
targeting approaches have resulted in differing phenotypes, as
exemplified by Fendrr. Studies using a reporter gene replacement
strategy for Fendrr found abnormalities in lung development and
lethality at a later time point (Sauvageau et al. 2013; Lai et al.
2015), compared with the heart and body wall abnormali-
ties resulting in prenatal lethality in earlier investigations
(Grote et al. 2013). Regardless of the specific technical ap-
proach for DNA sequence manipulation, it will be important
to study the impact of IncRNA expression ablation on the
function and regulation of the interacting proteins, RNAs,
and chromatin in development. Specific molecular targeting
of the IncRNA itself using CRISPR/Cas13 (Abudayyeh et al.
2017; Cox et al. 2017) could facilitate such investigations.

Intriguingly, at least several IncRNAs displaying differ-
ing levels of conservation, such as Malatl, Neatl, Cyrano,
Braveheart, Evxlas, and Visc-2, and found to have profound
molecular or cellular functions, had no overt developmental
phenotype in knockout animals (Han et al. 2018). This



suggests either a primary role for IncRNAs in fine-tuning
developmental functions, distinct roles in specific cellular
processes requiring situational study, or yet unearthed com-
pensatory functions, potentially by related/familial IncRNAs.
Another explanation for the absence of animal phenotypes
could be off-target effects of knockdown approaches using
RNA interference or antisense oligonucleotide-dependent
depletion (Matsui and Corey 2017). Increased use of gene
editing approaches such as CRISPR/Cas9 will help to clarify
IncRNA functionality in cell and animal models.

Improvements are needed to allow study of IncRNA inter-
actions at the single cell and single molecule level. While
technically feasible to a limited extent using imaging tech-
nologies, these methods remain specialized and low through-
put. These studies would allow the determination of cell fate
as single cell expression and epigenetic studies have indicated
substantial heterogeneity even within clonal cellular subpop-
ulations. Perhaps dynamic IncRNA interactions contribute to
this heterogeneity to dictate differing cell fates as well.

Related to this heterogeneity, it is still unclear whether a
classification system that would allow prediction of IncRNA
interactions will be found, but, if such a system existed, it is
unlikely to be based on broad segments of sequence conser-
vation because these are generally absent in IncRNAs.
However, it might be possible to base classification on the
identification of shorter sequence stretches (k-mers) or struc-
tural features of the IncRNA that facilitate interactions with
other biomolecules. Identification of the relevant structural
elements would provide insight into IncRNA interactions with
noncanonical RNA binding proteins as well, including those
without conserved and/or overt RNA binding domains.

There are untapped opportunities for progress in the
mechanistic analysis of IncRNA function for better under-
standing of specific developmental processes and some down-
stream applications, including personalized therapeutics. For
example, cancers typically progress through the acquisition of
stemness features (Malta et al. 2018) and undifferentiated
tumors have poor prognosis because they share immortality
and repopulation capacity characteristics with stem cells.
LncRNAs have emerged as central oncogenic and tumor sup-
pressive factors involved in misregulated cancer pathways
(Berger et al. 2018; Chiu et al. 2018), and many IncRNAs,
such as Cyrano, have been have been shown to support cel-
lular proliferation (Smith et al. 2017; Deng et al. 2018; X. Liu
et al. 2018; Naemura et al. 2018). Studies of IncRNAs in stem
cell contexts will not only enable better understanding of
mammalian development and differentiation, but may also
eventually facilitate better treatment of cancer and degener-
ative diseases.
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