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ABSTRACT Longitudinal phenotypes have been increasingly available in genome-wide association studies (GWAS) and electronic
health record-based studies for identification of genetic variants that influence complex traits over time. For longitudinal binary data,
there remain significant challenges in gene mapping, including misspecification of the model for phenotype distribution due to
ascertainment. Here, we propose L-BRAT (Longitudinal Binary-trait Retrospective Association Test), a retrospective, generalized
estimating equation-based method for genetic association analysis of longitudinal binary outcomes. We also develop RGMMAT, a
retrospective, generalized linear mixed model-based association test. Both tests are retrospective score approaches in which genotypes
are treated as random conditional on phenotype and covariates. They allow both static and time-varying covariates to be included in
the analysis. Through simulations, we illustrated that retrospective association tests are robust to ascertainment and other types of
phenotype model misspecification, and gain power over previous association methods. We applied L-BRAT and RGMMAT to a
genome-wide association analysis of repeated measures of cocaine use in a longitudinal cohort. Pathway analysis implicated
association with opioid signaling and axonal guidance signaling pathways. Lastly, we replicated important pathways in an independent
cocaine dependence case-control GWAS. Our results illustrate that L-BRAT is able to detect important loci and pathways in a genome
scan and to provide insights into genetic architecture of cocaine use.
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GENOME-WIDE association studies (GWAS) have suc-
cessfully discovered many disease susceptibility loci and

provided insights into the genetic architecture of numerous
human complex diseases and traits. In some genetic epide-
miological studies, longitudinally collected phenotype data
are available. This is the case formany electronic health record
(EHR)-based studies. As many of these studies continue to
follow enrolled subjects [e.g., the UK Biobank (UKB) and the

Million Veteran Program (MVP)], longitudinal phenotypes
will be increasingly available with the passage of time, pro-
viding new data resources that require appropriate analytical
tools for optimal analysis. Standard association tests that con-
sider one time point, or collapse repeated measurements
into a single value such as an average, do not capture the
trajectory of phenotypic traits over time, and may result in a
loss of statistical power to detect genetic associations. In ad-
dition, the effects of time-varying covariates cannot be easily
incorporated in such analyses. Recently, methodological
developments for GWAS have proliferated to make full use
of the available longitudinal data. For population cohorts,
methods that account for dependence among observations
from an individual include mixed effects models (Furlotte
et al.2012; Sikorska et al.2013), generalized estimating equations
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(GEE) (Sitlani et al. 2015), growth mixture models (Das et al.
2011; Londono et al. 2013), and empirical Bayes models
(Meirelles et al. 2013). Most of these approaches are prospec-
tive analyses and have been successfully applied to quantita-
tive phenotypes.

As many diseases are rare, efficient designs, such as the
case-control design, are commonly applied in epidemiological
studies to recruit study subjects. Despite the enhanced effi-
ciency in the study sample,nonrandomascertainment canbea
major source of model misspecification that may lead to
inflated type I error and/or power loss in association analy-
sis. The linear mixed model and the logistic mixed model do
not performwell when the case-control ratio is unbalanced in
large-scale genetic association studies (Zhou et al. 2018).
Prospective analysis, in which a population-based model is
used, ignores ascertainment bias and can result in compro-
mised statistical inference. Furthermore, in the ascertained
sample, the prospective approach conditional on the geno-
type and covariates may lose information when the joint dis-
tribution of the genotype and covariates carries additional
information on whether the phenotype is associated with
the genotype (Jiang et al. 2015). In this regard, several
retrospective association methods have been proposed for
analyzing ascertained population-based case-control stud-
ies (Hayeck et al. 2015; Jiang et al. 2016), family-based
studies of continuous traits (Jakobsdottir and McPeek
2013), family-based case-control studies (Zhong et al.
2016; Hayeck et al. 2017), and family-based longitudinal
quantitative traits (Wu and McPeek 2018). Compared to
prospective tests, retrospective tests conditional on the
phenotype and covariates are more robust to misspecifica-
tion of the trait model (Jiang et al. 2015).

To generalize case-control sampling, outcome-dependent
sampling designs have become popular for binary data in
longitudinal cohort studies (Schildcrout and Heagerty 2008;
Schildcrout et al. 2018a,b). However, association tests for lon-
gitudinally measured binary data are less well developed in
GWAS. Here, we propose L-BRAT (Longitudinal Binary-trait
Retrospective Association Test), a retrospective, GEE-based
method for genetic association analysis of longitudinal binary
outcomes. It requires specification of the mean of the outcome
distribution and aworking correlationmatrix for repeatedmea-
surements. L-BRAT is a retrospective score approach in which
genotypes are treated as random conditional on the phenotype
and covariates. Thus, it is robust to ascertainment and trait
model misspecification. It allows both static and time-varying
covariates to be included in the analysis. We note that the
Generalized linear Mixed Model Association Test (GMMAT),
a recently proposed prospective test using the logistic mixed
model to control for population structure and cryptic related-
ness in case-control studies (Chen et al. 2016), can be adapted
for repeated binary data. For comparison, we also develop
RGMMAT, a retrospective, generalized linear mixed model
(GLMM)-based association test for longitudinal binary traits.

We performed simulation studies to evaluate type I error
and power of L-BRAT and RGMMAT, and compared them to

the existing prospective methods. The results demonstrate
that the retrospective association tests have better control
of type I error when the phenotype model is misspecified,
and are robust to various ascertainment schemes. Moreover,
they are more powerful than the prospective tests. Finally, we
applied L-BRAT and RGMMAT to a genome-wide association
analysis of repeated measurements of cocaine use in a longi-
tudinal cohort, the Veterans Aging Cohort Study (VACS), and
replicated the results using data from an independent co-
caine dependence case-control GWAS.

Materials and Methods

Suppose a binary trait is measured over time on a study
population of n individuals. We have their genome-wide mea-
sures of genetic variation. A set of covariates, static or dynamic,
are also available. Let ni be the number of repeated measures
on individual i; and N ¼ Pn

i¼1 ni be the total number of obser-
vations. For individual i, let X ij and Yij be the p-dimensional
covariate vector, assumed to include an intercept, and the bi-
nary response at time tij, respectively. In this setting, individu-
als are permitted to have measurements at different time
points and different number of observations. We let Y denote
the outcome vector of length N, and let X denote the N3 p
covariate matrix. Here, we focus on the problem of testing for
association between a genetic variant and the longitudinal bi-
nary outcomes. Let G denote the vector of genotypes for the n
individuals at the variant to be tested, where Gi ¼ 0, 1, or 2 is
the number of minor alleles of individual i at the variant.

GEE model

We consider a GEE approach in which the mean of the out-
come distribution, given the genotype and covariates, is
specified as

EðYijjG;XÞ ¼ mij; logitðmijÞ ¼ XT
ijbþ Gig;

i ¼ 1; . . . ; n; j ¼ 1; . . . ; ni;
(1)

whereb is a p-dimensional vector of covariate effects and g is a
scalar parameter of interest representing the effect of the tested
variant. Writing in a matrix form, we have the mean model

EðYjG;XÞ ¼ m; logitðmÞ ¼ Xbþ BGg; (2)

where B is an N3n matrix representing the measurement
clustering structure, and its ðl; iÞth entry Bli is an indicator of
the lth entry of Y being a measurement on individual i. Here,
the vector BG is the vertically expanded genotype vector that
maps the genotype data G from the individual level to the
measurement level. The covariance structure of Y is given by

VarðYjG;XÞ ¼ G1=2SG1=2; (3)

where G ¼ diagfm1;1ð12m1;1Þ; . . . ;m1;n1ð12m1;n1Þ; . . . ;
mn;1 ð12mn;1Þ; . . . ;mn;nnð12mn;nnÞg is an N-dimensional di-
agonal matrix and S is an N3N correlation matrix. The
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covariance specification in Equation 3 ensures that the var-
iance of the dichotomous response Yij depends on its mean
in a way that is consistent with the Bernoulli distribution. To
apply the GEE method, a working correlation structure such
as independent, exchangeable, and first-order autoregres-
sive [AR(1)] must be specified. For a given within-cluster
correlation matrix SðtÞ, which may depend on some param-
eter t, the estimating equations for the unknown parameters
ðb; gÞ are written as

U ¼
�
UðbÞ
UðgÞ

�
¼

�
XTG1=2S21G21=2ðY2mÞ

ðBGÞTG1=2S21G21=2ðY2mÞ

�
:

Prospective GEE test

To detect association between the genetic variant and the
phenotype, we consider a score approach to test H0 : g ¼ 0
against H1 : g 6¼ 0. The null estimate of b, denoted by b̂0, is
the solution to a system of estimating equations UðbÞ ¼ 0
under the constraint g ¼ 0, which can be computed itera-
tively between a Fisher scoring algorithm for b and the
method of moments for t until convergence. Then, the score
function for g is

U0 ¼ UðgÞjb̂0;0;t̂0
¼ ðBGÞTĜ1=2

0 Ŝ21
0 Ĝ

21=2
0 ðY2 m̂0Þ; (4)

where m̂0, Ĝ0; and Ŝ0 are m, G; and S evaluated at
ðb; g; tÞ ¼ ðb̂0; 0; t̂0Þ.

In the GEE approach, the prospective score statistic for
testing H0 : g ¼ 0 takes the form

TGEE ¼ U2
0

Var0ðU0jG;XÞ ¼
h
ðBGÞTĜ1=2

0 Ŝ21
0 Ĝ

21=2
0 ðY2m̂0Þ

i2
ðBGÞTQBG ;

(5)

where the null variance of U0 is evaluated using a robust
sandwich variance estimator, conditional on the genotype
and covariates. Here Q ¼ V2VXðXTVXÞ21XTV, where V ¼
Ĝ
1=2
0 Ŝ21

0 Ĝ
21=2
0

dCovðYÞĜ21=2
0 Ŝ21

0 Ĝ
1=2
0 and the sample covari-

ance of Y, dCovðYÞ, is estimated by ðY2 m̂0ÞðY2m̂0ÞT. Under
the null hypothesis, the TGEE test statistic has an asymptotic
x2
1 distribution.

L-BRAT retrospective test

In what follows, we introduce a new GEE-based association
testingmethod, L-BRAT. The L-BRAT test statistic is also based
on the score function U0 in Equation 4. In contrast to the
prospective GEE score test, L-BRAT takes a retrospective ap-
proach in which the variance of U0 is assessed using a retro-
spective model of the genotype given the phenotype and
covariates. An advantage of the retrospective approach is that
the analysis is less dependent on the correct specification of
the phenotype model. We assume that, under the null hy-
pothesis of no association between the genetic variant and
the phenotype, the quasi-likelihood model of G; conditional
on Y and X; is

E0ðGjY;XÞ ¼ 2p1n; Var0ðGjY;XÞ ¼ s2
gF; (6)

where p is the minor allele frequency (MAF) of the tested
variant, 1n is a vector of length n with every element equal
to 1, s2

g is an unknown variance parameter, andF is an n3 n
genetic relationship matrix (GRM) representing the overall
genetic similarity between individuals due to population
structure. Because B1n ¼ 1N , which is the first column of X
that encodes an intercept, and Ĝ

1=2
0 Ŝ21

0 Ĝ
21=2
0 ðY2 m̂0Þ, the

N-dimensional vector of transformed null phenotypic resid-
uals, is orthogonal to the column space of X, then the null
mean model of G in Equation 6 ensures that

E0ðU0jY;XÞ ¼ E0
�
ATGjY;X� ¼ 2pAT1n ¼ 0;

where A ¼ BTĜ
1=2
0 Ŝ21

0 Ĝ
21=2
0 ðY2 m̂0Þ is the individual-level

transformed phenotypic residual vector of length n.
In model (6), the GRM F can be obtained using genome-

wide data, given by

F ¼ 1
K

XK
k¼1

�
GðkÞ2 2p̂k

��
GðkÞ22p̂k

�T
2p̂kð12 p̂kÞ

;

where K is the total number of genotyped variants, GðkÞ is the
genotype vector at the kth variant, and p̂k is the estimated
MAF. For example, p̂k ¼ �Gk=2, the sample MAF at the kth
variant. For the variant of interest, let p̂ ¼ �G=2 be its sample
MAF. Under Hardy-Weinberg equilibrium, the variance of the
genotype is estimated by ŝ2

g ¼ 2p̂ð12 p̂Þ. Or we can use a
more robust variance estimator (Jakobsdottir and McPeek
2013) given by

ŝ2
g ¼ ðn21Þ21GTWG; (7)

where W ¼ F21 2F211nð1TnF211nÞ21
1TnF

21. Finally, the
L-BRAT test statistic can be defined as

L-BRAT ¼ U2
0

Var0ðU0jY;XÞ ¼
�
ATG

�2
Var0ðATGjY;XÞ ¼

�
ATG

�2
ŝ2
gA

TFA
:

(8)

Under regularity conditions, L-BRAT asymptotically follows a
x2
1 distribution under the null hypothesis.

Generalized linear mixed model

The GMMAT test was originally designed to use multiple random
effects in logistic mixed models to account for complex sampling
designs in case-control studies (Chen et al. 2016). To extend
the GMMAT method for case-control analysis to repeated
binary data, we consider the following logistic mixed model:

logitðmijÞ¼XT
ijbþ Gig þ ai þ rij; i ¼ 1; . . . ; n; j ¼ 1; . . . ; ni;

(9)

where mij ¼ PðYij ¼ 1jGi;X ij; ai; rijÞ is the probability of a bi-
nary response at time tij for individual i, conditional on his/her
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genotype, covariates, and randomeffects ai and rij,b and g are
the same as defined in model (1), ai is the individual random
effect, and rij is the individual-specific time-dependent random
effect. The two random effects were used to capture the cor-
relation among repeated measures in gene-based association
test for longitudinal traits (Wang et al. 2017). Here, ai values
are assumed to be independent and ai � Nð0;s2

aÞ. The vector
of time-dependent random effects ri ¼ ðri;1; . . . ; ri;niÞ has a
multivariate normal distribution, ri � MVNð0;s2

rRiÞ, where
an AR(1) structure is assumed for the correlation matrix Ri,
in which t is the unknown parameter. The binary responses Yij
are assumed to be independent, given the random effects ai
and rij. In model (9), population structure in the longitudinal
data setting can be controlled for by including another random
effect to account for genetic relationships (Chen et al. 2016;
Wu andMcPeek 2018), or including top principal components
(PCs) of the genotype data as additional covariates.

GMMAT test

To construct a score test for the null hypothesis H0 : g ¼ 0 vs.
the alternative H1 : g 6¼ 0, we use the penalized quasi-likeli-
hoodmethod (BreslowandClayton 1993) to fit the null logistic
mixed model and obtain the null estimates of b;s2

a;s
2
r ; and t,

denoted by b̂0; ŝ
2
a; ŝ

2
r ; and t̂0 (Chen et al. 2016). Similarly, the

best linear unbiased predictor (BLUP) of random effects, â and
r̂, can be obtained. Then, the resulting score function for g is

S0 ¼ SðgÞjb̂0;0;ŝ
2
a ;ŝ

2
r ;t̂0;â;r̂

¼ ðBGÞTðY2 m̂0Þ; (10)

where m̂0 ¼ logit21ðXb̂0 þ Bâþ r̂Þ is a vector of fitted values
under H0.

In GMMAT, the null variance of the score S0 is evaluated
prospectively (Chen et al. 2016), i.e., Var0ðS0jG;XÞ ¼ ðBGÞTPBG,
where P ¼ C21 2C21XðXTC21XÞ21XTC21, and C ¼
Ĝ
21
0 þ ŝ2

aBB
T þ ŝ2

r R̂. Here Ĝ0 and R̂ are G and R evaluated at
ðb; g;s2

a;s
2
r ; tÞ ¼ ðb̂0; 0; ŝ

2
a; ŝ

2
r ; t̂0Þ, whereG is the same as de-

fined in Equation 3 and R ¼ diagfR1; . . . ;Rng is a block diagonal
matrix. The GMMAT test statistic can be written as

TGMMAT ¼ S20
Var0ðS0jG;XÞ ¼

h
ðBGÞTðY2m̂0Þ

i2
ðBGÞTPBG : (11)

RGMMAT retrospective test

Like L-BRAT, we can construct a retrospective test to assess
the significance of the GLMM score function of Equation 10,
which we call RGMMAT, based on the quasi-likelihoodmodel
of G in Equation 6. Thus, we define the RGMMAT statistic by

RGMMAT ¼ S20
Var0ðS0jY;XÞ ¼

�
CTG

�2
Var0ðCTGjY;XÞ ¼

�
CTG

�2
ŝ2
gC

TFC
;

(12)

where C ¼ BTðY2 m̂0Þ is the n-dimensional vector of pheno-
typic residuals at the individual level by summing over all

time points for an individual, and the phenotypic residuals
are obtained by fitting the null logistic mixedmodel. Both the
GMMAT and RGMMAT test statistics are assumed to have x2

1
asymptotic null distributions.

Simulation studies

We performed simulation studies to evaluate the type I error
and power of the two retrospective tests, and compared them
to the prospective GEE and GMMAT methods. We also
assessed sensitivity of L-BRAT and RGMMAT in the presence
of model misspecification and ascertainment. In the simula-
tions, we considered two different trait models and three
different ascertainment schemes. Because both the L-BRAT
and GEE methods require specification of a working correla-
tionmatrix, we implemented threeworking correlation struc-
tures: (1) independent, (2) AR(1), and (3) a mixture of
exchangeable and AR(1).

To generate genotypes, we first simulated 10,000 chromo-
somes over a 1 Mb region using a coalescent model that
mimics the linkage disequilibrium (LD) and recombination
rates of the European population (Schaffner et al. 2005). We
then randomly selected 1000 noncausal single nucleotide
polymorphisms (SNPs) with MAF . 0.05. In addition, we
generated two causal SNPs that were assumed to influence
the trait value with epistasis. In the type I error simulations,
we tested association at the 1000 noncausal SNPs. In each
simulation setting, we generated 1000 sets of phenotypes at
five time points. Putting these together, 106 replicates were
used for the type I error evaluation. In the power simula-
tions, we tested the first of the two causal SNPs, and empir-
ical power was assessed using 1000 simulation replicates. In
all tests considered, the genotypes at the untested causal
SNP(s) were assumed to be unobserved.

Trait models

We simulated two types of binary trait models at five time
points, in which the two unlinked causal SNPs were assumed
to act on the phenotype epistatically. The first type is a logistic
mixed model, given by

YijjXij;Gið1Þ;Gið2Þ; ai; rij � BernoulliðmijÞ;

logitðmijÞ ¼ 2 2:5þ 0:2ð j2 1Þ þ 0:5Xijð1Þ þ 0:5Xið2Þ
þ u1fGið1Þ .0;Gið2Þ . 0g þ ai þ rij;

where Xijð1Þ is a continuous, time-varying covariate generated
independently from a standard normal distribution, Xið2Þ is
a binary, time-invariant covariate taking values 0 or 1 with
a probability of 0.5, Gið1Þ and Gið2Þ are the genotypes of indi-
vidual i at the two causal SNPs, u is a scalar parameter encod-
ing the effect of the causal SNPs, 1fGið1Þ . 0;Gið2Þ . 0g is an
indicator function that takes value 1 when individual i has
at least one copy of the minor allele at both the causal SNPs,
ai and rij are the individual-level time-independent and time-
dependent random effects, respectively. Here we assume
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ai � Nð0;s2
aÞ and ri ¼ ðri1; . . . ; ri5Þ � MVNð0;s2

rRÞ, where R
is a 53 5 correlation matrix specified by the AR(1) structure
with a correlation coefficient t. The two causal SNPs are
assumed to be unlinked with MAFs 0.1 and 0.5, respectively.
The variance components are set to s2

a ¼ s2
r ¼ 0:64 and

t ¼ 0:7.
The second type of trait model we considered is a liability

threshold model in which an underlying continuous liability
determines the outcome value based on a threshold. Specif-
ically, the phenotype Yij is given by

Yij ¼ 1 if   Lij. 0;

with  Lij ¼ 22:0þ 0:2ð j2 1Þ þ 0:5Xijð1Þ þ 0:5Xið2Þ
þ u1fGið1Þ .0;Gið2Þ .0g þ ai þ rij þ eij;

where Lij is the underlying liability for individual i at time
tij, and eij � Nð0;s2

e Þ represents independent noise, with
s2
e ¼ 0:64. All other parameters are the same as those in

the logistic mixed model.
In bothmodels,we included a time effect and assumed that

themean of the outcome increaseswith time. The effect of the
causal SNPs was set to u ¼ 0:34 in the type I error simula-
tions. For the power evaluation, we considered a range of
values for u, where we set u ¼ 0:3, 0.32, 0.34, 0.36, and
0.38. At the given parameter values, the prevalence of the
event of interest ranges from 12.8 to 27.7% over time. The
proportion of the phenotypic variance explained by the two
causal SNPs ranges from 0.69 to 1.10% in the logistic mixed
model, and from 0.49 to 0.78% in the liability threshold
model.

Sampling designs

We considered three different sampling designs. In the “ran-
dom” sampling scheme, the sample contains 2000 individuals
that were randomly selected from the population regardless
of their phenotypes. Thus, ascertainment is population based.
In the “baseline” sampling scheme, we sampled 1000 case
subjects and 1000 control subjects according to their out-
come value at baseline only. In the “sum” sampling scheme,
individuals were stratified into three strata (1, 2, and 3)
based on a total count that sums each subject’s response over
time, where samples in stratum 1 never experienced the
event of interest, i.e.,

P
jYij ¼ 0, samples in stratum 2 some-

times experienced the event, i.e., 0,
P

jYij ,ni, and samples
in stratum 3 always experienced the event, i.e.,

P
jYij ¼ ni.

Following the outcome-dependent sampling design for lon-
gitudinal binary data (Schildcrout et al. 2018b), we selected
100, 1800, and 100 individuals from the three strata respec-
tively to oversample subjects who have response variation
over the course of the study.

Cocaine use data from VACS

We illustrated the utility of our proposed methods by analyz-
ing a GWAS dataset of cocaine use from VACS (Justice et al.

2006). VACS is a multi-center, longitudinal observational
study of HIV infected and uninfected veterans whose primary
objective is to understand the risk of alcohol and other sub-
stance abuse in individuals with HIV infection. Our use of the
VACS data were approved by the Yale Human Research Pro-
tection Program and the Institutional Review Board of the
Veterans Affairs Connecticut Healthcare System. We ana-
lyzed longitudinal cocaine use in patient surveys collected
at six clinic visits on 2470 participants. Among them,
69.8% are African Americans (AAs), 19.3% are European
Americans (EAs), and 10.9% are of other races. We consid-
ered the responses at each visit as zero if individuals had
never tried cocaine or had not used cocaine in the last year,
and as one if individuals had used cocaine in the last year. The
proportion of case subjects at each visit ranges from 13.7%
ðn ¼ 192Þ to 24.3% ðn ¼ 526Þ, and the missing rate at each
visit ranges from 3.0 to 44.2%.

All samples were genotyped on the Illumina OmniExpress
BeadChip. After data cleaning, there are 2458 individuals
available for genotype imputation. IMPUTE2 (Howie et al.
2009) was used for imputation using the 1000 Genomes
Phase 3 data as a reference panel. We excluded subjects
who did not meet either of the following criteria: (1) com-
pleteness (i.e., proportion of successfully imputed SNPs) .
95% and (2) empirical self-kinship , 0.525 (i.e., empirical
inbreeding coefficient , 0.05). Based on the above criteria,
2231 individuals were retained in the analysis, with 2114ma-
les and 117 females, of whom 1557 are AAs, 431 are EAs, and
243 are of other races. There are 1433 individuals who had
never used cocaine during the study period, 639 individuals
who sometimes used cocaine, i.e., exhibited response varia-
tion, and 159 individuals who had used cocaine at least once
every year over the course of the study.

We performed a GWAS with longitudinally measured co-
caine use in the entire VACS sample. SNPs that satisfied all of
the following quality-control conditions were included in the
analysis: (1) call rate. 95%, (2) Hardy-Weinberg x2 statistic
P-value. 1026, and (3)MAF. 1%. All together we analyzed
10,215,072 SNPs using L-BRAT, RGMMAT, and the prospec-
tive GEE and GMMAT tests. Sex, age at baseline, HIV status,
and time were included as covariates in the analysis. Because
the VACS samples include AAs, EAs, and other races, the top
10 PCs were included as covariates in the analysis to control
for population structure. In addition, we analyzed the data
separately in each population, adjusted for the top 10 PCs
obtained within the group, and then combined the results
from the three groups by meta-analysis using the optimal
weights for score statistics that have essentially the same
power as the inverse variance weighting (Zhou et al. 2011).

To compare the performance of longitudinal association
analysis with that of univariate analysis on the summary
metrics of cocaine use in VACS,we considered two alternative
cocaine phenotypes: baseline and trajectories. CARAT (Jiang
et al. 2016), a case-control retrospective association test, was
used to test for association with cocaine use at baseline, ad-
justed for sex, age at baseline, and HIV status. Longitudinal
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cocaine use trajectories were obtained using a growth mix-
ture model that clusters longitudinal data into discrete
growth trajectory curves (Muthén 2004). We fit a logistic
model with a polynomial function of time. The number of
groups was chosen based on the Bayesian information crite-
rion (BIC). Once each individual was assigned to the trajec-
tory with the highest probability of membership, we then
performed association tests with the ordered cocaine use tra-
jectory groups using a cumulative logit model. Sex, age at
baseline, HIV status, and the top 10 PCs were included as
covariates in the analysis.

Pathway and enrichment analyses

Pathway analysis was conducted on the association results for
longitudinally measured cocaine use using the Ingenuity
Pathway Analysis (IPA) software. The top SNPs with a
P-value , 53 1025 were annotated and evaluated to iden-
tify an overrepresentation of genes within defined canonical
pathways based on information from multiple sources. The
Ingenuity database contains information from manually
reviewed literature and large public databases. The list of

the top SNPs was mapped to the reference set in the Ingenu-
ity knowledge. Then, Fisher’s exact test was used to deter-
mine whether the SNP list belongs to a gene set of a
functional annotation more than expected by chance. Both
the unadjusted P-value and adjusted P-value using the Ben-
jamini-Hochberg method were reported. Pathways with the
adjusted P-value ,0.05 were considered to be significant.
Enrichment analysis was also performed to assess whether
the top association signals identified from the VACS data
are more likely to regulate brain gene expression. Fisher’s
exact test was used to test whether the associated SNPs with
cocaine use is overrepresented in the brain expression quan-
titative trait loci (eQTLs) reported from the Genotype-Tissue
Expression (GTEx) project (GTEx Consortium 2013, 2017).

Replication data

We used an independent cocaine dependence case-control
GWAS from the Yale-Penn study (Gelernter et al. 2014) to
replicate the top findings in VACS. The summary statistics
from the Yale-Penn cocaine dependence GWAS were
obtained. Pathway analysis using IPA was applied to the

Table 1 Empirical type I error of L-BRAT, RGMMAT, GEE, and GMMAT, based on 106 replicates

Analysis type Test Nominal level

Logistic mixed model Liability threshold model

Random Baseline Sum Random Baseline Sum

Prospective GEE(ind) 0.05 5.38 3 1022 5.08 3 1022 5.27 3 1022 5.36 3 1022 5.19 3 1022 5.38 3 1022

0.01 1.18 3 1022 1.04 3 1022 1.13 3 1022 1.17 3 1022 1.07 3 1022 1.17 3 1022

0.001 1.32 3 1023 1.16 3 1023 1.23 3 1023 1.37 3 1023 1.14 3 1023 1.37 3 1023

0.0001 1.67 3 1024 1.28 3 1024 1.43 3 1024 1.34 3 1024 1.36 3 1024 1.76 3 1024

GEE(AR1) 0.05 5.36 3 1022 5.02 3 1022 5.26 3 1022 5.34 3 1022 5.17 3 1022 5.37 3 1022

0.01 1.16 3 1022 1.04 3 1022 1.12 3 1022 1.16 3 1022 1.06 3 1022 1.17 3 1022

0.001 1.31 3 1023 1.13 3 1023 1.21 3 1023 1.36 3 1023 1.14 3 1023 1.36 3 1023

0.0001 1.73 3 1024 1.19 3 1024 1.37 3 1024 1.32 3 1024 1.35 3 1024 1.78 3 1024

GEE(mix) 0.05 5.34 3 1022 5.07 3 1022 5.26 3 1022 5.34 3 1022 5.19 3 1022 5.37 3 1022

0.01 1.17 3 1022 1.04 3 1022 1.13 3 1022 1.16 3 1022 1.07 3 1022 1.17 3 1022

0.001 1.29 3 1023 1.17 3 1023 1.22 3 1023 1.38 3 1023 1.14 3 1023 1.36 3 1023

0.0001 1.70 3 1024 1.29 3 1024 1.37 3 1024 1.31 3 1024 1.30 3 1024 1.70 3 1024

GMMAT 0.05 3.89 3 1022 3.53 3 1022 4.76 3 1022 4.80 3 1022 4.89 3 1022 4.91 3 1022

0.01 6.07 3 1023 5.24 3 1023 9.08 3 1023 9.29 3 1023 9.51 3 1023 9.33 3 1023

0.001 4.29 3 1024 3.74 3 1024 7.84 3 1024 8.63 3 1024 8.96 3 1024 8.33 3 1024

0.0001 2.20 3 1025 2.20 3 1025 6.80 3 1025 6.30 3 1025 9.10 3 1025 8.80 3 1025

Retrospective L-BRAT(ind) 0.05 4.93 3 1022 4.91 3 1022 4.98 3 1022 5.01 3 1022 4.99 3 1022 4.98 3 1022

0.01 9.45 3 1023 9.60 3 1023 9.84 3 1023 9.90 3 1023 9.75 3 1023 9.55 3 1023

0.001 8.30 3 1024 9.78 3 1024 9.24 3 1024 9.55 3 1024 9.45 3 1024 8.78 3 1024

0.0001 7.20 3 1025 9.50 3 1025 8.20 3 1025 8.20 3 1025 9.40 3 1025 9.20 3 1025

L-BRAT(AR1) 0.05 4.93 3 1022 4.88 3 1022 4.97 3 1022 4.99 3 1022 4.98 3 1022 4.97 3 1022

0.01 9.48 3 1023 9.72 3 1023 9.78 3 1023 9.84 3 1023 9.76 3 1023 9.55 3 1023

0.001 8.26 3 1024 9.62 3 1024 9.22 3 1024 9.17 3 1024 9.47 3 1024 8.48 3 1024

0.0001 8.80 3 1025 9.60 3 1025 8.20 3 1025 7.10 3 1025 1.02 3 1024 8.90 3 1025

L-BRAT(mix) 0.05 4.93 3 1022 4.91 3 1022 4.99 3 1022 5.01 3 1022 4.98 3 1022 4.98 3 1022

0.01 9.57 3 1023 9.61 3 1023 9.86 3 1023 9.88 3 1023 9.79 3 1023 9.54 3 1023

0.001 8.35 3 1024 9.86 3 1024 9.26 3 1024 9.57 3 1024 9.37 3 1024 8.78 3 1024

0.0001 8.20 3 1025 1.01 3 1024 8.60 3 1025 7.40 3 1025 9.70 3 1025 8.90 3 1025

RGMMAT 0.05 4.72 3 1022 4.91 3 1022 4.98 3 1022 4.93 3 1022 4.99 3 1022 4.98 3 1022

0.01 8.76 3 1023 9.64 3 1023 9.85 3 1023 9.63 3 1023 9.78 3 1023 9.55 3 1023

0.001 7.20 3 1024 9.52 3 1024 9.09 3 1024 9.12 3 1024 9.43 3 1024 8.75 3 1024

0.0001 6.80 3 1025 8.90 3 1025 8.20 3 1025 7.70 3 1025 9.10 3 1025 9.30 3 1025

Rates that are significantly larger than the nominal levels are in bold. Texts in the brackets following test statistics denote the working correlation structure. Specifically,
L-BRAT(ind) and GEE(ind) denote the L-BRAT and GEE tests with an independent working correlation; L-BRAT(AR1) and GEE(AR1) denote the L-BRAT and GEE tests with an
AR(1) working correlation; L-BRAT(mix) and GEE(mix) denote the L-BRAT and GEE tests with a mixture of exchangeable and AR(1) working correlation structure.
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summary statistics of Yale-Penn on the top SNP list identified
from VACS. The Fisher’s exact test P-values were calculated
for each pathway to evaluate if there were more associated
SNPs than would be expected by chance.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. An R package implementing the proposed
methods is available at https://github.com/ZWang-Lab/
LBRAT. Additional data analysis results of cocaine use from
VACS are presented as supporting information including 1 ta-
ble and 2 figures. Supplemental material available at figshare:
https://doi.org/10.25386/genetics.9936881.

Results

Type I error assessment

To assess type I error, we simulated phenotype data at five
time points under two trait models and three sampling de-
signs, and tested for association at unlinked and unassociated
SNPs. We compared the proportion of simulations in which
the test statistic exceeded the ð12aÞth quantile of the x2

1
distribution to the nominal type I error level a, for
a ¼ 0:05, 0.01, 0.001, and 0.0001. Table 1 gives the empir-
ical type I error of the L-BRAT, RGMMAT, GEE, and GMMAT
tests, based on 106 replicates. For the GEE-based methods,
three working correlation structures were considered: (1)
independent, (2) AR(1), and (3) a mixture of exchangeable
and AR(1). In all simulations, the type I error of the two
retrospective tests, L-BRAT and RGMMAT, exhibited no in-
flation at any of the nominal levels considered. In contrast,
the prospective GEE tests, regardless of the choice of working

correlation, had inflated type I error at most of the nominal
levels in all settings. This is likely due to the fact that the
asymptotic distribution of robust sandwich variance estima-
tors used in GEE are not well calibrated. The inflated type I
error was also reported in longitudinal GWAS with quantita-
tive traits using GEE (Sitlani et al. 2015). In GMMAT, the
type I error was much lower than the nominal level when
a ¼ 0:05, 0.01, 0.001, and 0.0001. These results demon-
strate that the two retrospective tests, L-BRAT and RGMMAT,
are robust to trait model misspecification and ascertainment,
whereas GEE has type I error inflation and GMMAT is overly
conservative. Overall, the choice of the working correlation
matrix does not have much impact on the type I error of the
L-BRAT method.

Power comparison

To compare the power of the methods, we simulated pheno-
type data at five time points under two types of trait models
and three sampling designs. In each type of trait model, we
considered five effect sizes at the two causal SNPs, and tested
association between the trait and the first causal SNP. Em-
pirical power was calculated at the significance level 1023,
based on 1000 simulated replicates. Figure 1 demonstrates
the power results for each method. In all the simulation set-
tings, the retrospective tests consistently had higher power
than the prospective tests. The L-BRAT association tests un-
der three different working correlation structures had similar
power. The RGMMAT method also achieved high power. In
contrast, the prospective GEE methods had the lowest power
in all settings except under the baseline sampling and the
liability threshold model, in which GMMAT performed the
worst in power. Overall, we found that the baseline sampling
scheme generated the highest power under different trait

Figure 1 Empirical power of L-BRAT, RGMMAT,
GEE, and GMMAT. Power is based on 1000 sim-
ulated replicates at five time points with a =
1023. In the upper panel, the trait is simulated
by the logistic mixed model; in the lower panel, it
is by the liability threshold model. Power results
are demonstrated in samples of 2000 individuals
according to three different ascertainment schemes:
random, baseline, and sum. This figure appears in
color in the electronic version of this article.
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models, while the sum sampling scheme had a power gain
over the random sampling scheme under the logistic mixed
model, but was less powerful under the liability threshold
model. These results suggest that L-BRAT and RGMMAT out-
perform the prospective tests, and the power of L-BRAT is not
sensitive to the choice of the working correlation structure.

Analysis of cocaine use data from VACS

Genome-wide association testing for longitudinal cocaine
use was performed on 10,215,072 SNPs in a total of the
2231 VACS samples including AAs, EAs, and other races,
using L-BRAT, RGMMAT, GEE, and GMMAT, with adjustment
for sex, age at baseline, HIV status, and time. To control for
population structure, the top 10 PCs that explained 89.4% of
the total genetic variation were included as covariates in the
analysis. We considered two working correlation structures:
independent and AR(1). For the L-BRAT and RGMMATmeth-
ods, the GRM was calculated using the LD pruned SNPs with
MAF . 0.05.

For comparison, we created two alternative summary
characterizations of cocaine use: baseline and trajectories.
Figure 2 shows the four cocaine use trajectory groups identi-
fied in the VACS sample. They were labeled as mostly never
(0, n ¼ 1682), moderate decrease (1, n ¼ 296), elevated
chronic (2, n ¼ 86), and mostly frequent (3, n ¼ 167). We
used CARAT for the analysis of cocaine use at baseline, ad-
justed for sex, age at baseline, and HIV status. Cumulative
logit model was used to test for association between the four
ordered cocaine use trajectory groups and each of the SNPs,
with adjustment for sex, age at baseline, HIV status, and the
top 10 PCs.

None of the retrospective tests exhibited evidence of in-
flation in the quantile-quantile (Q-Q) plot (Supplemental

Material, Figure S1). The genomic control inflation factors
were 0.993 and 0.991 for the L-BRAT genome scan under the
independent andAR(1)workingcorrelation, respectively, and
0.984 for the RGMMAT analysis. The prospective GEE tests
showed some evidence of deflation in the Q-Q plot. The
genomic control factors were 0.938 and 0.937 for the GEE
tests under the independent and AR(1) working correlation.
The most conservative test was GMMAT, with a genomic
control factor 0.802.

Table 2 reports the results for SNPs for which at least one
of the longitudinal tests gives a P-value , 23 1027. Among
them, the L-BRAT tests produced the smallest P-values,
RGMMAT and the trajectory-based analysis had comparable
results, while GEE, GMMAT, and CARAT generated much
larger P-values. The Manhattan plot of the smallest P-value
from these tests in the VACS cocaine use data are shown in
Figure S2. Among the top SNPs listed in Table 2, there are
two SNPs, rs551879660 and rs150191017 (P ¼ 2:003 1028

and 3:7731028), located at 3p12 and 13q12, respectively.
Each of these SNPs was reported to have MAF , 1% in the
1000 Genomes (MAF= 0.68% and 0.98%, respectively). The
MAFs of the two SNPs were 1.2% and 1.1% in the entire
VACS sample, respectively, and were slightly higher in the
AA sample (MAF = 1.6% and 1.5%, respectively). Although
both SNPs have MAF . 1%, given the small sample size
of VACS, there is limited information on them. SNP
rs150191017 is located 31.5 kb from the gene AL161616.2,
which was reported to be associated with venlafaxine treat-
ment response in a generalized anxiety disorder GWAS (Jung
et al. 2017). A cluster of five SNPs in complete LD (r2 = 1),
rs76386683, rs114386843, rs186274502, rs376616438,
and rs187855416, located at 9q33, showed association with
longitudinal cocaine use ðP ¼ 1:853 1027 2 1:933 1027Þ.

Figure 2 Group-based cocaine use trajectories
in VACS. Dashed lines represent the estimated
trajectories, solid lines represent the observed
mean cocaine use for each trajectory group.
Time is the number of years since the baseline
visit.
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They are near OR1L4, an olfactory receptor gene that was re-
ported to be associated with major depressive disorder (Wong
et al. 2017). A cluster of olfactory receptor genes between
OR3A1 and OR3A2 that belong to the olfactory receptor gene
family were identified in a recent GWAS of cocaine dependence
and related traits (Gelernter et al. 2014). The other three SNPs,
rs188222191, rs1014278, and rs75132056, are located at
5q21 (P ¼ 1:283 1027, 1:433 1027 and 8:9231028, re-
spectively), close to the gene EFNA5, which was identified
in several GWAS to be associated with bipolar disorder and
schizophrenia (Wang et al. 2010). There was also evidence of
association with rs114629793 ðP ¼ 8:653 1028Þ. This SNP
is in an intron of the gene encoding PSD3, located at 8p22.
Recently, two schizophrenia GWAS have identified associa-
tion between PSD3 and schizophrenia (Goes et al. 2015; Li
et al. 2017b), and one study has shown that PSD3 is associ-
ated with paliperidone treatment response in schizophrenic
patients (Li et al. 2017a). Gene network analysis revealed
that PSD3 is one of the differentially expressed hub genes
that involve dysfunction of brain reward circuitry in cocaine
use disorder (Ribeiro et al. 2017).

We further performed separate analyses by population
group. Table S1 gives the results in the 1557 AA samples.
All the top 12 SNPs listed in Table 2 had a P-value , 53 1025

in at least one of the longitudinal tests in AAs. L-BRAT con-
sistently gave the smallest P-values among all the longitudi-
nal tests. The results from the three groups (AAs, EAs, and
other races)were combinedbymeta-analysis. Themeta-analysis
P-values were of the same order of magnitude as that obtained
from the entire sample adjusted for population structure for
each longitudinal test (Table 3). All the top 12 SNPs listed in
Table 2 had a meta-analysis P-value , 83 1027 in at least one
of the longitudinal tests. Among them, the L-BRAT test with
either an independent or AR(1) working correlation gave the
smallest meta-analysis P-values.

Pathway and enrichment analysis results

We then performed pathway analysis on the top SNPs for
which at least one of the longitudinal tests had a P-value

, 531025 using IPA. We identified two significant canoni-
cal pathways that belong to the neurotransmitters and ner-
vous system signaling. The first one is the opioid signaling
pathway (P ¼ 1:4131024, adjusted P= 0.010), which plays
an important role in opioid tolerance and dependence. Stud-
ies have shown that chronic administration of cocaine and
opioids are associatedwith changes in dopamine transporters
and opioid receptors in various brain regions (Le Merrer et al.
2009; Soderman and Unterwald 2009). The second signifi-
cant pathway is the axonal guidance signaling pathway
(P ¼ 2:5431024, adjusted P = 0.012), which is critical for
neural development. The mRNA expression levels of axon
guidance molecules have been found to be altered in some
brain regions of cocaine-treated rats, which may contribute
to drug abuse-associated cognitive impairment (Bahi and
Dreyer 2005; Jassen et al. 2006). Each of the two pathways
remained significant when we performed pathway analysis,
using the same P-value cutoff value to select top SNPs, based
on the L-BRAT results generated under the independence and
AR(1) working correlation, respectively. In contrast, only the
opioid signaling pathway was significant based on the results
from the GEE analysis using the independent working corre-
lation, and only the axonal guidance signaling pathway was
significant based on the RGMMAT results, whereas neither of
them remained significant based on the GMMAT results and
that from the GEE analysis with an AR(1) working correla-
tion. These results demonstrate that L-BRAT provides more
informative association results to help identify biological rel-
evant pathways.

Lastly, we performed an enrichment analysis to see
whether the top SNPs in our analysis are more likely to
regulate brain gene expression. We considered the cis-
eQTLs reported in 13 human brain regions from the GTEx
project (GTEx Consortium 2013, 2017), including amygdala,
anterior cingulate cortex, caudate, cerebellar hemisphere,
cerebellum, cortex, frontal cortex, hippocampus, hypothalamus,
nucleus accumbens, putamen, spinal cord, and substantia
nigra. Fisher’s exact test was used to assess the enrichment
of eQTLs (FDR , 0.05) in the top 2778 SNPs for which

Table 2 SNPs with P-value < 2 3 1027 in at least one of the longitudinal tests in the entire VACS sample

Chr
Gene
Region SNP Position MAF

GEE
(ind)

GEE
(AR1) GMMAT

L-BRAT
(ind)

L-BRAT
(AR1) RGMMAT CARATa(BL) CLb(traj)

3 NIPA2P2 rs551879660 75,146,492 0.012 1.87 3 1024 7.14 3 1024 9.07 3 1024 2.00 3 1028 3.19 3 1026 4.13 3 1025 5.78 3 1024 3.35 3 1025

5 EFNA5 rs188222191 105,411,547 0.042 6.86 3 1026 1.65 3 1025 8.87 3 1025 1.28 3 1027 4.17 3 1027 2.69 3 1026 8.95 3 1025 2.72 3 1025

rs1014278 105,471,506 0.057 1.02 3 1025 1.10 3 1025 1.24 3 1024 1.50 3 1027 1.43 3 1027 4.88 3 1026 5.94 3 1025 3.00 3 1025

rs75132056 105,480,442 0.05 1.05 3 1025 2.42 3 1025 1.89 3 1024 8.92 3 1028 2.89 3 1027 8.55 3 1026 2.59 3 1024 2.31 3 1025

8 PSD3 rs114629793 18,403,754 0.012 3.12 3 1024 4.73 3 1024 1.44 3 1024 8.65 3 1028 3.60 3 1027 2.82 3 1026 5.12 3 1024 3.06 3 1026

9 OR1L4 rs76386683 125,467,023 0.012 1.48 3 1024 9.15 3 1025 2.86 3 1024 1.03 3 1026 1.93 3 1027 5.92 3 1026 4.80 3 1024 3.30 3 1026

rs114386843 125,469,425 0.012 1.47 3 1024 9.05 3 1025 2.82 3 1024 1.01 3 1026 1.88 3 1027 5.78 3 1026 4.75 3 1024 3.22 3 1026

rs186274502 125,471,416 0.012 1.47 3 1024 9.05 3 1025 2.82 3 1024 1.01 3 1026 1.88 3 1027 5.78 3 1026 4.75 3 1024 3.22 3 1026

rs376616438 125,472,267 0.012 1.44 3 1024 8.95 3 1025 2.77 3 1024 9.79 3 1027 1.85 3 1027 5.62 3 1026 4.79 3 1024 3.20 3 1026

rs187855416 125,474,459 0.012 1.44 3 1024 8.95 3 1025 2.77 3 1024 9.79 3 1027 1.85 3 1027 5.62 3 1026 4.79 3 1024 3.20 3 1026

11 AP000851.1 rs139780693 102,509,700 0.03 2.60 3 1025 1.04 3 1025 2.78 3 1024 5.83 3 1027 1.26 3 1027 1.35 3 1025 1.06 3 1024 2.00 3 1026

13 AL161616.2 rs150191017 31,962,649 0.011 4.26 3 1025 9.72 3 1025 7.32 3 1025 3.77 3 1028 3.09 3 1027 7.87 3 1027 3.74 3 1024 5.48 3 1027

The smallest P-value among all tests at the given SNPs are in bold.
a CARAT applied to cocaine use at baseline.
b Cumulative logit model applied to the four ordered cocaine use trajectory group.
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at least one of the longitudinal tests had a P-value ,1024

in the VACS sample. Among the 13 brain regions, amygdala
is the only region in which eQTLs showed significant
enrichment in our top SNP list (odds ratio = 2.06,
P ¼ 3:03 1025).

Replication of top findings

We used an independent cocaine dependence case-control
GWAS from the Yale-Penn study (Gelernter et al. 2014) to
replicate the top findings from our longitudinal analysis re-
sults in VACS. Note that the lifetime cocaine dependence di-
agnosis was made using the Semi-Structured Assessment
for Drug Dependence and Alcoholism (SSADDA) (Pierucci-
Lagha et al. 2005), which is different from the outcome used
in VACS, and therewere no longitudinal phenotypemeasures
in Yale-Penn. Nevertheless, we performed pathway analysis
using the SNP summary statistics of Yale-Penn to replicate
the two pathways identified in the VACS sample. Among the
top 2778 SNPs for which at least one of the longitudinal tests
had a P-value , 1024, we were able to retrieve 2602 SNP
summary statistics from Yale-Penn. Pathway analysis was
conducted on the top 84 SNPs that had a P-value , 0.05.
Although none of the top 12 SNPs in Table 2 had a P-value,
0.05 in the Yale-Penn AA sample, each of the two pathways
remained significant: the opioid signaling pathway
(P ¼ 5:673 1024, adjusted P ¼ 3:7731023) and the axonal
guidance signaling pathway (P ¼ 2:893 1024, adjusted
P ¼ 2:973 1023).

Computation time

We implemented all four tests in an R software called LBRAT in
which the robust variance estimator of Equation 7 was used in
the two retrospective tests: L-BRAT and RGMMAT. The com-
putational burden of the retrospective tests comes mainly
from the eigendecomposition of the GRM in calculating the
retrospective variance of the score functions. However, its
impact on run time is minimal because the decomposi-
tion needs to be done only once per genome scan. When
fitting the null models, the GLMM-based methods require
extra time to obtain the estimates of random effects

compared to the GEE-based methods. Once the null model
is obtained, the transformed phenotypic residual vector,
Ĝ
1=2
0 Ŝ21

0 Ĝ
21=2
0 ðY2 m̂0Þ, in L-BRAT and the phenotypic resid-

ual vector, Y2 m̂0, in RGMMAT, need to be calculated just
once per genome scan. Thus, the computational cost of the
variance in the retrospective tests is much less than that in the
prospective tests. We reported some example run times for
analysis of simulated and real data. For a simulated dataset of
phenotypes at five time points on 2000 individuals, the GEE-
based methods took 0.9 sec while the GLMM-based methods
took 37 sec to fit the null model. Overall, L-BRAT took 2.4 sec
and GEE took 27.7 sec to analyze 1000 SNPs using a single
processor on an Intel Xeon 2.6 GHz CPU machine. In the
analysis of the VACS cocaine use data, L-BRAT and GEE took
1 sec, while RGMMAT andGMMAT took 2.5min to fit the null
model. Overall, L-BRAT, RGMMAT, GEE, and GMMAT took
0.8, 0.7, 24.8, and 26.2 hr, respectively, to analyze a total of
10,215,072 genome-wide SNPs on Intel Xeon 2.6 GHz CPU
computing clusters with 22 nodes. These results demonstrate
that L-BRAT and RGMMAT are computationally feasible for
large-scale whole-genome association studies.

Discussion

Longitudinal data can be used in GWAS to improve power for
identification of genetic variants and environmental factors
that influence complex traits over time. In this study, we
developed L-BRAT, a retrospective association testingmethod
for longitudinal binary outcomes. L-BRAT is based on GEE,
thus it requires assumptions on the mean but not the full
distribution of the outcome. Correct specification of the co-
variance of repeated measurements within each individual is
not required, instead,aworkingcovariancematrix is assumed.
The significance of the L-BRAT association test is assessed
retrospectively by considering the conditional distribution of
the genotype at the variant of interest, given phenotype and
covariate information, under the null hypothesis of no asso-
ciation. Features of L-BRAT include the following: (1) it is
computationally feasible for genetic studies with millions of
variants, (2) it allows both static and time-varying covariates

Table 3 Meta-analysis results of the top 12 SNPs from Table 2 in the VACS data

Chr Gene Region SNP Position GEE (ind) GEE (AR1) GMMAT L-BRAT (ind) L-BRAT (AR1) RGMMAT

3 NIPA2P2 rs551879660 75,146,492 1.81 3 1024 5.86 3 1024 8.98 3 1024 5.26 3 1028 6.41 3 1026 6.49 3 1025

5 EFNA5 rs188222191 105,411,547 7.57 3 1026 1.28 3 1025 1.80 3 1024 2.55 3 1027 5.52 3 1027 1.10 3 1025

rs1014278 105,471,506 1.26 3 1025 8.44 3 1026 3.15 3 1024 1.03 3 1026 5.59 3 1027 2.44 3 1025

rs75132056 105,480,442 1.31 3 1025 2.00 3 1025 4.24 3 1024 7.31 3 1027 1.27 3 1026 3.56 3 1025

8 PSD3 rs114629793 18,403,754 2.92 3 1024 4.31 3 1024 1.66 3 1024 1.79 3 1027 7.98 3 1027 6.83 3 1026

9 OR1L4 rs76386683 125,467,023 1.44 3 1024 8.78 3 1025 3.75 3 1024 2.32 3 1026 5.12 3 1027 1.46 3 1025

rs114386843 125,469,425 1.42 3 1024 8.62 3 1025 3.68 3 1024 2.25 3 1026 4.97 3 1027 1.41 3 1025

rs186274502 125,471,416 1.42 3 1024 8.62 3 1025 3.68 3 1024 2.25 3 1026 4.97 3 1027 1.41 3 1025

rs376616438 125,472,267 1.39 3 1024 8.51 3 1025 3.60 3 1024 2.18 3 1026 4.86 3 1027 1.37 3 1025

rs187855416 125,474,459 1.39 3 1024 8.51 3 1025 3.60 3 1024 2.18 3 1026 4.86 3 1027 1.37 3 1025

11 AP000851.1 rs139780693 102,509,700 1.15 3 1025 4.16 3 1026 1.07 3 1024 4.04 3 1027 6.05 3 1028 4.41 3 1026

13 AL161616.2 rs150191017 31,962,649 3.55 3 1025 6.77 3 1025 1.26 3 1024 6.68 3 1028 5.80 3 1027 3.12 3 1026

The smallest P-value among all tests at the given SNPs are in bold.
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to be included in the analysis, (3) it allows different individ-
uals to have measurements at different time points, and (4) it
has correct type I error in the presence of ascertainment and
trait model misspecification. For comparison, we also pro-
pose a retrospective, logistic mixed model-based association
test, RGMMAT, which requires specification of the full distri-
bution of the outcome. Random effects are used to model
dependence among observations for an individual. Like
L-BRAT, RGMMAT is a retrospective analysis in which geno-
types are treated as random conditional on the phenotype
and covariates. As a result, RGMMAT is also robust to mis-
specification of the model for the phenotype distribution.

Through simulation, we demonstrated that the type I er-
ror of L-BRATwaswell calibrated under different trait models
and ascertainment schemes, whereas the type I error of the
prospective GEE method was inflated relative to nominal
levels. In the GLMM-based methods, GMMAT, a prospective
analysis, was overly conservative, whereas the retrospective
version, RGMMAT, was able to maintain correct type I error.
We further demonstrated that the two retrospective tests,
L-BRAT and RGMMAT, provided higher power to detect as-
sociation than the prospective GEE and GMMAT tests under
all the trait models and ascertainment schemes considered in
the simulations. The choice of the working correlation matrix
in L-BRAT resulted in little loss of power. We applied L-BRAT
and RGMMAT to longitudinal association analysis of cocaine
use in the VACS data, where we identified six novel genes
that are associated with cocaine use. Moreover, our pathway
analysis identified two significant pathways associated with
longitudinal cocaine use: the opioid signaling pathway and
the axonal guidance signaling pathway. We were able to rep-
licate both pathways in a cocaine dependence case-control
GWAS from the Yale-Penn study. Lastly, we illustrated that
the top SNPs identified by our methods are more likely to be
the amygdala eQTLs in the GTEx data. The amygdala plays
an important role in the processing ofmemory, decision-making,
and emotional responses, and contributes to drug craving that
leads to addiction and relapse (Hyman and Malenka 2001;
Warlow et al. 2017). These findings verify that L-BRAT is able
to detect important loci in a genome scan and to provide novel
insights into the disease mechanism in relevant tissues. For
repeated binary data, L-BRAT was more robust to trait model
misspecification and ascertainment, and has comparable or
higher power than RGMMAT in all simulation settings. In
the real data analysis, L-BRAT generated smaller P-values on
the top SNPs while the QQ plot of L-BRAT did not show any
inflation of type I error. Therefore, we recommend L-BRAT
when only one test is used for longitudinal binary data.

In this study, both the L-BRAT andRGMMATmethodswere
developed for population samples. When samples contain
related individuals, we can extend L-BRAT and RGMMAT
by including an extra variance component in the GEE model
or an additional randomeffect in theGLMMmodel to account
for genetic relationships. As a result, the GRM will appear in
both the null model and the score test. The L-BRAT and
RGMMATmethods are designed for single-variant association

analysis of longitudinally measured binary outcomes. How-
ever, single-variant association tests in general have limited
power to detect association for low-frequency or rare variants
in sequencing studies. We have previously developed longi-
tudinal burden test and sequence kernel association test, LBT
and LSKAT, to analyze rare variants with longitudinal quan-
titative phenotypes (Wang et al. 2017). Both tests are based
on a prospective approach. To extend L-BRAT and RGMMAT
to rare variant analysis with longitudinal binary data, we
could consider either a linear statistic or a quadratic statistic
that combines the retrospective score test at each variant in a
gene region. In addition, the genetic effect in L-BRAT and
RGMMAT is assumed to be constant. We could consider an
extension to allow for time-varying genetic effect so that the
fluctuation of genetic contributions to the trait value over
time is well calibrated.
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