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Using a stochastic individual-based modelling approach, we examine the
role that Delta-Notch signalling plays in the regulation of a robust and
reliable somite segmentation clock. We find that not only can Delta-Notch
signalling synchronize noisy cycles of gene expression in adjacent cells in
the presomitic mesoderm (as is known), but it can also amplify and increase
the coherence of these cycles. We examine some of the shortcomings of
deterministic approaches to modelling these cycles and demonstrate how
intrinsic noise can play an active role in promoting sustained oscillations,
giving rise to noise-induced quasi-cycles. Finally, we explore how transla-
tional/transcriptional delays can result in the cycles in neighbouring cells
oscillating in anti-phase and we study how this effect relates to the propagation
of noise-induced stochastic waves.

1. Introduction

In developing vertebrates and cephalochordates, as the embryo forms and
extends pairs of blocks of mesodermal progenitor cells assemble, bilaterally
flanking the notochord [1]. These blocks, termed somites, eventually go on to
form vertebrae and ribs after further cellular differentiation. The somites are
constructed pair-by-pair, anterior to posterior, in a rythmic and sequential
manner as the tailbud extends away from the rostral end of the embryo. They
are formed from cells originating in the presomitic mesoderm (PSM). Such
cells are produced continually by the tailbud as the abdomen elongates [2,3].

The process of somite segmentation has been of interest to experimentalists
and theorists working in the field of developmental biology for some decades;
it provides a fascinating case study where one can directly examine the link
between microscopic gene regulatory systems operating in individual cells
and macroscopic developmental processes. The prevailing theoretical frame-
work for understanding the process was put forward by Cooke and Zeeman
in 1976 [4] and is termed the ‘clock-wavefront’ model. This model proposes
that the cells in the PSM each possess an internal cyclic ‘clock’” which is synchro-
nized between the cells. Additionally, a wavefront propagates through the PSM
as the embryo grows. As the wavefront encounters cells, it interacts with them
differently depending on the current state of each internal cellular clock. This
interaction causes the cells to change their adhesive and migratory properties.
The temporal periodicity of the cell cycles is thus converted into the spatial
periodicity of the somites.

Considerable experimental and theoretical effort has been expended in order
to identify the genetic oscillators that constitute the putative somite segmentation
‘clock’ and a good amount of progress has been made. In certain model organ-
isms, such as the mouse and the zebrafish, so-called knockdown/knockout
experiments have identified genes which when mutated give rise to defects in
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the formation of somites and, consequently, the vertebrae
[5-11]. Gradients of FGF (fibroblast growth factor) or Wnt
protein, which are produced in the tailbud, are thought to con-
stitute the moving wavefront; transient loss or increase in these
substances can alter the local somite length [12,13]. Genes such
as hes in the mouse [14] and ker in the zebrafish [15] are thought
to be the primary cyclic genes which act as clocks. These genes
are both targets of the Notch signalling pathway. It has also
been shown in experiments that Delta-Notch signalling is a
vital component in synchronizing oscillations [14,16-18].

In order for the oscillations in the expression of the hes/her
genes to constitute a viable segmentation clock for the clock-
wavefront model, the oscillations must satisfy several criteria:
(1) the oscillations in gene expression must have the same fre-
quency in adjacent cells. (2) The oscillations in adjacent cells
must be in phase. (3) The cellular oscillations must be coherent
(there must be a clear dominant frequency). (4) The oscillations
must have a sizeable enough amplitude so as not be indistin-
guishable from background ‘noise’. Mathematical models
of the gene regulatory system have shown that Delta-Notch
signalling can indeed synchronize (align the frequencies of)
the oscillations in neighbouring cells with intrinsically
differing cellular clocks [19]. That is, it has been shown that
Delta-Notch signalling is responsible for satisfying condition
(1), but relatively little discussion has been dedicated to the
latter three conditions (phase, coherence and amplitude).

So that one might analyse the degree to which the criteria
above are satisfied, one must take into account stochastic
(random) effects in the system, especially with regards to
point (3). The gene regulatory systems in question are inher-
ently noisy in nature [20-26]. This is due in part to the
stochastic nature of the production/decay events of individual
proteins and/or mRNA molecules and the fact that there are
finite numbers of these molecules in any one cell. Noise of
this origin is termed intrinsic in the literature [27,28]. On the
other hand, gene expression is also influenced by the concen-
trations, locations and states of molecules such as regulatory
proteins or polymerases which can affect the global activity
in a single cell but can vary between cells. Noise arising from
fluctuations in the properties of such molecules is referred to
as extrinsic [27,28].

The role of noise has largely been disregarded in previous
theoretical work on the somite segmentation clock [29-31],
or has often been treated only as an external influence rather
than as an aspect intrinsic to the translation and transcription
processes [32-34] (an exception can be found in [35], where
simulations involving intrinsic noise were performed). For
example, some works have considered the binding and
unbinding of repressor protein to the DNA binding site as a
stochastic process [19,36] so that the rates of transcription
are themselves stochastic variables. This source of noise is
taken into account in the context of deterministic evolution
equations—the intrinsic stochasticity of the transcription and
translation events is not accounted for. In this paper, however,
we study the effect of intrinsic stochasticity by treating
the production and the decay of individual molecules as
random processes, following [20,37—41]. These events may
be subject to delays arising from the finite time taken for the
translation/ transcription processes.

Using an individual-based mathematical model capturing
the intrinsic noise in the system, we demonstrate that, perhaps
counter to intuition, intrinsic stochasticity can be a proactive
force in promoting cellular oscillations. We study how these

noisy oscillations in neighbouring cells are affected by different
levels of the strength of Delta-Notch signalling. We are able to
show that, under certain conditions, Delta-Notch signalling not
only acts to align the frequencies of oscillations in neighbouring
cells; it can also reduce the phase lag, reduce the range of domi-
nant oscillatory frequencies (i.e. it can make the oscillations
more coherent) and it can increase the amplitude of oscillations
(also noted in [17,35]). The combination of these effects indi-
cates that Delta-Notch signalling can contribute to satisfying
points (1)—(4) above. We also discuss circumstances under
which pairs of cells may oscillate out-of-phase, despite Delta-
Notch coupling. We explore how this is related to waves
and/or oscillating chequerboard patterns of gene expression
in extended chains of cells.

2. Methods
2.1. Model definition

Oscillations in the expression of genes (or ‘pulsing dynamics’) is
a well-documented phenomenon responsible for many cell func-
tions and broader biological processes [42,43]. Such oscillations
in the expression of certain genes are thought to constitute the
biological ‘clock” in the clock-wavefront model [4] of somite seg-
mentation [2,3]. The genes in question are known to be affected
by Notch signalling. For the purposes of our theoretical treat-
ment, it is not necessary to consider the full complexity of the
Notch signalling pathway [44,45] or even the full network of
interacting genes involved with the somite segmentation process
[46]; one can use a simplified model to highlight the salient
features and analyse their causes.

So-called knockdown/knockout experiments [3] suggest that
the most relevant genes for the regulation of the ‘clock’ are delta
(or its homologues) and hes in mice, and her in zebrafish [2].
It has been shown previously [31] that a two-gene model invol-
ving only hes/her and delta is sufficient for the emergence of
cycles. We therefore also adopt a reduced two-gene model, as
this will be sufficient to highlight the effects with which we are
concerned. The reduced system is depicted schematically in
figure 1 and is discussed in more detail in electronic supplemen-
tary material, S1. For now, we consider a system of two coupled
cells as a simple example. We generalize the approach to systems
of greater numbers of cells in §3.4.

Using n(f) to denote the set of all protein and mRNA numbers
in all cells at time ¢, the reduced gene regulatory system that we con-
sider can be summarized as follows: hes/her mRNA is transcribed at
arate f"[n(t — 7")]. The rate f"[n(t — 7"”")] takes the form of a sum
of Hill functions, which reflects the fact that hes/her mRNA pro-
duction is inhibited by local Hes/Her protein and activated by
Delta protein in adjacent cells. The precise form of this nonlinear
function is given in electronic supplementary material, S1. Every
hes/her mRNA molecule is translated into protein at a constant
rate ;. Because the transcription and translation processes take
an amount of time 7" and 7" to complete respectively, the
present rate of production of mRNA/protein is dependent upon
protein/mRNA concentrations in the past (respectively). Both
hes/her mRNA and protein molecules degrade (become inert) at
constant per capita rates c, and by, respectively. In a similar way,
delta mRNA is transcribed at a rate f'[n(t — 7" and decays at a
constant per capita rate cg. Delta protein molecules are produced
and decay at the per capita rates a; and b, respectively. Production
of delta mRNA and protein are delayed by the times 7" and ‘"
to respectively. Finally, production of delta mRNA is inhibited by
local Hes/Her protein concentration.

There are three vital aspects to the processes in this set-up:
(1) the model is individual-based—it does not treat protein/
mRNA concentrations as continuous quantities (an approximation
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Figure 1. Schematic of the reduced two-cell gene regulatory system [19,31]. Genes (hes/her and delta) are transcribed to produce mRNA. In turn, protein is
translated from the mRNA, which goes on to activate/inhibit further mRNA transcription. Both the transcription and translation processes take an amount of

(m)x

time to complete, giving rise to delays 7™ and 7'"

, respectively, where x € {h, d}. Hes/Her protein inhibits local delta transcription. Delta protein acts as a

ligand to the Notch receptor on the adjacent cell. Notch, in turn, activates the production of hes/her mRNA. Individual mRNA and protein molecules degrade
(and become inactive) at constant probabilities per unit time. (Online version in colour.)

only valid when population numbers are large). The production
and degradation of proteins and mRNA are inherently stochastic
(random) processes due to the finite numbers of proteins and
mRNA [23,24] in each cell; this gives rise to noisy dynamics [40].
(2) There is a time delay between the activation of the production
of one unit of mRNA / protein and the completion of the production
process. As a result, the rates of production of mRNA /protein at a
given time are dependent on the state of the system in the past.
In the language of stochastic processes, the dynamics are non-
Markovian (they have memory) [47]. It has been established that
time-delays such as these can encourage the emergence of temporal
oscillations [19,31,48]. (3) Due to Delta-Notch signalling, the rate of
production of hes/her mRNA in one cell is dependent on the concen-
tration of Delta protein in the neighbouring cells. In this sense, there
is a non-locality to the reaction rates.

The combination of these three aspects of the dynamics leads
to a unique challenge with respect to theoretical modelling. How-
ever, we demonstrate in the electronic supplementary material that
one can approximate the full individual-based dynamics of the
system with a set of SDEs; these are given in electronic supplemen-
tary material, S2C. They take a similar form to the deterministic
(noiseless) equations given in [19] but include additional Gaussian
noise terms which take into account the intrinsic stochasticity of
the system. We emphasize that the properties of this noise are
calculated so as to agree with individual-based simulations of
the system; the noise is not added in an ad hoc fashion. The tools
we use to quantify the phenomena induced in the system by
noise are discussed in the next section.

2.2. Analysis of stochastic behaviour
In this work, we will be concerned primarily with the theoretical
analysis of noise-induced cycles of gene expression. These are
oscillations which occur in the full stochastic individual-based
model but which are missing in the noiseless deterministic system.
The power spectrum of fluctuations about the deterministic tra-
jectory will be the main quantitative tool that we use to analyse the
noise-induced phenomena in the gene regulatory model described
in §2.1 (and elaborated upon in electronic supplementary material,
S1). We denote the number of particles of type o in cell j at time ¢ by

n(#). The type of particle indicated by the index @ may be mRNA
molecules or proteins. The dynamics of the quantities 75 (t) are
approximated by the system of SDEs in electronic supplementary
material, equation (525) . Furthermore, we write ﬁ‘]?‘(t) for the num-
bers of particles predicted by the corresponding deterministic
model (electronic supplementary material, equation (525), with
the noise terms £{(t) set to zero). Thus, we define the fluctuations
about the deterministic trajectory as

8t = n() — 7). @.1)

The power spectrum of fluctuations is then defined via the temporal
Fourier transform as

P4(w) = (|8] (), 2.2)
where the Fourier transform is given by §(w) = (1/v2m)

[ ei“g(t) dt; the angular brackets denote the ensemble average
over the set of all possible stochastic time courses of the system.
Roughly speaking, the power spectrum of fluctuations decomposes
a time series into its composite frequencies and quantifies the
statistical contribution of a particular frequency to the series.
A large, narrow, unique peak in the power spectrum indicates
that the frequency at which the peak is located is the dominant
frequency of the time series; a peak of this type centred on a
non-zero frequency therefore characterizes periodicity. If the deter-
ministic trajectory 7(f) is non-oscillatory, then such a peak in the
spectrum of the stochastic model indicates noise-induced oscil-
lations. We note that in our analysis the power spectrum is
always evaluated in the steady state, i.e. when all transient effects
have decayed sufficiently so as to be negligible.

Using a mathematical approach (see electronic supplementary
material, 51-S3), we are able to predict the power spectrum of the
fluctuations when the deterministic trajectory has reached a fixed
point (i.e. when fz‘}?‘(t) = ﬁ‘]?‘ is constant at long times f). This theor-
etical approach gives us a way to identify, without performing
time-consuming simulations, what the dominant frequency of
noise-induced oscillations is and to what extent the other frequen-
cies contribute. This analysis is only valid for noise-induced cycles,
i.e. when the oscillations of the deterministic equations are transi-
ent. For the parameter regimes where there are persistent cycles in
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the deterministic equations, we perform a linear stability analysis
(LSA) in order to obtain quantities such as periods of oscillation
and phase lags (see electronic supplementary material, S3).

It is also possible to quantify the phase lag between two sets
of noise-induced cycles in coupled cells using our theoretical
approach. Following [49,50], we define the phase lag (15(;’7/((1))
associated with a particular frequency o between species o in
cell j and species o in cell /" as

Im(<3j’(w)3j’,’*(w)>)

A : @3)
Re( (5@} (@)

tan (¢ () =

Phases differing by integer multiples of 27 are degenerate therefore,
in this paper, we define the phase lag to be in the range [- 7, 7).
Notably, the phase lag as defined in equation (2.3) is dependent
on w. As mentioned above, a time series can be thought of as
being comprised of a sum of cycles with different frequencies
o. The quantity d)%f“(w) is the phase lag between the constituent
cycles of frequency  in cells j and j. In our analysis, we may
refer to the phase lag of a cell j (with respect to another cell),
which we define as the phase lag at the peak frequency of the

power spectrum of the cell in question, w(gax.
Furthermore, following [51], we define the total amplification
of fluctuations for particles of type o in cell j

A;‘ = J P‘}‘(w) do. (2.4)
0

This quantity is proportional to the time-averaged squared dis-
placement of the dynamics from the fixed point, i.e. to the
variance of the stochastic time series.

Finally, again following [51], we also define the coherence as
the proportion of the power spectrum within a fixed range Aw
of the peak

L 1 o+ .
Ci= A—?Jwﬁ) N Pi(w) do. (2.5)
max —

The coherence C§ quantifies how sharply peaked the power spec-
trum is—i.e. how narrow the band of dominant frequencies is. It
has a maximum value of 1 and a minimum value of 0. The choice
of Aw is largely immaterial provided Aw is small compared to the
peak frequency.

3. Results

3.1. Individual-based models capture noise-driven
effects which are missed by deterministic models

In the systems that we are considering, individual cells con-
tain of the order 10-100 mRNA molecules and around 1000
proteins of any one type [23,24] (see also [19,52]). As such,
the dynamics are inherently noisy. This type of noisy
dynamics has been observed in experiments monitoring
gene expression [21-26]. The expression of these genes
cannot be fully described by the regular, smooth oscillation
obtained from integrating deterministic sets of ODEs (as
can be seen from figures 2 and 3). Instead, a stochastic indi-
vidual-based model is better suited to qualitatively
reproduce the results of experiment.

In previous theoretical studies of the somite segmentation
clock, noise has mostly been treated as external to the dynamics
[19,33,34] or has not been considered at all [31,55]. An excep-
tion to this is [35], in which individual-based simulations
were carried out (the consequences of the inclusion of intrinsic
noise that we discuss here were not the focus of [35] however).

200 400 600 800 1000 1200 1400
t

Figure 2. Oscillations in Hes/Her protein numbers for the simplified two-cell gene
regulatory system (depicted in figure 1) with no Delta-Notch coupling. (a) The
results of individual-based simulations where noisy cycles persist. The simulations
of the nonlinear stochastic model are performed using a modified version [53] of the
Gillespie algorithm [54], which takes into account delayed reactions. This is in con-
trast to the deterministic trajectory in (b), where the oscillations are transient and
eventually decay to a fixed point. A small difference between the delays in either cell
gives rise to differing frequencies of oscillation—the noisy cycles are not synchro-
nized. This is further illustrated by the power spectra of the cycles in (), which are
shown in figure 4a2. Referring to the model speified in electronic supplementary
material, S1, the rate parameters used here are a“ = 4.5, b* = 0.23,
¢* =10.23 and k, = 3.3 for all o, the system size is N =10, the reference
protein levels are ng’)" = 4N and ng’)d = 100N, the delay times are 7P = 2,
7% =5 and 7% =50 in both cells but ™" =18 in cell 1 and 7" =22

in cell 2. The rates assodiated with the Hill functions are r} = rf = rl, =0,

M =18 =r{=rl, =0andrl = 1.These values are taken from estimates
provided in [19], which are justified therein. Times are in units of minutes, and rates

have units of min—". (Online version in colour.)

500 1000 1500

t
Figure 3. Oscillations in Hes/Her protein numbers for the simplified two-cell
gene requlatory system with Delta-Notch coupling. The system parameters are
identical to figure 2, but here rf, = 0.9 and r! = 0.1, i.e. the coupling
between the two cells has been increased (see electronic supplementary
material, S1). As a result, the oscillations in the individual-based system
are more clear, periodic and synchronized. This is further demonstrated by
the corresponding power spectra in figure 4c2. Again, the deterministic tra-
jectory poorly reflects the dynamics of the individual-based system. (Online
version in colour.)

The noise that we use in the present work is rigorously derived
as an intrinsic quality of the stochastic, individual-based
dynamics themselves. As such, the results of our analysis
agree with fully individual-based simulations of the system
(as is demonstrated in figure 4).

It has previously been observed [19] that noisy external
driving can give rise to sustained oscillations in the somite
segmentation clock. We show that similar noise-induced oscil-
lations can also be produced by the stochastic nature of the
transcription and translation processes in the segmentation
clock themselves. That is, the inclusion of intrinsic noise in
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Figure 4. Synchronization of stochastic oscillations of hes/her expression in the two-cell system as coupling strength is increased. The system parameters are as in
figure 2 but with (a) rf, = 0, (b) rf, = 0.7 and () i, = 0.9, subject to the constraint rfl + i, = 1. That is, the Delta-Notch coupling strength increases from
(a) to (c). (a1)—(c1) The phase lag d)ﬁ‘g"(w) between the oscillations of protein numbers in the two cells as a function of frequency w. (a2)—(c2) The associated
Fourier power spectra Pﬂf’ " (w) for both cells. In all panels, simulation results are represented by coloured markers whereas theory results are shown as black lines.
The theory lines are produced using the analysis presented in electronic supplementary material, S2B and S2C. Simulation results are averaged over 100 realizations
of the system. In (a2), there is zero coupling and the peaks of the power spectra are separate, indicating different frequencies of oscillation in the two cells and a
lack of synchronization. In (a1), the phase lag between the two cells is random since the two cells oscillate independently. One observes that as the coupling
strength is increased, the cells converge on a common frequency (i.e. they synchronize) and that this common frequency is one which minimizes the phase
lag between the cells. The power spectra in (a2) and (c2) correspond to the time series in figures 2a and 3a, respectively. (Online version in colour.)

the theoretical modelling gives rise to sustained noise-induced
oscillations which a purely deterministic model, or a more ad
hoc approach to noise-inclusion, might miss. As is shown in
figures 2 and 3, for sets of parameters which are biologically
reasonable (see [19]), one may observe the noiseless model
tend towards a stationary fixed-point, only exhibiting transient
oscillations which eventually decay. In the corresponding indi-
vidual-based model, however, the noise repeatedly ‘kicks’ the
system away from the fixed point. As a consequence, the oscil-
lations which were transient in the deterministic model are
sustained by the noise. One thus observes persistent noisy
oscillations for the same parameter set.

The oscillations in gene expression observed experimentally
may very well be noise-induced cycles of this type. The emer-
gence of
phenomenon which has been previously studied in the context

such ‘quasi-cycles’ is a well-documented
of generegulatory models [37,38] as well as in ecological systems
[56,57] and in epidemics [50,51,58]. That these are indeed cycles
with a periodic nature and not just random white noise is
demonstrated by the power spectra of fluctuations (figure 4)—
this matter is discussed further in §2.2 and 3.2.1.

Our theoretical approach to analysing noise-induced
cycles (which is similar to that found in [59-61] and detailed
in the electronic supplementary material) allows us to study
the amplification, synchronization and coherence of these
cycles, as discussed in the following sections.

3.2. Delta-Notch signalling mitigates inhomogeneity
and promotes a robust and reliable segmentation
clock in noisy oscillators

Having introduced the concept of noise-induced cycles and the
mathematical tools that we will use to analyse them, we now

turn our attention to the effect that increasing the Delta-Notch
signalling strength has on these noisy oscillations.

It has been observed experimentally [14] that mutations in
the delta gene give rise to defects in the formation of somites.
This has been attributed to a decreased coupling between the
cells arising from the mutation which, due to slight inhomo-
geneities between cells and the stochastic nature of the
cellular cycles, leads to the genetic oscillations in neighbouring
cells becoming asynchronous [16,18]. Furthermore, it has been
shown that encumbered Delta-Notch signalling (i.e. reduced
signalling strength) can give rise to greater disparities between
the oscillations in cells which would be synchronized if signal-
ling were not impaired [52]. In this section, we reproduce and
study this effect with our model and theoretical approach (pre-
sented in electronic supplementary material, S2), thus verifying
the necessity of Delta-Notch signalling for the somite segmen-
tation clock. A justification for our mathematical definition of
‘coupling strength’ is given in electronic supplementary
material, S1.

Consider a two-cell system in which each cell has slightly
different internal parameters (e.g. transcriptional delay time)
such that the typical cycle time varies between the cells
when they are uncoupled. We evaluate, using our theoretical
approach, the response of the peak frequencies, inter-cell
phase lag, amplification and coherence of genetic oscillations
in this inhomogeneous two-cell system for various degrees of
Delta-Notch coupling strength and thus show that the quality
of the oscillations (and therefore the segmentation clock) can
improve when Delta-Notch signalling is enhanced.

We use two different theoretical approaches in the
following sections, each of which is valid for different, but
complementary, parameter sets. (1) In the regime where the
deterministic (noiseless) equations approach a fixed point, we

9EP06L07 9L 0ua3Uf 20S Y °f  yisi/jeunol/bio-buiysijgndAiaposiesol H



(@) : : : : - © 6 . . . . :
0.110 ——cell 1 i §
—cell 2 ‘ §
, 0.108 “isa ] e j
g0106F N\ | instabilityf| =
5 | 3 f
£ 0.104 : E ;
= 0.102 I |
£ | 3
< 0.100 " i
g 1 = 1
0.098 =
0.096 . . . . |
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
coupling strength r}ﬁd coupling strength '}llqd
(C) F T T T T (d) 1.0 T T T T
10° o
< 0
8 o
g =
3 5
g s 5]
R E
<
104 1 1 1 1 1 1 1 1 :
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
coupling strength coupling strength

Figure 5. Synchronization (a), phase lag (b), amplification (c) and coherence (d) of oscillations of Hes/Her protein in the inhomogeneous two-cell system versus
coupling strength produced using the linear theory detailed in electronic supplementary material, S2. We use A =0.01 in our definition of coherence (see
equation (2.5)). The system parameters are the same as in figure 2 but rﬂd and r,*} are varied subject to the constraint r,*]‘ + rﬂd =1 (see electronic supplementary
material, S1 for the definition of these parameters). (a) The peak frequency of oscillation ! in either cell (where j=1, 2 labels the two cells) approaches a
common value as the coupling strength r{,‘d is increased. This limiting value agrees with that predicted by LSA in the deterministic system (see electronic sup-
plementary material, S3). (b) As the two cells synchronize, the (rescaled) phase lag (1)1,2((1);{2“) /7 between the two cells also decreases. Again, the value of
the phase lag agrees with LSA for strong coupling. () How the oscillations in the two cells are initially dampened and subsequently amplified as the coupling
strength is increased from zero. The theory becomes invalid as the deterministic fixed point of the system becomes unstable but is accurate close up to this point
(see main text). Panel (d) shows how the coherence of the power spectra initially decreases and then increases as the coupling strength is increased, in a similar way
to the amplification shown in panel (c). Values of the red and blue lines close to and to the right of the vertical dotted line at !y = 0.985 in all panels are not
necessarily accurate; in this regime, the system is close to or beyond the onset of the deterministic instability indicated by the vertical dashed line (emergence of a
limit cycle). This results in corrections to the Fourier spectra which are not accounted for in our linear theory (see electronic supplementary material). It is at this
point that the LSA, which is a deterministic analysis, becomes useful for identifying the peak frequency and phase lag. For low coupling strength (before the
instability), the LSA is inaccurate because it does not take into account the effects of the noise, highlighting the need for the stochastic theory. (Online version

in colour.)

evaluate the power spectrum of fluctuations of the emergent
noise-induced cycles using the so-called linear-noise approxi-
mation (discussed in more detail in electronic supplementary
material, S2). This analysis relies upon the deterministic
dynamics tending towards a fixed point, and approximates
the stochastic equations as linear in the vicinity of this fixed
point. The accuracy of the approximation is tested against indi-
vidual-based simulations of the full nonlinear stochastic model
in figure 4. (2) When the fixed point of the deterministic system
becomes unstable, we use a deterministic LSA to find the domi-
nant oscillatory frequency of the cycles and the inter-cell phase
lag. The LSA provides no way of finding the amplitude or the
coherence of the cycles, however—it is only possible for us to
evaluate these when method (1) is valid.

It has been suggested that a sufficiently strong nonlinearity
(the so-called cooperativity) is required for regular sustained
cycles [38]. Noting that our linear analysis agrees with simu-
lation results (figure 4), we stress that the precise form of the
nonlinearity is not directly important for the emergence of

noise-induced cycles. Their properties are well captured by
the linearized dynamics. Nonlinearities will, however, affect
the location and nature of deterministic fixed points, and the
coefficients in the linearized equations near these fixed points.

3.2.1. Delta-notch signalling synchronizes noisy genetic

oscillators and reduces their phase difference
Firstly, we find that Delta-Notch signalling can have the effect of
synchronizing the dominant oscillatory frequencies of two cells
with differing internal parameters. This is demonstrated in
figure 4, which depicts the power spectra of the stochastic fluc-
tuations in two such cells for various degrees of coupling
strength. One observes that as the coupling strength is increased,
the peaks for either cell, which are separated when there is no
coupling, are both drawn towards a common frequency, indicat-
ing synchronization. The degree of synchronization varies
smoothly with the variation of the coupling strength, as
shown in figure 5z; in this figure, the dependence of the
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dominant frequencies on coupling strength is shown in more
detail. The common frequency which is converged upon at
large strengths of the Delta-Notch coupling agrees with that pre-
dicted by LSA (see electronic supplementary material, S3 and
§3.2.2 for further details).

Secondly, we find that the peaks of the power spectra in
either cell converge to a frequency which reduces the phase
lag between the oscillations in the two cells (figure 4). So,
not only can Delta-Notch signalling act to align the frequency
of oscillations in neighbouring cells, it can also encourage
the oscillators in either cell to be more aligned in phase.
The smooth decrease of the phase lag with increasing coup-
ling strength is shown in figure 5b. In a similar way to the
peak frequency, the phase lag between cells agrees with
that predicted by LSA when the coupling is large.

Both of these factors, a shared oscillatory frequency and a
minimal phase lag, are important for the proper functioning
of a cellular clock. The changes in the peak frequencies and
the phase lag that result from an increase in coupling strength
correspond to quite a noticeable change in the quality of the
oscillations themselves. Figures 2 and 3 are evaluated for the
same sets of parameters as figure 4a,c respectively. One par-
ameter set is without coupling between the cells (figure 2)
and one is with cell-to-cell coupling (figure 3). In the
former case, the oscillations in either cell are somewhat aper-
iodic and there is no noticeable synchronization between the
cells. However, in figure 3, the highs and lows of the cycles in
either cell are more inclined to align—this is associated with
reduced phase lag and synchronized peak frequencies.

3.2.2. Delta-Notch coupling increases the amplitude and

coherence of noisy oscillations

We asserted previously that an important characteristic of an
effective cellular clock is a well-defined time-period—if many
frequencies contribute significantly to the oscillations, then it
is more difficult to identify an overall phase for the clock. We
also asserted the necessity of the cycles to have a significant
amplitude. Both of these factors contribute to the clarity of
the ‘signal’ of the oscillations that constitute the cellular
clock. We note that amplification and coherence are properties
of the cycles in individual cells whereas synchronization and
phase lag are comparative measures of the oscillations in differ-
ent cells. Despite this, amplification and coherence are indeed
affected by Delta-Notch coupling too.

We find that as the Delta-Notch coupling strength is
increased, the amplitude of the oscillations in both cells first
decreases slightly then increases, as shown in figure 5c. A simi-
lar result was also found in previous experimental and
theoretical works [17,35]. However, it is important to note the
following caveat on the results presented in figure 5c:

The blue and red lines shown in figure 5 were produced
using the theoretical approach based on the linear-noise
approximation (see electronic supplementary material, S2).
As such, we observe that the calculated amplitude of the
oscillations diverges when the coupling strength is increased
sufficiently. This singularity is a consequence of our theoreti-
cal approximation; it corresponds to the onset of an instability
for the fixed point of the deterministic (noiseless) equations
and the emergence of a limit cycle [62,63]. The nonlinearities
in the model then become more relevant and curtail the
amplitude of the oscillations; this is not captured by the
linear theoretical approach. The point at which this instability

occurs is predicted by deterministic LSA (see electronic sup-
plementary material, S3) and is indicated by dashed vertical
lines in figure 5. It is at this point that the stochastic theory,
which is valid only when the deterministic system
approaches a fixed point, becomes inaccurate. Instead, the
LSA becomes the more accurate tool for identifying the
peak frequency of oscillation and the inter-cell phase lag.
The two analytical methods complement each other in this
sense—we can use both approaches to continuously analyse
the dominant frequency and phase-lag over the onset of the
deterministic instability. Unfortunately, the LSA provides no
means of calculating the amplification or the coherence of
the cycles—we are only able to accurately predict these quan-
tities when the deterministic dynamics approaches a fixed
point (i.e. before the onset of the deterministic instability).

With this caveat in mind, one can nevertheless see from
figure 4 that the linear stochastic theory still agrees with
simulation results close to this transition. That is, it remains
accurate over a wide enough range of coupling strengths
to faithfully capture an increase in the amplification
with coupling strength, which occurs before the onset of
the instability.

We find also that as the coupling strength is increased, the
power spectrum of fluctuations becomes sharply peaked (as
can be seen in figure 4c) at a characteristic frequency, i.e. the
cycles become more coherent (figure 54). The location of this
peak in the power spectrum corresponds to the frequency to
which the cycles in the two cells converge (as discussed in
the previous section).

We conceptualize this increase in amplification and coher-
ence as a consequence of a kind of ‘resonant amplification’.
Because of the communication between the cells, one can
think of the state of one cell as influencing or ‘forcing’ the
oscillations in the neighbouring cells. As the inter-cell coup-
ling strength is increased, the frequencies are aligned and
the phase lag between them is reduced, the cycles begin to
constructively interfere at a characteristic frequency.

Interestingly, as the coupling strength is increased from
zero, the amplitude of the oscillations in either cell initially
decreases (figure 5¢), as does the peakedness of the power spec-
trum (figure 5d). We attribute this to the fact that, for low
coupling, the oscillations in either cell are not adequately syn-
chronized for their interference to be constructive. So as the
coupling strength is increased initially, the ‘interference’
between the two cells has a destructive effect. It is only when
the phase lag is reduced and the frequencies are aligned sulffi-
ciently (as a result of a further increase of the coupling) that the
collective amplitude of oscillations increases.

The effects of increased amplification and coherence are
evident in the time series of the noisy cellular oscillations in
the two-cell system shown in figures 2 and 3 (which are evalu-
ated with and without inter-cellular coupling, respectively). In
figure 2, there is no easily discernible periodic nature to the
cycles in either cell. This is in contrast to the cycles in figure 3
where the highs and lows have more consistent temporal sep-
arations. This greater clarity in the oscillatory frequency is
associated with the increase in the sharpness of the peaks of
the power spectra between figures 4a2 and 4c2 (i.e. an increase
in coherence). Additionally, it can be seen that there are fewer
pronounced highs and lows, on the whole, in the uncoupled
system than in the coupled system; in figure 2, highs and
lows are sporadically interrupted by stints of somewhat sup-
pressed fluctuations about the fixed point. This in turn
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of 0. (Online version in colour.)
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Figure 7. Half the time period associated with dominant frequency of oscillation in the two-cell system 7/2 = /e,y (@) and the corresponding phase lag between
the cells (b). The system parameters are the same as in figure 3 but ™" = 20 in both cells and z*” and 7™ are varied. The typical half-period varies around an
average value of approximately 30 min. Although 772 is dependent on the time delays 7 and 7™ it typically remains within approximately 10% of this mean
value. The phase lag switches between 0 and 7z along the lines 7% 74 — 71 (where j = 1,2, 3, ...). The values 7\ at which the switch in phase occurs
are separated by regular intervals such that 7/ — 71, ~ 30 min—roughly the typical half-period. (Online version in colour.)

contributes to the lower overall amplification of the uncoupled the two cells can approach values closer to ¢ =7 than ¢=0.
system in comparison to that of the coupled system. That is, the cells tend towards oscillating in anti-phase
with one another. Clearly, this is suboptimal if these cellular
oscillations are to be used as a segmentation clock.

To understand why this should happen, we monitor the

3.3. Transcriptional/translational delays can lead to out-

of—phase oscillations despite Delta-Notch coupling dominant frequency and the associated phase difference
We demonstrated in the previous sections that two cells with between the two cells as the transcriptional/translational
slightly disparate oscillatory frequencies could synchronize delays are varied (figure 7). For the purposes of this analysis,
when coupled via Delta-Notch signalling. As the strength of the two cells are taken to be identical. In this case, the two
the Delta-Notch coupling is increased, a common frequency cells are guaranteed to share a peak oscillatory frequency-
is converged upon and the phase lag between the two cells o) = 02 = opa.. We find that whether the cells oscillate
is reduced. Although this is characteristic of many model par- in or out-of phase is determined by an interplay between
ameter sets, it is not always the case. As was noted also in the delays and the dominant frequency of oscillation.
[19,31] (in the purely deterministic setting), neighbouring One observes that the phase lag between the two cells
cells can be coupled in such a way that they oscillate in anti- switches between 0 and 7 (and vice versa) when the total
phase with one another. This type of behaviour is facilitated delta delay time 7' = 7" + P reaches certain values 7!,
by the delays associated with translation and/or transcription. where i=1, 2, 3,... (we note a similar effect when other
Figure 6 demonstrates that for certain parameter sets, pairs of delays are varied). In figure 7, the times at which
as the coupling is increased, oscillations in two cells can con- the switches occur are separated by a regular time interval

verge on a common frequency but the phase lag between such that 7/°" — 7/°! ~ 30 min. This interval is roughly equal
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version in colour.)

to half of the typical period of the oscillations, T/2 =7/ ®max,
which varies by around 10% of the mean value (approximately
30 min).

In order to gain some intuition for what this means, we
suppose that for a particular set of delays, the two cells oscil-
late in phase. If we add an additional 7/wmax to the total
delay time, the ‘signal’ from one cell to its neighbour is
delayed by half a cycle. If the cells would oscillate in phase
without this additional delay, it stands to reason that they
would oscillate in anti-phase given the additional delay—
there would be no difference from the point of view of
either cell. A similar argument holds true for the addition
Of 271/ @pmax to 7°—in this case, the phase difference between
the two cells ought to be unchanged. One caveat to this
reasoning is that the frequency of the oscillations cannot be
changed too drastically by the variation in time delay.

We conclude that while the time delays associated with
translation and transcription are important for the persistence
of the cycles which constitute the cell clock, they are somewhat
of a double-edged sword. Depending on the interaction
between the delays and the internal clocks of each cell, the
cells may oscillate in anti-phase with one another. As a
result, the precise nature of the transcriptional/translational
delays is of great importance with regards to the proper
synchronization of the segmentation clock.

3.4. Transcriptional/translational delays can disrupt
global oscillations in chains of cells and give rise to
waves of gene expression

In this section, we discuss how the preceding analysis can be
extended to a chain of Delta-Notch-coupled cells. We demon-
strate that synchronized noisy oscillations in the two-cell
system can correspond to global oscillations in a chain. We
also explore behaviours other than global oscillations which
can occur as a result of delays; namely, the emergence of
noise-induced waves.

A distinction between oscillations of the deterministic tra-
jectory and purely noise-induced oscillations was made in

mh = 20 in all cells. (Online

§3.1. In a similar way, one finds that waves can manifest in
the individual-based system when they do not in the determi-
nistic system. Such ‘stochastic waves’ or ‘quasi-waves’ have
been found previously in theoretical models of individual-
based systems with long-range interaction [64]. Here,
however, the stochastic waves arise due to a combination of
the non-local dependence of the reaction rates (due to
Delta-Notch signalling) and the transcriptional/translational
delays. Conversely, waves of gene expression have been
studied previously in chains of coupled genetic oscillators
[31] but this was done in the context of deterministic
equations which ignored intrinsic noise.

We mention the emergence of waves here not so much as
an explanation for the travelling waves which are seen in the
PSM (these are most likely due to a variation in translational /
transcriptional delay along the anterior-posterior axis
[35,52]), but as an illustration of the different kinds of unde-
sirable behaviour which can arise when cells oscillate out of
phase with one another. As such, the results presented in
this section are exploratory and not necessarily an attempt
to recreate any (as yet) observed phenomena.

We find that for sets of parameters where one would
observe oscillations in anti-phase in the two-cell system,
one finds waves of gene expression in an extended chain of
cells. For parameter sets where the cycles in the two-cell
system oscillate in unison, one observes global in-phase
oscillations of gene expression.

For an extended chain of cells, we define the power
spectrum

Piw) = (|5%(w)), G.1)

where we have used the discrete Fourier transform with
respect to the cell number j defined by f, = (1/vL) Y jeif"fj,
where L is the number of cells in the chain. Details of the cal-
culation of this power spectrum are given in electronic
supplementary material, S2B and S2C.

In a chain of coupled cells, global in-phase oscillations are
characterized by a peak in the power spectrum Pp(w) at
spatial wavenumber k =0 and non-zero oscillatory frequency
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Figure 9. Travelling stochastic waves. (a) The power spectrum of fluctuations P,((”)h(w) and the corresponding phase lag between cells at peak frequency
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of noise-induced travelling waves; this is from simulations of the stochastic individual-based model. When a peak or a trough occurs in one cell, it has a tendency to
move upwards to the neighbouring cell as time progresses, giving rise to the diagonal structures in the figure. The coupling between cells is asymmetric (¢ = 2,
d™ = 0), which breaks the directional symmetry of the system, allowing waves to propagate. The remaining system parameters are the same as in figure 2 with the
exception that r;,’ =0.07, r,’,’d =0.93, 7™ =20 in all cells and 7™ = 35. (Online version in colour.)
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Figure 10. Neighbouring cells oscillating in anti-phase (standing waves). (a) The power spectrum of fluctuations P,((”)" (w) and the corresponding phase lag between
cells at peak frequency q’)(jf’j?f’(wmax) as a function of separation (inset). Neighbouring cells tend to oscillate in anti-phase with one another, as demonstrated by the
phase lag (inset) and also by the location of the peak of the power spectrum at k = 7 and non-zero w. (b) An example of noise-induced standing waves seen in
simulations of the stochastic individual-based model. The peaks in one cell tend to align with the troughs in the neighbouring cell, giving rise to chequerboard-type
patterns in the figure. The coupling between cells is symmetric (@™ = ¢ =1). The remaining system parameters are the same as in figure 2 with the exception
that r! = 0.07, r, = 0.93, 7" =20 in all cells and 7™ = 20. (Online version in colour)

o. Such a power spectrum is shown in figure 8a, and an cells here is biased in one direction, which breaks the symmetry

example of the corresponding behaviour in a chain of cells of the system, allowing waves to travel. Travelling waves of

is demonstrated in figure 8b, where one observes that the gene expression have been observed in experimental systems

peaks and troughs in one cell tend to align with those in
the neighbouring cells. That the cells are indeed in phase
with one another is verified by the phase lag (see inset of
figure 8a) which is equal to zero, regardless of cell separation.

Stochastic waves, on the other hand, are characterized by a
peak in the Fourier power spectrum at non-zero values of both
the spatial wavenumber k and the temporal frequency o.
An example of such a power spectrum is given in figure 9a.
To validate the claim that this peak in the power spectrum is
indicative of travelling waves, we note that the phase difference
between cells varies linearly with cell separation, as is shown in
the inset of figure 9a. We stress that the coupling between the

other than the PSM [65,66].

For symmetric coupling however, one instead observes
standing waves of gene expression, where alternate cells
oscillate in anti-phase, as shown in figure 10. In this particu-
lar case, the phase lag between any pair of adjacent cells (at
the peak frequency) is 7, as can be seen in the inset of
figure 10a. This is rather reminiscent of the on—off chequer-
board patterns associated with neural differentiation and
lateral inhibition [67].

Examples of travelling and standing stochastic waves in a
chain of coupled cells are shown in figure 9 and 10b, respect-
ively. There is a clear qualitative distinction between the two.
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In figure 9b, peaks and troughs in one cell gradually travel in
the positive j direction as time goes by, indicating a travelling
wave. In figure 10b, however, the peaks in one cell tend to line
up with the troughs of the neighbouring cells and visa versa
and there is no clear direction of travel.

4. Summary and discussion

The process of somite segmentation poses a complex many-
faceted problem for theorists and experimentalists alike and
remains an area of active inquiry. Much is left to be discovered
about the precise nature of the role of each of the genes
involved with the somite segmentation clock and their
interactions with external signalling factors in the embryo.

In this paper, we aim to have provided some insight into the
role that Delta-Notch signalling plays in not only aligning the
frequencies of oscillation of cyclic gene expression in neigh-
bouring cells but also in reducing phase lag, in improving
the coherence of oscillations and in increasing their amplitude,
so as to produce a robust and reliable segmentation clock. We
also explored the role that intrinsic noise plays in the system;
counter to intuition, it can actually promote persistent cycles,
rather than obscure them. Furthermore, we discussed how
the delays involved in the transcription and translation pro-
cesses can act to promote oscillations but can also result in
neighbouring cells oscillating out-of-phase with one another.
We examined how this resulted from an interplay between
the dominant frequency of oscillation in the cells with the
aggregate time delay. We went on to show how asynchronous
behaviour in a two-cell system corresponds to waves of gene
expression in a chain of cells.

In a recent work [52], the gene expression noise in the
PSM of the zebrafish was analysed. This was done by using
smFISH microscopy techniques to count the numbers of
discrete RNA molecules in individual cells. The statistical dis-
crepancies between the gene expression in sets of cells which
were supposedly synchronized was then evaluated (using
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