Table 3.
Model | Training data | Fine Tuning | Performance on UF Test | |||||
---|---|---|---|---|---|---|---|---|
Strict | Relax | |||||||
Pre | Rec | F1 | Pre | Rec | F1 | |||
LSTM-CRFs | i2b2 | NA | 0.8883 | 0.8274 | 0.8568 | 0.9288 | 0.8651 | 0.8958 |
LSTM-CRFs+Lexical | i2b2 | NA | 0.8767 | 0.8509 | 0.8636 | 0.9314 | 0.9041 | 0.9175 |
LSTM-CRFs+Lexical + Knowledge | i2b2 | NA | 0.8767 | 0.8706 | 0.8736 | 0.9229 | 0.9166 | 0.9197 |
LSTM-CRFs+Lexical + Knowledge | i2b2 | UF | 0.9474 | 0.9109 | 0.9288 | 0.9776 | 0.9400 | 0.9584 |
LSTM-CRFs+Lexical + Knowledge | UF | NA | 0.9408 | 0.8992 | 0.9195 | 0.9705 | 0.9277 | 0.9486 |
LSTM-CRFs+Lexical + Knowledge | i2b2 + UF | NA | 0.9352 | 0.9163 | 0.9257 | 0.9681 | 0.9484 | 0.9582 |
Best F1 scores are highlighted in bold