Skip to main content
. 2019 Dec 5;19(Suppl 5):232. doi: 10.1186/s12911-019-0935-4

Table 3.

Performance of LSTM-CRFs models on UF test set

Model Training data Fine Tuning Performance on UF Test
Strict Relax
Pre Rec F1 Pre Rec F1
LSTM-CRFs i2b2 NA 0.8883 0.8274 0.8568 0.9288 0.8651 0.8958
LSTM-CRFs+Lexical i2b2 NA 0.8767 0.8509 0.8636 0.9314 0.9041 0.9175
LSTM-CRFs+Lexical + Knowledge i2b2 NA 0.8767 0.8706 0.8736 0.9229 0.9166 0.9197
LSTM-CRFs+Lexical + Knowledge i2b2 UF 0.9474 0.9109 0.9288 0.9776 0.9400 0.9584
LSTM-CRFs+Lexical + Knowledge UF NA 0.9408 0.8992 0.9195 0.9705 0.9277 0.9486
LSTM-CRFs+Lexical + Knowledge i2b2 + UF NA 0.9352 0.9163 0.9257 0.9681 0.9484 0.9582

Best F1 scores are highlighted in bold