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neuronal circuits downstream of the mPFC.

Peripheral nerve injury can lead to remodeling of brain circuits, and this can cause chronification of pain. We have
recently reported that male mice subjected to spared injury of the sciatic nerve undergo changes in the function
of the medial prefrontal cortex (mPFC) that culminate in reduced output of layer 5 pyramidal cells. More recently,
we have shown that this is mediated by alterations in synaptic inputs from the basolateral amygdala (BLA) into
GABAergic interneurons in the mPFC. Optogenetic inhibition of these inputs reversed mechanical allodynia and
thermal hyperalgesia in male mice. It is known that the processing of pain signals can exhibit marked sex
differences. We therefore tested whether the dysregulation of BLA to mPFC signaling is equally altered in female
mice. Injection of AAV-Arch3.0 constructs into the BLA followed by implantation of a fiberoptic cannula into the
mPFC in sham and SNI operated female mice was carried out, and pain behavioral responses were measured in
response to yellow light mediated activation of this inhibitory opsin. Our data reveal that Arch3.0 activation leads to
a marked increase in paw withdrawal thresholds and latencies in response to mechanical and thermal stimuli,
respectively. However, we did not observe nerve injury-induced changes in mPFC layer 5 pyramidal cell output in
female mice. Hence, the observed light-induced analgesic effects may be due to compensation for dysregulated
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Chronic pain represents a major public health concern
and often exhibits a strong affective/motivational com-
ponent that contributes to the negative impact on the
quality of life of affected individuals [1-3]. It is known
that pain chronification can lead to the remodeling of
brain circuits, but the underlying mechanisms remain
poorly understood. The medial prefrontal cortex (mPFC)
is known to be involved in the processing of neuropathic
pain and is also important for emotional aspects of pain
[4, 5]. We have previously shown that mice subjected to
spared injury of the sciatic nerve (SNI) undergo remod-
eling of the prelimbic area of the mPFC as a result of en-
hanced feed-forward inhibiton of layer 5 pyramidal cells
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by parvalbumin expressing GABAergic interneurons [6].
Optogenetic activation of layer 5 mPFC pyramidal cells
reversed mechanical and thermal hypersensitivity in SNI
mice [6] indicating that these circuit changes are causal.
The mPFC receives neuronal projections from the baso-
lateral amygdala (BLA) [7] which may contribute to
affective-motivational aspect of neuropathic pain states
[1, 8]. We recently identified a BLA - mPFC — periaque-
ductal gray (PAG) - spinal cord (SC) pathway that links
injury-induced alterations of BLA to mPFC inputs to a
loss of descending modulation of pain signals in the SC
[9]. Glutamatergic inputs from the BLA onto GABAergic
inhibitory interneurons located in mPFC were found to
be increased following SNI, as a result of weakened
endocannabinoid inhibition of these inputs [9]. Through
the application of combined optogenetic and pharmaco-
logical approaches we were able to manipulate this BLA-
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PFC-PAG-SC circuitry and reverse both mechanical and
thermal hypersensitivity in male SNI mice at various loci
within this circuit [9]. Importantly, Arch3.0-mediated in-
hibition of glutamatergic BLA to mPFC projections re-
versed tactile allodynia, cold allodynia and thermal
hyperalgesia, along with observed alterations in place es-
cape/avoidance in male SNI mice [9].

The experiments described in our previous studies
were conducted exclusively in male mice. There is evi-
dence that some signalling processes involved in chronic
pain states exhibits marked sex differences [10-12]. It is
thus crucial to examine whether inhibiting glutamatergic
BLA to mPFC inputs also produces analgesia in female
neuropathic mice. Hence, 7 week old female C57Bl/6]
mice purchased from Jackson Laboratories received
AAV5-CamKIla-Arch3-eYFP injections into the BLA
(500-600 nL, obtained from the University of North
Carolina Vector Core (Chapel Hill, NC), at 4 x 102 viral
genomes per milliliter) to induce the expression of
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Arch3.0. Two weeks later, a fiberoptic cannula (2.5 mm
ceramic ferrule, 2.0 mm length, Thorlabs) was implanted
into the mPFC so that the inhibitory opsin could be acti-
vated by yellow light stimulation. This approach allows
yellow light-mediated inhibition of BLA inputs into the
mPFC via acivation of Arch3.0 expressed in the nerve
terminals. After a further two week period, a baseline
sensory measurement was conducted and then SNI
surgeries encompassing a ligation and transection of the
peroneal and tibial nerves with a 6-0 silk suture
(Ethicon, USA) were performed. Animals that did not
display neuropathic pain responses (i.e., no decrease in
mechanichal threshold or thermal latency) after 14 days
were discarded. Sensory pain analysis was carried out
between 7 and 8 weeks after AAV injections, and thus
between 2 and 3 weeks following SNI surgery. On the
testing day, prior to experimentation, animals were
allowed to habituate for at least 90 min inside individual
plexiglass chambers on top of a grid floor, with the
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Fig. 1 Effect of optogenetic manipulation of BLA inputs into the prelimbic mPFC of female neuropathic mice. (a) Mechanical paw withdrawal
threshold and (b) thermal paw withdrawal latency in the ipsilateral hindpaws before nerve injury (baseline), and after SNI with (light ON) and
without (light OFF) activation of Arch3.0 expressed in the BLA to prelimbic mPFC projection. Data were analyzed with Graph Pad Instat 3.0 and
Graphpad Prism 6.0 and are presented as mean + SEM with two way analysis of variance (ANOVA) followed by Tukey post hoc corrections.
Statistical significance was accepted at the level of p < 0.05.Numbers shown in the bars reflect numbers of mice. (c) Current clamp recordings

from putative large triangular layer 5 pyramidal cells in mPFC slices from sham (17 cells from 4 animals) and SNI (18 cells from 3 animals) mice.
Action potential frequencies are shown in response to different levels of depolarizing current injections. The data sets are not statistically different
from each other. Membrane potentials were held at — 70 mV by injecting a small bias current (Resting membrane potentials are similar in Sham:
—68.56+/—0.96 mV and SNI: 69.05+/—0.80 mV; p = 0.6981, unpaired t-test). To assess general cell excitability of pyramidal cells, no synaptic
blockers were added in perfusion solutions (For detailed methods, see Ref [6])
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implanted brain cannula connected to a DPSS laser
(yellow 589 nm, Laserglow Technologies, Ontario). Before
light stimulation (Light OFF) their ipsilateral (nerve-in-
jured side) and contralateral hindpaws were first assessed
for mechanical withdrawal threshold and thermal with-
drawal latency, using respectively a Dynamic Plantar
Aesthesiometer and a Hargreaves Apparatus (both from
Ugo Basile, Varese, Italy). Each hindpaw was measured 3
times. After 30 min, animals received continuous delivery
of yellow light (Light ON) beginning 3 min before mea-
surements of mechanical thresholds and thermal with-
drawal latencies. Experimental protocols were performed
exactly as described in our recent work [9] and all experi-
mental procedures were approved by the Animal care
committee of the University of Calgary.

Fig. 1a shows that similarly to what we had observed
in male mice, yellow light-mediated activation of
Arch3.0 (20 mW at the fiber tip, S130C power sensor,
Thorlabs) significantly inhibited mechanical hyperalgesia
in female mice with differences revealed by two-way
ANOVA between the ipsilateral and contralateral paw
interaction (p < 0.0004, F = 2.698 (4,4) and for the before
vs after light stimulation interaction (p <0.0058, F =
2.074 (4,4). Optogenetic inhibition of BLA inputs also
significantly decreased thermal hyperalgesia (Fig. 1b)
(two-way ANOVA between ipsilateral and contralateral
paw (p <0.0001, F=3.532 (4,4) and light ON vs light
OFF interaction (p <0.0001, F =1.776 (4,4)). There was
no effect of Arch3.0 activation on sensory responses on
the contralateral side. A detailed view at our present and
prior results shows that female animals exhibited some-
what augmented injury-induced thermal hyperalgesia
compared to males, and a stronger analgesic response to
thermal stimuli upon activation of Arch3.0 [9]. Whether
these differences reside in differences in the primary af-
ferent pathway or in slightly different processing within
the brain is unclear. Nonetheless, these data indicate that
inhibition of glutamatergic inputs into the mPFC, and
thus GABAergic feed-forward inhibition in this region,
produces analgesia in both male and female mice.

Layer 5 pyramidal neurons integrate monosynaptic ex-
citatory inputs from the BLA, and di-synaptic GABAer-
gic feed forward inhibition mediated by glutamatergic
BLA inputs into GABAergic interneurons in the mPFC.
In male mice, this causes an overall reduction in pyram-
idal cell activity [6, 9]. Interestingly, when we examined
the firing properties of layer 5 pyramidal cells using
current clamp recordings in mPFC slices from female
C57 mice (using analagous electrophysiological ap-
proaches as those described by us previously for male
animals [6]), a surprising result was obtained. As shown
in Fig. 1c, two weeks after SNI surgery, pyramidal cell
firing frequency was indistinguishable between female
sham operated and SNI mice. These data may indicate
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that there is either no injury-induced dysregulation of
synaptic inputs into the mPFC, or that the integration of
such inputs via the GABAergic interneuron circuitry
within the mPFC fails to manifest itself as a reduction in
layer 5 output. How can these data be reconciled with
the observations in Fig. 1la and b? It is possible that
peripheral nerve injury in female mice may lead to dys-
regulation of brain structures downstream of the mPFC,
such as the PAG region or its ensuing descending
projections. If so, then boosting mPFC output by opto-
genetically inhibiting feed forward inhibition mediated
by BLA inputs could serve as a beneficial compensatory
mechanism. Further experimentation will be necessary
to test such a hypothesis.

Chronic neuropathic pain can be a debilitating condi-
tion and is often refractory to traditional pharmaco-
logical strategies. Recent evidence suggests that there are
important sex differences in the processing and mainten-
ance of chronic neuropathic pain states [10-12] and this
has to be considered when aiming towards the develop-
ment of novel and efficacious therapeutic strategies. Our
findings here reveal that there are indeed important sex
differences with regard to the nerve injury-induced
dysregulation of mPFC function, but that the mPFC may
be a brain cicuit that could be targeted equally effectively
in both sexes for tackling chronic neuropathic pain.
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