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Abstract

We evaluated functional measures of neuromuscular integrity and bone’s resistance to fracture as a 

combined tool in discriminating osteoporosis patients with and without fractures. Functional 

aspects of neuromuscular integrity were quantified with a noninvasive measure of static and 

dynamic functional postural stability (FPS), and fracture resistance was obtained with bone shock 

absorption in patients with osteoporosis aged 65–85 and compared our measures with dual-energy 

X-ray absorptiometry and Fracture Risk Assessment Tool (FRAX [World Health Organization 

Collaborating Center for Metabolic Bone Diseases, Sheffield, UK]) in women with osteoporosis, 

some with and some without vertebral fractures. Patients with vertebral fracture showed larger 

static FPS (postural sway excursion) in the mediolateral and anterior-posterior directions, 

suggesting poorer balance. Most of the variables of dynamic FPS showed significant differences 

between fracture and no-fracture groups (e.g., the fracture group took significantly longer during 

turning, implying poorer dynamic balance control). Also, compared with healthy control subjects, 

all 4 dynamic FPS responses for osteoporosis patients with and without fracture were significantly 

poorer, suggesting potential risk for falls. In summary, patients with osteoporosis who have 

vertebral fractures (compared with patients with similarly low bone mineral density and other 

nonfracture risk fractures) have not only lower bone shock absorption damping (ζ) but also 

increased postural imbalance.
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Introduction

Improved measures of fracture discrimination are needed as bone mineral density (BMD) 

alone is a crude predictor of fracture risk (1–9). The Fracture Risk Assessment Tool (FRAX 

[World Health Organization Collaborating Center for Metabolic Bone Diseases, Sheffield, 

UK]) (including clinical risk factors) is better than BMD alone but does not include falling, a 

major contributing factor to fracture (1,10–17). Bone shock absorption (BSA) and static and 

dynamic functional postural balance/stability (FPS) (13,18–21) encompass measures of 

structural bone health and neuromuscular integrity, which are both compromised in 

osteoporosis (1,16,22–26). The purpose of this study was to evaluate functional measures of 

bone’s resistance to fracture and neuromuscular integrity in discriminating osteoporosis 

patients with and without fractures.

The musculoskeletal system consists of natural shock absorbers (soft tissue, joints with 

cartilage and synovial fluids, and trabecular bone, including mineralized collagen fibrils, 

nonfibrillar organic matrix, and noncollagenous proteins in bone), which absorb external 

loads of activities of daily life, minimizing the potential for fractures (27–33). Although 

each natural shock absorber provides different degrees of absorption, ranging from 11% to 

70% based on loading frequency, the collective absorption capacities help minimize the 

potential for fracture (34). We developed BSA, a quantitative measure of combined bone and 

musculature (CBAM) system’s resistance to fracture when exposed to dynamic loads such 

as heel strike (35). Damping, the BSA metric, as a measure of fracture resistance in the 

musculoskeletal system, is supported by classical structural engineering studies quantifying 

composite materials’ and structures’ ability to absorb/dissipate external loads (36–38). Bone, 

as a composite material, has mineralized collagen fibrils and nonfibrillar organic matrix, 

which can dissipate external loads to decrease fracture risk (39–42). Resistance to fracture 

depends on the musculoskeletal systems’ ability to absorb and/or dissipate externally applied 

loads but not necessarily the maximum strength of the structure (42–44). In osteoporosis, 

both bone integrity and the neuromuscular system are compromised, as evidenced by higher 

prevalence of fractures and falls (1,16,22–26). Although our previous publications showed 

that BSA discriminates between fracture and no-fracture groups, we have not looked at its 

association with postural instability, another risk factor for fracture (35). One of our goals 

was to test the hypothesis that osteoporosis patients with decreased bone damping capacity 

(i.e., stiffer, more brittle bone) have increased postural sway as measured by FPS outcomes.

The objective of this study was to determine the fracture discriminating abilities of BSA and 

FPS in patients with osteoporosis, aged 65–85. Secondary objectives were to investigate 

contributions of static postural balance (postural sway), dynamic FPS outcomes, damping 

and age in modifying the FRAX scores and contributions of damping, BMD and age in 

modifying static postural balance outcomes and dynamic FPS outcomes.

Materials and Methods

Subjects

The University Institutional Review Board approved the protocol, and all subjects gave 

informed consent. We recruited postmenopausal women with osteoporosis from a 
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convenience sample of patients who already had dual-energy X-ray absorptiometry and 

vertebral fracture assessment or lateral spine radiographs. One investigator (NBW) was 

aware of the subjects’ fracture status but was blinded to the BSA test results; the other 

investigators were aware of the BSA test results but blinded about the fracture status.

Bone Densitometry, FRAX Scores, and Fracture Assessment

BMD results for spine, femoral neck (FN), and total hip (TH) were obtained using Hologic 

equipment performed within 12 mo of the study entry. FRAX scores were calculated using 

version 3.8 without BMD and with lowest ever FN (BMD_FN). Vertebral fractures were 

assessed from lateral spine images acquired using dual-energy X-ray absorptiometry or 

lateral spine X-rays; reduction in anterior, middle, and/or posterior vertebral height by ≥20% 

constituted a fracture (45). Seven of the subjects had 1 or more vertebral fractures, whereas 

22 had no vertebral fractures.

Dynamic Bone Quality Measure

CBAM capacity outcome, damping (ζ), was quantified from acceleration measurements at 3 

anatomical sites (3,35) (Fig. 1): (1) below the knee at the tibial tuberosity (ζBELOWKNEE-R 

and ζBELOWKNEE-L; R for right heel strike and L for left heel strike), (2) above knee at the 

lateral femoral condyle (ζABOVEKNEE-R and ζABOVEKNEE-L) for each leg, and (3) upper 

back (T-7) (ζUPPERBACK-R and ζUPPERBACK-L). Low mass skin-mounted accelerometers 

were attached to bony prominences, and signals obtained as per our previous publication 

(35). Each subject performed 5 stationary tasks, lifting the bare foot and placing it down 

with the heel striking the force platform with a force equivalent (or slightly higher) than used 

for during natural walking. Our custom BSA software (BSA software 2009–15; University 

of Cincinnati, Cincinnati, OH) was used to collect data and calculate shock absorption 

response variables. An average of 5 heel strikes was used for statistical analysis. 

Reproducibility of BSA test trials was demonstrated in our previous study (46). CBAM 

damping (ζ) and resonance/dominant frequencies at anatomical sites were calculated as 

described previously (3,35,46).

Measures of Static and Dynamic FPS

Each subject underwent 2 tests: (1) static postural balance standing on a force platform 

system (this quantifies movement of center of pressure [CP] as a measure of static postural 

balance) (47) and (2) dynamic FPS test with instrumented timed up and go (iTUG) protocol 

as described herein:

1. Static postural balance test: Each subject performed tests addressing vision, 

proprioception, and the vestibular system in maintaining upright balance using 

our published protocol (47). Tests were performed with subjects standing on a 

force platform (1) with eyes open (EO) and eyes closed (EC) standing directly on 

the platform and (2) with eyes open (FO) and eyes closed (FC) on a 4 inch thick 

foam pad placed on the platform. Outcome variables of postural balance tests are 

sway area (SA; cm2), sway length (SL; cm), excursion in mediolateral direction 

(Excur-ML; cm), and excursion in anterior-posterior direction (Excur-AP; cm), 

which are significant discriminators of faller status (26). The SA is encompassed 

Bhattacharya et al. Page 3

J Clin Densitom. Author manuscript; available in PMC 2019 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by movement patterns of X-Y coordinates of CP movements during postural 

balance tests. SL is the total distance traveled by the subjects’ CP during postural 

balance tests. The Excur-ML and Excur-AP are maximum displacements of 

subject’s CP in the ML and AP directions, respectively, during postural balance 

tests.

2. Dynamic FPS iTUG test: he FPS iTUG test is performed using an inertial link 

6D sensor system (3-dimensional accelerometers and 3-dimensional gyroscopes) 

for quantifying dynamic FPS (48,49). The wireless sensor is attached to the chest 

and 2 wrists, as per the protocol of Zampieri et al and others (48,49) (Fig. 2). The 

TUG test is designed to assess balance control status during the dynamic task of 

getting up from a chair, walking, and turning (50–54). The outcomes of TUG test 

are (1) peak turn velocity (PTV, deg/s) of torso, (2) peak swing velocity of right 

arm (PSVr, deg/s), (3) peak swing velocity of left arm (PSVl, deg/s), (4) turn 

duration (TD, s), (5) average turning velocity of torso (degrees/s), and (6) range 

of motion (ROM left and right arms) about the shoulder joint (in the sagittal 

plane), spanned by each arm swing during walking (degrees). The receiver 

operating characteristic (ROC) analysis of data from TUG test revealed that these 

variables have high discrimination for postural mobility between healthy and 

diseased patients’ values with area under the curve (AUC) ranging between 0.76 

and 0.87 (55–58).

Data Analysis

Data are described using mean, standard deviation, or standard error. Because of the small 

sample size, outcomes were compared between fracture and no-fracture groups using 

Wilcoxon rank sum test. As a pilot study with expected directions of all outcomes’ 

responses, a 1-sided p < 0.10 was used for statistical significance. The ROC curve analysis 

was carried out for damping, static postural balance outcomes (postural sway variables), 

dynamic FPS (or balance [FPS]; iTUG outcomes), and BMD measures for differentiating 

facture from no-fracture groups. The results of ROC analysis are summarized with AUC. 

Spearman rank correlations (r) were obtained among static and dynamic FPS outcomes with 

damping outcomes, BMD outcomes, and FRAX outcomes. Similarly, Spearman rank 

correlations were also computed between outcomes for damping BMD and FRAX. Because 

of smaller sample size for the fracture group (n = 7), correlations among outcome variables 

were carried out for the no-fracture group (N = 22) only. In addition, exploratory 

multivariable regression analysis was also done. Two regression models were developed: for 

model 1, the dependent variable was FRAX score (based on lowest ever BMD) and 

independent variables were static postural balance outcomes for FO and FC, dynamic FPS, 

damping, and age. We first assessed the univariate association of cofactors using ordinary 

linear regression; significant cofactors at 20% level of significance in the univariate 

regression analyses with known expected directions were included in the multivariable linear 

regression analysis. Backward elimination was used, starting from the full model, including 

all independent effects, then deleting effects 1 by 1 until a stopping condition (p = 0.10; 1 

sided) was satisfied. Similarly, for model 2, individual regression models were developed for 

each of the dependent variables of static postural balance and dynamic FPS outcomes. The 
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results of regression model are reported using regression coefficient, standard error of 

regression coefficient, 1-tailed p value along with model-adjusted coefficient of 

determination (R2). Statistical software used was SAS, version 9.3 (SAS Institute, Inc., Cary, 

NC).

Results

Table 1 provides demographic data, fracture status, BMD scores, and FRAX scores for the 

study groups. There were no significant differences in body weight, height, BMI, and BMD 

between groups except that on the average the fracture group was 6 yr older than the no-

fracture group and FRAX scores were higher for the fracture group (Table 1). Except for 

fractures, which increase the FRAX scores, the 2 groups had similar risk based on other risk 

factors.

Comparison of Static and Dynamic FPS Responses Between Fracture and No-Fracture 
Groups

Five of 6 variables of dynamic FPS showed statistically significant differences (p values 

ranged between 0.0488 and 0.088) between fracture and no-fracture groups (Fig. 3A–F). For 

example, the fracture group took significantly longer (+12%) than the no-fracture group 

during turning (TD). ROM responses were higher for the fracture group, an unexpected 

finding. Static postural balance responses to all 4 test conditions were not statistically 

different between the groups.

We also tested the diagnostic performance of static postural balance and dynamic FPS 

responses in differentiating fracture and no-fracture groups. Maximum AUC was for PTV 

(0.71, 95% confidence interval [CI]: 0.51–0.92, p = 0.045) followed by TD (0.70, 95% CI: 

0.47–0.94, p = 0.057), left PSV (0.68, 95% CI: 0.41–0.95, p = 0.077), and right PSV (0.68, 

95% CI: 0.42–0.93, p = 0.085). In the static postural balance responses, the AUC was 

statistically significant for Excur-ML (0.66, 95% CI: 0.41–0.91, p = 0.10) in FC test and SL 

(0.71, 95% CI: 0.53–0.89, p = 0.05) in EC test.

Comparison of Damping and BMD Values Between Fracture and No-Fracture Groups

Regarding BSA outcomes, the left heel strike-associated mean damping (ζ) values for the 

fracture group were 55%, 42%, and 71% lower than for the no-fracture group for sites above 

knee, below knee, and upper back, respectively (Fig. 4). The right heel strike mean damping 

values for the fracture group were 50%, 38%, and 61% lower than values for no-fracture 

group for sites above knee, below knee, and upper back, respectively (Fig. 5). The AUC for 

damping upper back (ζUPPERBACK) was 0.72 (95% CI: 0.52–0.92, p = 0.043), followed by 

above knee (ζABOVEKNEE [0.65, 95% CI: 0.42–0.87]) and below knee (ζBELOWKNEE [0.62, 

95% CI: 0.39–0.85]). Although the mean damping values for the fracture group were lower 

than the no-fracture group for all sites, the AUC of ζUPPERBACK was the only site reaching 

significance, possibly because of small sample size. AUCs of BMD measures were between 

0.50 and 0.58. None of the BMD measures had significant AUC for differentiating fracture 

from no-fracture groups.
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Associations Between Static Postural Balance and Damping

Three of 4 postural balance outcomes (SA, SL, and Excur-ML) for the FC test showed 

significant negative association with damping of the upper back or torso. Damping upper 

back (ζUPPERBACK) was correlated with SA (r = −0.046, p = 0.018), SL (r = −0.39, p = 

0.039), and Excur-ML (r = −0.52, p = 0.007). On the other hand, although the Excur-AP was 

in the expected direction (i.e., negatively associated with damping), the differences between 

groups was not significant (Excur-AP [r = −0.27, p = 0.12]). Two of 4 postural sway 

outcomes (SL and Excur-ML) for the EC test showed significant negative association with 

ζUPPERBACK (r: −0.30 to −0.31; p: 0.085–0.09).

Associations Between Dynamic FPS and Damping

There were no consistent association among dynamic FPS outcomes and damping variables.

Associations Between Static Postural Balance and BMD

Higher BMD_TH was significantly associated with decrease in postural sway outcomes in 

all conditions, suggesting better postural balance. For 3 of 4 test conditions, EO, EC, and 

FO, all 4 postural sway outcomes (SA, SL, Excur-ML, and Excur-AP) were significantly 

negatively correlated with BMD_TH. The correlation coefficient ranged from −0.28 to 

−0.48. For the FC test condition, only 1 of 4 sway outcomes (Excur-AP, r = −0.31, p = 0.08) 

was significantly negatively associated with BMD_TH. BMD_FN showed significantly 

negative correlations with 3 of 4 postural sway outcomes (SA, SL, and Excur-ML) for the 

EC test condition. The correlation coefficient ranged from −0.36 to −0.52.

Associations Between Dynamic FPS and BMD

Higher BMD_TH (r = 0.57, p = 0.003) was significantly associated with an increase in 

PSVr, an increase in PTV (r = 0.32, p = 0.075), and a decrease in TD (r = −0.28; p = 0.10).

Associations Between Dynamic FPS and FRAX Scores

The FPS outcomes correlated negatively with FRAX scores—patients with higher FRAX 

scores had reduced dynamic functional balance, poorer balance, and increased potential of 

falling during walking. Of 6 FPS outcomes, 4 (mean PTV, mean PSV right arm, mean ROM 

right arm, and mean ROM left arm) showed significant negative associations with FRAX 

scores for major fracture risk (based on lowest BMD) (r = −0.53 to −0.40; p = 0.006–0.031) 

and hip fracture risk (r = −0.56 to −0.40; p = 0.0036–0.018). Similar correlations with 

FRAX scores without BMD were found.

Associations Between Static Postural Balance and FRAX Scores

Static postural sway was positively correlated with FRAX scores—patients with higher 

FRAX scores demonstrated higher postural sway, poorer balance, and increased potential of 

falling, even during static conditions. For the FO test, all sway outcomes demonstrated 

significant positive associations with FRAX scores (r = 0.55–0.28; p = 0.0041–0.11). For the 

EO test, except for SL (not significant), Excur-ML, Excur-AP, and SA were significantly 

associated with higher FRAX scores (r = 0.50–0.34; p = 0.009–0.062). For the FC test, only 

Excur-AP and SA were significantly associated with FRAX scores (r = 0.36–0.30; p = 
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0.048–0.085). For the EC test, only Excur-ML showed significant association with FRAX 

scores (r = 0.30; p = 0.089).

Associations Between Damping and FRAX Scores

There were no correlations between FRAX scores and damping values, but each was an 

independent discriminator of fracture groups (Figs. 4 and 5; Table 1).

Regression Models Relating Static and Dynamic FPS Outcomes to FRAX Scores

After covariate adjustment within the regression analysis for static postural sway outcomes, 

only Excur-ML sway for the FO test reached significance with FRAX score (based on 

lowest BMD) for major hip fracture risk (Table 2). Age was the only covariate significant 

with both FRAX scores. After covariate adjustment within the regression analysis for 

dynamic FPS outcomes, none of the variables reached significance with FRAX scores.

Regression Models Relating Damping to Dynamic FPS Outcomes

After covariate adjustment within the regression analysis, only ζABOVEKNEE reached 

significance with only 2 of the dynamic FPS variables, TD and PTV, respectively (Table 3). 

Table 3 provides 1-tailed p values. BMD_TH was the only covariate that was significant 

with both TD and PTV. Age was significant in the PTV regression model only.

Regression Models Relating Damping to Static Postural Balance Outcomes

The regression models were developed only for FC and FO tests as they showed more 

consistent bivariate associations for multiple postural balance outcomes with damping. After 

covariate adjustment within the regression analysis, ζUPPERBACK-R reached significance 

with static postural balance variables SL and Excur-ML for FO and FC tests and with SA 

and Excur-AP for FC test. Table 4 provides 1-tailed p values. In addition, ζABOVEKNEE-R 

also reached significance with Excur-ML for FO and FC tests, whereas ζABOVEKNEE-L was 

significantly associated with Excur-AP for the FC test only. Only 1 of 4 damping outcomes, 

ζBELOWKNEE-R, showed an unexpected positive relationship with postural balance 

outcomes; this may be because of chance and/or small sample size. Covariate of age, as 

expected, showed significant positive relationships with all postural balance outcomes for all 

test conditions, consistent with previous studies (55–58).

Discussion

We noninvasively quantitated static and dynamic FPS as well as dynamic bone quality 

(damping [ζ]) among patients with osteoporosis with and without vertebral fractures. As 

before, damping values were significantly lower in the fracture group compared with 

patients without fracture (Figs. 4 and 5) and normal healthy younger groups (3,35,46). 

Although area under the ROC curve analysis (0.72) for ζUPPERBACK showed significant 

fracture discrimination, none of the BMD measures had significant AUC (0.50–0.58) for 

differentiating fracture status. This further supports the literature that BMD alone is not 

sufficient to discriminate between fracture and no-fracture groups.
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In addition to BMD, bone quality, postural balance, and age-related decreases in muscle 

strength contribute independently to fracture risk (1,5,13,19,22,25,59–61). Our dual 

approach of combining impaired bone quality with poor postural balance risk factors or 

fracture is consistent with the concept of sarco-osteoporosis (18). With aging, muscle mass 

decreases and muscle strength is reduced even more, and, with the additional effects of 

osteoporosis, detrimentally impacts FPS, thereby increasing the risk of falls/fracture (62,63).

Older age and certain diseases (e.g., osteoporosis, Parkinson disease) bring about gradual 

changes in posture, spinal flexibility, mobility, and decreased sensory capacity, which 

collectively affect postural balance and contribute to fall-related injuries (1,13,16,22,23,64–

66). Greig et al (22) reported that vertebral fracture interferes with the vertical alignment of 

skeleton, shifting the body’s center of gravity, thereby impairing postural balance. Recent 

studies (1,12) show that falls are stronger predictor of fractures than BMD.

It is hypothesized that structural integrity of CBAM system will be an equally important fall/

fracture risk factors in osteoporosis. Postural control associated with upright balance 

depends on interactions between neural and musculoskeletal systems (i.e., CBAM system). 

Age-associated declines in both musculoskeletal system and neural system play a significant 

role in jeopardizing postural balance. In particular, age-associated decreasing capacity of 

somatosensory systems has serious consequences in perceiving the degree of slipperiness of 

a wet and/or uneven surface, which will impact the ability to negotiate a threatening 

environment and may increase susceptibility to falling (67,68).

Our area under the ROC analyses results show that dynamic FPS responses (i.e., PTV, TD, 

and left PSV) during performance of tasks of daily living were able to discriminate fracture 

from no-fracture groups (Fig. 3). In comparison to the no-fracture group, osteoporosis 

patients with fracture had lower PTV and PSV and took longer to make the turn during the 

TUG test. In addition, static postural balance outcomes for FC and EC test conditions 

allowed discrimination between fracture groups for Excur-ML and Excur-SL, respectively. 

In comparison to the no-fracture group, osteoporosis patients with fracture demonstrated 

larger postural sway excursion in the ML direction and increased movement of body’s CP 

(SL outcome) in both ML and AP directions, suggesting poorer balance. Our findings 

suggest that both static and dynamic FPS outcomes can discriminate between fracture and 

no-fracture groups. Interestingly, the mean TD value of the osteoporosis patients with 

fracture (standard error of the mean [SEM]: 2.73 [0.15 s]) was similar to the values (SEM: 

2.67 [0.13 s]) obtained in Parkinson disease patients with history of falls in another study in 

our laboratory (69), suggesting potential high risk for falling in our osteoporosis patients. 

Also, in comparison to healthy control subjects (mean age [SEM]: 64.2 [2.86]; n = 10) in 

another of our studies, all 4 dynamic FPS responses for osteoporosis patients with and 

without fracture were significantly poorer, suggesting potential risk for falls (69).

FRAX scores were not associated with dynamic FPS outcomes, and only 1 static postural 

sway outcome (Excur-ML) showed significant association with FRAX (Table 2). Therefore, 

FRAX does not quantify fall-related fracture risk associated with reduced dynamic postural 

balance as determined by the TUG test. Although FRAX and BSA were not correlated, 

individually each was an independent discriminator of fracture status as shown in Figs. 4 and 
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5 and Table 1. Although both BMD and FRAX provide a measure of fracture risk because of 

skeletal fragility, they do not assess risks associated with falling, a common outcome in 

osteoporosis (1,16,22,23). On the other hand, our findings provide encouraging results 

supporting the abilities of BSA-FPS for discriminating fracture groups with measures of 

dynamic bone quality (damping, ζ) and dynamic FPS outcomes.

We hypothesized that reduced damping capacity of CBAM is detrimental to the static 

postural sway or balance and the dynamic FPS in osteoporosis patients, increasing the risk 

of falling and fracturing. To evaluate potential interplay between damping and static postural 

balance outcomes and dynamic FPS outcomes, we used regression modeling (Tables 3 and 

4). Within the regression analysis between damping and dynamic FPS outcomes, the 

negative relationship between TD and ζABOVEKNEE-R suggests that a higher damping is 

associated with shorter TD (i.e., the subject is turning quicker during the TUG test), an 

indication of better dynamic motor control. Similarly, a positive relationship between PTV 

and ζABOVEKNEE-R suggests that increased damping is associated with increased PTV 

during TUG, also an indication of better dynamic motor control. Regression models relating 

damping to static postural balance outcomes were also carried out (Table 4). A negative 

relationship between postural sway outcomes and ζUPPERBACK-R suggests that higher 

damping is associated with lower SL and Excur-ML for FO and FC tests and lower SA and 

Excur-AP for FC test, implying better static balance/stability. Both ζABOVEKNEE-R and 

ζABOVEKNEE-L were negatively associated with Excur-ML and Excur-AP, respectively—

higher damping was associated with better balance in ML and AP directions, less postural 

sway, implying better balance. This is consistent with the hypothesis that higher damping 

capacity of CBAM would effectively absorb the perturbing energy associated with 

movement of body segments trying to maintain upright balance and thereby would reduce 

postural sway or movement of CP. It is reasonable that both dynamic and static balances are 

influenced by the damping capacity of the CBAM system. Although static postural balance 

is primarily impacted by neuromuscular properties of large body mass segments such as 

torso, dynamic functional balance as measured by TUG has multiple contributing factors 

provided by all moving body segments, such as torso, head, legs, and swinging arms. Under 

dynamic conditions, such as getting up from chair and walking, interactions among damping 

properties of the various body segments of the musculoskeletal system affecting dynamic 

FPS outcomes would be complex. Further study with larger numbers and mechanistic 

biomechanical modeling will be needed to better understand intrinsic mechanisms of 

interplay between damping capacity of the CBAM system and postural balance influencing 

fall-related fracture risk.

In summary, this study provides an approach for identification of patients at risk of fracture 

using the dual approach noninvasive BSA-FPS tool to quantify the status of structural 

integrity of subjects’ CBAM system and their FPS. Poor structural integrity is characterized 

by reduced damping capacity of the CBAM system tested under realistic in vivo loading of 

simple heel strike (35). Reduced damping capacity of CBAM is likely detrimental to the 

FPS, increasing the risk of falling and fracturing. Further larger studies are warranted to 

confirm these findings, but results from this study provide support for potential new 

diagnostic approach, which could have positive impact (lower cost, fewer patients exposed 

to radiation) compared with testing with BMD alone and FRAX (70,71) and also to better 
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target therapy to those in need. Our study is based on a small sample size; therefore, findings 

should be interpreted with caution.
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Fig. 1. 
Schematic of accelerometer-placement sites for bone shock absorption test.
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Fig. 2. 
Schematic of triaxial accelerometers and gyroscopes—placement sites for the functional 

postural stability instrumented timed up and go test.
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Fig. 3. 
Dynamic functional postural stability responses to timed up and go test. (A) Turn duration. 

(B) Peak swing velocity—right arm. (C) Peak swing velocity—left arm, (D) Range of 

motion—right arm. (E) Range of motion—left arm. (F) Peak turn velocity.
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Fig. 4. 
Mean ± standard error of the mean damping values at various anatomical sites of patients 

with osteoporosis for left leg.
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Fig. 5. 
Mean ± standard error of the mean damping values at various anatomical sites of patients 

with osteoporosis for right leg.
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