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ABSTRACT: Unprecedented I2-catalyzed α,α-C(sp3)-H, decarboxylative α-C-
(sp3)-H, lactonized α-C(sp3)-H, and α,β-C(sp3)-H functionalized 5- and 6-
annulation as well as α-C(sp3)-H activated 6-lactonization of primary aliphatic
amines are devised under aerobic conditions. The metal-free sustainable strategy
was employed for the diverse construction of valuable five-and six-membered
polycyclic N,O-heteroaromatics such as oxazoles, 1,4-oxazines, and oxazin-2-one
with a rapid reaction rate and high yield. The viability of this mild nonmetallic
catalysis is successfully verified through syntheses of labile chiral heterocyclic
analogues. In contrast to the common practice, this method is not limited to use of
prefunctionalized amines, directing groups (DGs) and/or transient DGs, metal
catalysts, and traditional oxidants. The possible mechanistic pathway of the
annulation reaction is investigated by control experiments and ESI-MS data
collected for a reaction mixture of the ongoing reaction. The synthesized new
compounds are potent organic nanobuilding blocks to achieve valuable organic
nanomaterials of different sizes, shapes, and dimensions, which are under investigation for the discovery of high-tech devices of
innovative organic nanoelectronics and photophysical properties.

■ INTRODUCTION

Aliphatic primary amines are represented in a wide range of
chemical feedstock and display great biological, pharmaceutical,
agricultural, materials, and synthetic applications.1−6 Of late,
functionalization of C(sp3)-H has emerged as a promising
synthetic tool.7−10 The C(sp3)-H activated functionalization of
secondary and tertiary aliphatic amines is well investigated
employing transition-metal catalysts.11−14 However, site-
selective functionalization of inactivated C(sp3)-H bonds of
primary aliphatic amines is more challenging because of their
strong nucleophilic, reducing, chelation, and deactivating
properties, which may hamper or deactivate catalytic power of
the possible metal catalysts. Thus, use of prefunctionalized
amines, directing group (DGs), and/or transient DG, their
removal after the desired transformation, and intramolecular
annulation are frequently exercised in the metal catalysis
processes.15−18 A limited number of approaches were devoted
for the site-selective C(sp3)-H functionalization of primary
aliphatic amines, such as ZrIV/NiII-catalyzed α-selective
cyclization,19,20 PdII-tuned β-arylation,21 PdII-AgI guided γ-
substitution,18,22−25 and PdII-activated δ-arylation.26,27 How-
ever, a metal-free C(sp3)-H functionalization is always a more
appealing strategy to be developed for minimizing the harmful
impact on nature.28−30

So far, few nonmetallic C(sp3)-H activation processes were
developed utilizing pyridine-N-oxide, TBAI/TBHP, DTBP,
hypervalent iodines, and iodine.31−37 Molecular iodine has
emerged as an excellent catalyst38−43 because of its high

solubility in the reaction media, easy handling, low cost, and
environmentally friendly nature in comparison to heavy metals.
The cyclization through C(sp3)-H functionalization has become
an indispensable synthetic strategy to deliver invaluable
heterocyclic molecules.44−50 Earlier, Schafer et al. introduced
an α-C(sp3)-H activated intramolecular 6-annulation with the
Zr(NM2)4 catalyst ((i), Scheme 1).19 We established NiX2·
nH2O-catalyzed bimolecular 5-annulation ((ii), Scheme 1).20

Chen et al. reported Pd(OAc)2-PhI(OAc)2-mediated intra-
molecular 4-annulation of protected primary aliphatic amines
((iii), Scheme 1).26 The major limitations of these methods are
the utilization of toxic heavy metal catalysts, intramolecular
cyclization ((i) and (iii), Scheme 1), severe water susceptibility
to catalysis ((ii), Scheme 1), high reaction temperature (145
°C), requirements of a stoichiometric oxidant [PhI(OAc)2] and
base in excess (2.5 equiv.), and slow reaction rates. In a
continuous effort to synthesize novel polycyclic heteroaromatics
for design, synthesis, and fabrication of new organic nanoma-
terials to discover their innovative organic electronic proper-
ties51−54 for developing new generation devices,55,56 herein, we
disclose a direct C−O bond forming 5-annulation ((iv), Scheme
1) and 6-annulation ((v), Scheme 1) through C(sp3)-H
functionalization through nonmetallic catalysis to furnish
polycyclic N,O-heteroaromatics.
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1,3-Oxazoles are a fundamental class of five-membered
privileged heterocyclic motifs that have profound importance
in natural products, pharmaceuticals, agrochemicals, and
materials.57−62 For instance, the benzoxazole-based natural
product nataxazoles (A, Figure 1) displayed anticancer,

antibacterial, and cytotoxic bioactivities,61 and the heterocycle-
grafted graphene oxide organic material was used as a valuable
high-performance supercapacitor electrode (B, Figure 1).62 The
widespread application of the heterocycles led to the develop-
ment of several synthetic strategies such as CuII-catalyzed
oxidative cyclization,63 [2 + 2 + 1] annulation of alkyne and
nitrile,64 dehydrogenative annulation,65 PdII-catalyzed annula-
tion of amides,66 and photocatalytic Ru catalysis.67 The
importance of metal-free synthesis was also realized using
organocatalysis,68 cyclization of aminoacids,69 PhIO-TfOH,70

and dehydrogenative I2-TBHP cyclization.71 1,4-Oxazines have
shown immense importance in biological and material
sciences.72−80 For example, oxazine derivatives (C, D, Figure
1) were employed in the treatment of neurodegenerative,

inflammatory,78 autoimmune, and cardiovascular79 disorders,
and the thin films of naphthoxazine-based materials (E, Figure
1) showed unique surface plasmon polarization with emission
enhancement properties. Syntheses of oxazines were mainly
achieved through PdII catalysis of bisvinylphosphate81 and
intramolecular cyclization with the CuI-catalyst82 and triphe-
nylphosphine.83

■ RESULTS AND DISCUSSION
Intending to synthesize the heterocyclic moiety through
nonmetallic amine-C(sp3)-H functionalization, at first, we
focused on α-C(sp3)-H functionalization, and for that, we
have selected phenanthrenequinone (1a) and benzylamine (2a)
as two reacting partners, which might yield the corresponding
oxazole derivative (4a, Table 1). The feasibility of the 5-

annulation catalysis was examined with 20 mol % triflic acid and
camphor sulfonic acid (CSA) as possible catalysts (entries 1, 2,
Table 1) under aerobic conditions in toluene at 100 °C (bath
temperature) for 15 h. In these cases, the α,α-C(sp3)-H-amine
derived oxazole was obtained successfully in moderate yields
(48, and 57%, respectively). To our delight, on the use of I2, the
reaction was rapidly completed (2 h), and the yield significantly
improved (79%, entry 3). Keeping I2 as a promising catalyst (20
mol %), different solvents such as protic EtOH (entry 4),
relatively low boiling point EDC (entry 5), and highly polar
DMF and DME (entries 6, 7, respectively) were screened to
achieve moderate to high yields (58−78%). Gratifyingly,
dioxane proved to be the best reaction medium providing the
desired product (4a) rapidly (1 h), and 4a was furnished almost
in quantitative yield (98%, entry 8). The increase in reaction
time (6 h) resulted in a decrease in yield of the desired product
(95%, entry 9). In the absence of oxygen (argon atmosphere),

Scheme 1. Annulation with Primary Aliphatic Amine-C(sp3)-
H

Figure 1. Important benzoxazole and oxazine analogues.

Table 1. Development of C(sp3)-H-Functionalized 5-
Annulationa

entry catalyst solventb time (h) yield (%)c

1 triflic acid toluene 15 48
2 CSA toluene 15 57
3 I2 toluene 2 79
4d I2 EtOH 1.5 58
5 I2 EDC 1.5 70
6 I2 DMF 1.5 75
7 I2 DME 1.5 78
8 I2 dioxane 1 98
9d I2 dioxane 6 95
10e I2 dioxane 24 22
11f I2 dioxane 12 79
12g I2 dioxane 1 94
13 dioxane 24 NDh

aReaction conditions: 1a (0.5 mmol), 2a (0.5 mmol), catalyst (20
mol %). bVolume of solvent: 2 mL. cYield of pure 4a after silica gel
column chromatography using ethyl acetate in petroleum ether as an
eluent. dUnder reflux (∼80 °C for EtOH and ∼100 °C for dioxane).
eUnder argon. fCatalyst (15 mol %). gCatalyst (25 mol %). hNot
detected.
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the yield drastically dropped to 22% even after continuation of
the reaction for 24 h (entry 10). Surprisingly, the change of
catalyst loading (entries 11, 12) led to a considerable decrease in
the yield of the desired product (4a). The 5-annulation was
unsuccessful in the absence of the catalyst under the same
reaction conditions (entry 13).
The substrate scope of the dual α-C(sp3)-H-functionalized 5-

annulation was investigated using a wide range of primary
aliphatic amines (2a−f, Scheme 2) and aromatic 1,2-diketones

(1) under the developed optimized reaction conditions (entry 8,
Table 1). The ester-substituted primary amine (2b, Scheme 2)
and phenanthrenequinone (1a) as well as pyrene-based 1,2-
diketones (1b) smoothly transformed into the corresponding
desired products (4b, 4c, Scheme 2), which did not require any
change in the developed reaction conditions (entry 8, Table 1).
The presence of weak hydrophobic interactions through the

installation of the hydrocarbon residue is frequently needed for
the generation of organic nanomaterials.51−56 Herein, use of n-
butyl-, decyl-, and phenethylamine (2c−e) was successful in
achieving corresponding potent nanobuilding blocks (4d−f)
with high yields (77−90%) in 2−4 h. Hydrogen bonding is one
of the most common gluing interactions operating between the
organic nanounits, and the synthesis of an oxazole derivative
(4g) bearing the −OH group worked well with the coupling
partner aminoethanol (2f).
After dual α-C(sp3)-H functionalization of various primary

aliphatic amines, we turned our attention for making the strategy
more diverse and general through replacement of one of the α-
C(sp3)-H by −CO2H so that inexpensive and easily available

amino acids may be employed as the key substrate for
decarboxylative 5-annulation. To our delight, the attempted
reaction between phenyl glycine (3a) and phenanthrenequi-
none (1a) rapidly (3 h) furnished the desired product (4a,
Scheme 3) under similar reaction conditions (entry 8, Table 1)
with high yield (80%). Many aliphatic and aromatic residues,
phenolic −OH, alcoholic −OH, −SMe, and chirality were well
tolerated to produce a variety of polycyclic oxazoles in high yield,
and reaction rates were faster on use of a wide range of amino
acids (3a−k). In a competitive experiment of cleaving C(sp3)-H
versus −CO2H in glycine (3k) possessing two α-C(sp3)-H
groups as well as one α-CO2H group furnished oxazole
derivative 4p through a decarboxylation process exclusively,
rather than formation of the −CO2H group tethered oxazole
derivative (4q) by functionalization of consecutive two C(sp3)-
H. Thus, C-CO2H breaking is more favorable under the catalytic
conditions with respect to C(sp3)-H cleavage. The structure of
compound 4j is established by single-crystal X-ray diffraction
analysis.84 Further, 2,7-dibromo-phenanthrene-9,10-dione
under optimized reaction conditions (entry 8, Table 1) led to
exclusive construction of corresponding oxazole derivatives 4r
and 4s through the decarboxylation process.
Next, we envisioned functionalization of both α-C(sp3)-H

and β-C(sp3)-H under the reaction conditions leading to the
construction of valuable six-annulated polycyclic oxazine
derivatives (Scheme 4). To verify that we have employed
primary amines (5) possessing a β-C(sp3)-H, which was
obtained by just replacing the α-H with an alkyl group of 2
(Scheme 4). To our surprise, six-annulated desired oxazine
derivative 6a (Scheme 4) was rapidly (2 h) formed upon
treatment of 1-phenylethylamine (5a) with 9,10-phenanthrene-
quinone (1a) under the catalytic conditions in high yield (80%).
Herein, phenyl (6a, 6b, 6e, 6g, 6i) and activated aromatic
residues such as naphthyl (6c), 4-tolyl (6d), 4-hydroxyphenyl
(6h), and methyl [γ-C(sp3)-H, 6e) as well as the ester
functionality (6g, 6h) are well tolerated to furnish selectively
polyaromatic oxazine systems (6a−i) in 2−8 h with high yields
(68−81%). In the presence of the cyclohexyl group, the desired
product tautomerized to 6f through migration of a double bond.
Probably, high steric and electronic repulsion appeared due to
the presence of axial and equatorial C−H bonds (cyclohexyl
residue) in the close vicinity of the C=N bond and lone pair in
6fi, which led to release of unwanted repulsive forces to obtain
thermodynamically stable and fully aromatic 3-cyclohexyl-4H-
phenanthro[9,10-b][1,4]oxazines (6f).
To understand the reactivity and versatility of the C(sp3)-H-

functionalized annulation strategy, we have replaced the R group
(5, Scheme 4) by a −CO2Et group in the aliphatic amines (7a−
c, Scheme 5). To our surprise, a 6-annulation reaction occurred
under the reaction conditions through α-C(sp3)-H functional-
ization of the primary aliphatic amines as well as an O−C
coupling with the ester group involving the release of −OEt to
afford valuable polynuclearoxazine-2-ones (8a−c). The molec-
ular-iodine-catalyzed synthesis of 3-alkyl-2H-phenanthro[9,10-
b][1,4]oxazin-2-one (8) was rapid (2−4.5 h) and high yielding
(72−77%). Formation of all new oxazoles, oxazines, oxazine-2-
ones, and analogues was confirmed by spectroscopic analyses,
recorded melting points (Supporting Information), and also
single-crystal X-ray diffraction analyses of 4j84 and 6a.85 It is
worthy to note that, although most of the reported metal
catalysts for C−H-activated functionalization reactions are
moisture-sensitive, herein, the catalyst I2 efficiently performed

Scheme 2. Dual α-C(sp3)-H-Functionalized 5-Annulation to
Oxazoles
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the diverse C−H-functionalized annulation catalysis even in the
presence of water.
Out of several possibilities,86−91 the current catalysis is

expected to pass through the initial formation of a monoimine
IA and IB, which may proceed through activation of an α-
C(sp3)-H subsequent formation of a five-membered transition
state (II) with the catalyst (I2) to intermediates IIIA and IIIB
(Scheme 6). The formation of intermediates IA and IB, as well
as IIIA and IIIB, was detected in the mass spectral analyses of
the ongoing reaction (Supporting Information). A second α-
C(sp3)-H activation of IIIA with the close vicinity of the iodine
substituent possessing lone pairs and larger size (IV)may release
HI to furnish the dual α-C(sp3)-H-functionalized 5-annulated
product (4a, path a). On the other hand, decarboxylative α-
C(sp3)-H 5-annulation of IIIB is possibly passing through a six-
membered transition state (V) to 4i (path b). In both cases, the
generated HI is expected to oxidize immediately by aerial O2 to
regenerate I2 for the next catalytic cycle. The role of inexpensive
O2 as an oxidant was verified (entry 10, Table 1) by performing
the reaction in the absence of O2 (argon atmosphere) where the
yield of 4a drastically reduced (22%) in the presence of the
catalyst. Herein, decarboxylation through a six-membered

transition state (V, path b, Scheme 6) is energetically more
favorable than the second α-C(sp3)-H activation by a four-
membered one (IV, path a), which was reflected in the 5-
annulation of glycine to produce exclusively 4p instead of 4q.
The 6-annulation is expected to proceed in a similar fashion

through the initial formation of a monoimine VI (Scheme 7),
which may proceed via an iodine-mediated activation of an α-
C(sp3)-H through an eight-membered transition state (VII).
Removal of HI leads to the generation of the putative
intermediate VIII, which further tautomerizes to transition
state IX. It undergoes O−C coupled cyclization, oxidative C=N
formation (X) to desired product 6, and the regeneration of
molecular iodine for the next catalytic cycle.
Next, we moved to investigate morphological characteristics

of some final compounds through fabrication by the spin coating
method. Thus, we choose three representative compounds,
namely, 4n, 6b, and 6h, carrying strong aromatic electron
clouds, polar functional groups, phenolic −OH, van der Waals
interaction, and π−π stacking attractive forces, which might
operate in between the small organic molecules (nanobuilding
block) to fabricate the desired organic nanomaterials through
the spin coating, deep coating, and Langmuir−Blodget

Scheme 3. Decarboxylative α-C(sp3)-H-Functionalized 5-Annulation
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techniques. The SEM images of the spin-coated materials
displayed nanomorphologies such as the existence of the rod-
like structure of compound 4n (Figure 2), the sheet-like
architecture of compound 6b (Figure 3), and the flower-like
nanostructure of compound 6h (Figure 4). We are now
investigating the development of their innovative optical,
nanoelectronics, and I−V characteristics for potential applica-
tion in the valuable solar cell, supercapacitor, and nonvolatile
memory devices.

■ CONCLUSIONS
In conclusion, we have demonstrated a general nonmetallic
synthetic strategy for diverse C(sp3)-H functionalization of
unprotected primary aliphatic amines with an I2 catalyst to
intermolecular 5- and 6-annulation. A variety of unsubstituted,
substituted, acid, ester, alcohol, and thiol derivatives of primary

amines and their chiral analogues were successfully coupled to
1,2-diketone analogues to obtain a series of new polyaromati-
coxazoles, 1,4-oxazines, oxazin-2-one, and chiral heterocycles
with rapid reaction rates and high yields. This newly established
I2-catalyzed α,α-C(sp

3)-H, decarboxylative α-C(sp3)-H, lacton-
ized α-C(sp3)-H, and α,β-C(sp3)-H-functionalized 5- and 6-
annulation as well as α-C(sp3)-H-activated 6-lactonization of
primary aliphatic amines will open up another avenue for
developing a metal-free sustainable strategy for simple, rapid,
and diverse construction of functional-group-decorated hetero-
aromatics, which will find considerable application in organic
synthesis, medicinal chemistry, materials science, and organic
nanoelectronics for smart devices.

■ EXPERIMENTAL SECTION
General Methods. All reagents were purchased from

commercial suppliers and used without further purification.
Petroleum ether used in our experiments was in the boiling
range of 60−80 °C. Column chromatography was performed on
silica gel (100−200 and 230−400 mesh). Reported melting
points are uncorrected. Prior to melting point determination,
recrystallization was carried out; for compounds whose NMR
spectra were taken in CDCl3, recrystallization was carried out in
CDCl3, and for those whoseNMR spectra were taken inDMSO-
d6, recrystallization was carried out in an ethyl acetate/hexane
mixture. 1H NMR and 13C NMR spectra were recorded at
ambient temperature in CDCl3/DMSO-d6 solution. Chemical
shifts are reported in ppm (δ) relative to internal reference
tetramethylsilane. Coupling constants are quoted in Hz (J).
Proton multiplicities are represented as s (singlet), d (doublet),
dd (doublet of doublet), t (triplet), q (quartet), and m
(multiplet). Splitting patterns that could not be interpreted
are designated as multiplet (m). Infrared spectra were recorded
on an FT-IR spectrometer in thin films. HR-MS data were

Scheme 4. α,β-C(sp3)-H-Functionalized 6-Annulation to
Oxazines

Scheme 5. α-C(sp3)-H-Functionalized Lactonization to
Oxazine-2-ones

Scheme 6. Mechanistic Hypothesis for I2-Catalyzed 5-
Annulation
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acquired by electron spray ionization on a Q-tof-micro
quadruple mass spectrophotometer. X-ray crystallographic
data were taken using an X-ray diffractometry instrument.
General Procedure for the Synthesis of Oxazoles 4a−s

(GP-I). To a mixture of phenanthrenequinone (1, 1.0 mmol)
and amine (2a−f)/amino acid (3a−k, 1.1 mmol, 1.1 equiv.) in
dioxane (2 mL), I2 (20 mol %, 50 mg) was added, and the
solution was refluxed under air to complete the reaction, which

was monitored by TLC. Dioxane was removed from the reaction
mixture, and the residue was purified by silica gel column
chromatography using a suitable eluent to afford the desired
product.

2-Phenylphenanthro[9,10-d]oxazole (4a).92−94 The com-
pound was prepared following GP-I employing 9,10-phenan-
threnequinone (1.0 mmol, 208 mg) and benzylamine (1.1
mmol, 0.12 mL). Purification by column chromatography (8%

Scheme 7. Mechanistic Hypothesis for I2-Catalyzed 6-Annulation

Figure 2. Rod-like nanostructures of 4n observed in SEM imaging.

Figure 3. Sheet-like nanostructures of 6b observed in SEM imaging.
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EtOAc-pet ether) afforded the title compound as a white solid
(289 mg, 0.98 mmol, 98% yield). 1H NMR (300 MHz, CDCl3):
δ 7.54−7.59 (m, 3H), 7.61−7.75 (m, 4H), 8.27−8.37 (m, 3H),
8.59−8.66 (m, 3H); 13C{1H} NMR (75MHz, CDCl3): δ 120.7,
120.9, 122.8, 123.3, 123.6, 126.0, 126.1, 126.2, 127.0, 127.1,
127.3, 127.5, 128.8, 129.1, 130.8, 135.4, 144.7, 162.0; FT-IR
(KBr, cm−1): 708.3, 755.3, 1058.9, 1235.1, 1450.9, 1480.0,
1548.4, 2853.2, 2923.7.
Ethyl Phenanthro[9,10-d]oxazole-2-carboxylate (4b). The

compound was prepared following GP-I employing 9,10-
phenanthrenequinone (1.0 mmol, 208 mg) and ethyl glycinate
(1.1 mmol, 112 mg). Purification by column chromatography
(8% EtOAc-pet ether) afforded the title compound as a yellow
solid (239 mg, 0.82 mmol, 82% yield). mp 168−170 °C; 1H
NMR (300 MHz, CDCl3): δ 1.50 (t, J = 7.2 Hz, 3H), 4.58 (q, J1
= 6.9 Hz, J2 = 15 Hz, 2H), 7.49−7.68 (m, 4H), 8.23−8.26 (m,
1H), 8.53−8.59 (m, 3H); 13C{1H} NMR (75 MHz, CDCl3): δ
14.3, 29.7, 63.0, 120.3, 121.7, 123.1, 123.4, 123.7, 125.6, 126.9,
127.5, 127.8, 127.9, 129.2, 130.6, 134.7, 146.3, 151.8, 156.3; FT-
IR (KBr, cm−1): 722.9, 755.4, 1148.0, 1278.8, 1451.1, 1534.4,
1733.4, 2857.4, 2925.2; HRMS (ESI-TOF) m/z calcd for
C18H14NO3 [M + H]+: 292.0974, found 292.0971.
Ethyl Pyreno[4,5-d]oxazole-10-carboxylate (4c). The com-

pound was prepared following GP-I employing pyrene-4,5-
dione (1.0 mmol, 232 mg) and ethyl glycinate (1.1 mmol, 112
mg). Purification by column chromatography (3% EtOAc-pet
ether) afforded the title compound as a reddish orange solid
(268 mg, 0.85 mmol, 85% yield). mp 146−148 °C; 1H NMR
(300 MHz, CDCl3): δ 11.54 (t, J = 7.2 Hz, 3H), 4.63 (q, J1 = 12
Hz, J2 = 7.2 Hz, 2H), 7.97−8.13 (m, 4H), 8.18 (d, J = 6.9 Hz,
2H), 8.53 (d, J = 7.5 Hz, 1H), 8.81 (d, J = 7.5 Hz, 1H); 13C{1H}
NMR (75 MHz, CDCl3): δ 14.3, 63.1, 119.0, 119.5, 120.6,
123.5, 124.4, 124.7, 126.1, 126.4, 126.7, 126.8, 127.3, 128.2,
131.7, 131.8, 135.5, 147.1, 152.1, 156.3; FT-IR (KBr, cm−1):
668.9, 1215.8, 1732.5, 2927.6, 3019.7; HRMS (ESI-TOF) m/z
calcd for C20H14NO3 [M + H]+: 316.0974, found 316.0977.
2-Propylphenanthro[9,10-d]oxazole (4d).92−94 The com-

pound was prepared following GP-I employing 9,10-phenan-
threnequinone (1.0 mmol, 208 mg) and butyl amine (1.1 mmol,
0.11 mL). Purification by column chromatography (2% EtOAc-
pet ether) afforded the title compound as a yellow solid (235mg,
0.90 mmol, 90% yield). 1H NMR (300 MHz, CDCl3): δ 1.02 (t,
J = 6.9 Hz, 3H), 1.86−1.99 (m, 2H), 2.97 (t, J = 7.5 Hz, 2H),
7.50−7.64 (m, 4H) 8.08−8.11 (m, 1H), 8.42 (d, J = 7.8 Hz,
1H), 8.58 (q, J1 = 4.5 Hz, J2 = 7.8 Hz, 2H); 13C{1H} NMR (75
MHz, CDCl3): δ 13.9, 21.0, 30.8, 120.6, 121.1, 122.7, 123.4,
123.7, 128.8, 126.06, 126.13, 127.1, 127.3, 128.7, 128.9, 134.2,
144.7, 166.1.

2-Nonylphenanthro[9,10-d]oxazole (4e). The compound
was prepared following GP-I employing 9,10-phenanthrenequi-
none (1.0mmol, 208mg) and decyl amine (1.1mmol, 0.22mL).
Purification by column chromatography (2% EtOAc-pet ether)
afforded the title compound as a brown solid (297 mg, 0.86
mmol, 86% yield). mp 52−54 °C; 1HNMR (300MHz, CDCl3):
δ 0.84−0.89 (m, 3H), 1.34−1.47 (m, 12H), 1.88−1.96 (m, 2H),
3.02 (t, J = 7.2 Hz, 2H), 7.53−7.70 (m, 4H), 7.13 (d, J = 7.8 Hz,
1H), 8.48 (d. J = 7.8 Hz, 1H), 8.58−8.61 (m, 2H); 13C{1H}
NMR (75 MHz, CDCl3): δ 14.0, 22.6, 27.3, 28.8, 29.2, 29.3,
31.8, 120.4, 120.9, 122.5, 123.2, 123.5, 125.6, 125.8, 126.0,
127.0, 127.1, 128.5, 128.7, 134.1, 144.5, 166.0; FT-IR (KBr,
cm−1): 754.9, 1215.6, 1346.8, 1560.2, 1579.6, 2855.1, 2927.0;
HRMS (ESI-TOF) m/z calcd for C24H28NO [M + H]+:
346.2171, found 346.2166.

2-Benzylphenanthro[9,10-d]oxazole (4f). The compound
was prepared following GP-I employing 9,10-phenanthrenequi-
none (1.0 mmol, 208 mg) and phenethylamine (1.1 mmol, 0.14
mL). Purification by column chromatography (3% EtOAc-pet
ether) afforded the title compound as a yellow solid (238 mg,
0.77 mmol, 77% yield). mp 98−100 °C; 1H NMR (300 MHz,
CDCl3): δ 4.41 (s, 2H), 7.25−7.35 (m, 3H), 7.43 (d, J = 7.2 Hz,
2H), 7.61−7.71 (m, 4H), 8.14−8.17 (m, 1H), 8.49 (d, J = 7.8
Hz, 1H), 8.66−8.70 (m, 2H); 13C{1H} NMR (75 MHz,
CDCl3): δ 35.2, 120.6, 120.9, 122.6, 123.3, 123.5, 125.8, 126.0,
126.1, 127.1, 127.2, 128.6, 128.7, 128.8, 134.2, 135.3, 145.1,
163.7; FT-IR (KBr, cm−1): 711.3, 760.3, 1111.9, 1235.1, 1450.9,
1480.0, 1556.4, 2859.3, 2925.9; HRMS (ESI-TOF) m/z calcd
for C22H16NO [M + H]+: 310.1232, found 310.1236.

2-(Phenanthro[9,10-d]oxazol-2-yl)ethanol (4g). The com-
pound was prepared following GP-I employing 9,10-phenan-
threnequinone (1.0 mmol, 208 mg) and ethanolamine (1.1
mmol, 0.07 mL). Purification by column chromatography (20%
EtOAc-pet ether) afforded the title compound as a yellow solid
(204 mg, 0.82 mmol, 82% yield). mp 174−176 °C; 1H NMR
(300 MHz, DMSO-d6): δ 4.99 (s, 2H), 6.14 (brs, 1H), 7.76−
7.98 (m, 4H), 8.22−8.28 (m, 1H), 8.63 (d, 1H, J = 10.8 Hz),
9.25 (t, 2H, J = 9 Hz); 13C{1H} NMR (75 MHz, DMSO-d6): δ
56.1, 119.8, 119.9, 121.6, 123.6, 123.8, 125.0, 126.0, 126.4,
127.4, 127.5, 127.8, 128.1, 133.0, 143.7, 164.5; FT-IR (KBr,
cm−1): 669.1, 756.6, 1215.9, 1408.8, 1456.3, 1634.2, 1727.9,
2927.1, 3019.8; HRMS (ESI-TOF) m/z calcd for C16H12NO2
[M + H]+: 250.0868, found 250.0871.

4-(Phenanthro[9,10-d]oxazol-2-yl-methyl)phenol (4h).
The compound was prepared following GP-I employing 9,10-
phenanthrenequinone (1.0 mmol, 208 mg) and tyrosine (1.1
mmol, 200 mg). Purification by column chromatography (20%
EtOAc-pet ether) afforded the title compound as a yellow solid
(195 mg, 0.60 mmol, 60% yield). mp 200−202 °C; 1H NMR

Figure 4. Flower-like nanostructures of 6h observed in SEM imaging.

ACS Omega Article

DOI: 10.1021/acsomega.9b03501
ACS Omega 2019, 4, 20410−20422

20416

http://dx.doi.org/10.1021/acsomega.9b03501


(300 MHz, DMSO-d6): δ 4.29 (s, 2H), 6.72 (d, J = 8.4 Hz, 2H),
7.20 (d, J = 8.4 Hz, 2H), 7.60−7.75 (m, 4H), 8.03−8.06 (m,
1H), 8.28−8.31 (m, 1H), 8.79 (t, J = 6.6 Hz, 2H), 9.37 (s, 1H);
13C{1H} NMR (75 MHz, DMSO-d6): δ 33.0, 115.0, 119.7,
119.8, 121.7, 123.5, 123.7, 124.9, 125.1, 125.8, 126.1, 127.2,
127.3, 127.7, 127.8, 129.5, 133.2, 143.6, 156.0, 164.4; FT-IR
(KBr, cm−1): 723.7, 756.2, 809.8, 1256.7, 1450.9, 1518.7,
1594.6, 2924.0, 3399.9; HRMS (ESI-TOF) m/z calcd for
C22H16NO2 [M + H]+: 326.1181, found 326.1178.
2-Methylphenanthro[9,10-d]oxazole (4i).92−94 The com-

pound was prepared following GP-I employing 9,10-phenan-
threnequinone (1.0 mmol, 208 mg) and alanine (1.1 mmol, 98
mg). Purification by column chromatography (3% EtOAc-pet
ether) afforded the title compound as a light green solid (198
mg, 0.85 mmol, 85% yield). mp 128−130 °C; 1H NMR (300
MHz, CDCl3): δ 2.72 (s, 3H), 7.48−7.68 (m, 4H), 8.07−8.09
(m, 1H), 8.41 (d, J = 7.8 Hz, 1H), 8.60 (d, J = 7.5 Hz, 2H);
13C{1H} NMR (75 MHz, CDCl3): δ 14.5, 120.4, 120.9, 122.4,
123.2, 123.5, 125.7, 125.85, 125.92, 127.0, 127.2, 128.5, 128.7,
134.2, 144.7, 162.3; FT-IR (KBr, cm−1): 723.1, 753.9, 1032.8,
1231.8, 1451.8, 1587.7, 1737.7, 2853.7, 2924.4.
2-Isopropylphenanthro[9,10-d]oxazole (4j). The com-

pound was prepared following GP-I employing 9,10-phenan-
threnequinone (1.0 mmol, 208 mg) and valine (1.1 mmol, 129
mg). Purification by column chromatography (2% EtOAc-pet
ether) afforded the title compound as a yellow solid (232 mg,
0.89 mmol, 89% yield). mp 76−78 °C; 1H NMR (300 MHz,
CDCl3): δ 0.74 (s, J = 6.9 Hz, 6H), 2.54−2.63 (m, 1H), 6.73−
6.89 (m, 4H), 7.36 (d, J = 7.5 Hz, 1H), 7.70 (d, J = 7.8 Hz, 1H),
7.80−7.83 (m, 2H); 13C{1H} NMR (75 MHz, CDCl3): δ 20.7,
29.1, 120.5, 121.0, 122.6, 123.3, 123.5, 125.7, 125.9, 126.1,
127.0, 127.2, 128.5, 128.7, 134.0, 144.4; FT-IR (KBr, cm−1):
722.7, 730.7, 755.7, 1033.7, 1078.8, 1350.7, 1450.3, 1558.0,
1578.4, 2928.9, 2962.1; HRMS (ESI-TOF) m/z calcd for
C18H16NO [M + H]+: 262.1232, found 262.1229.
10-Isopropylpyreno[4,5-d]oxazole (4k).The compoundwas

prepared following GP-I employing pyrene-4,5-dione (1.0
mmol, 232 mg) and valine (1.1 mmol, 129 mg). Purification
by column chromatography (2% EtOAc-pet ether) afforded the
title compound as a yellow solid (256 mg, 0.90 mmol, 90%
yield). mp 96−98 °C; 1HNMR (300MHz, CDCl3): δ 1.61 (d, J
= 6.9 Hz, 6H), 3.43−3.52 (m, 1H), 7.95−8.13 (m, 6H), 8.38 (d,
J = 7.5 Hz, 1H); 8.72 (d, J = 7.8 Hz, 1H); 13C{1H} NMR (75
MHz, CDCl3): δ 20.8, 29.3, 117.4, 120.0, 120.3, 122.9, 124.8,
125.2, 126.0, 126.3, 127.3, 128.0, 131.7, 131.8, 145.2, 170.4; FT-
IR (KBr, cm−1): 716.1, 826.2, 1178.6, 1303.8, 1564.2, 1603.8,
1726.9, 2925.6, 2969.4; HRMS (ESI-TOF) m/z calcd For
C21H16NO [M + H]+: 286.1232, found 286.1227.
2-Isobutylphenanthro[9,10-d]oxazole (4l). The compound

was prepared following GP-I employing 9,10-phenanthrenequi-
none (1.0 mmol, 208 mg) and leucine (1.1 mmol, 144 mg).
Purification by column chromatography (2% EtOAc-pet ether)
afforded the title compound as a light brown solid (253 mg, 0.92
mmol, 92% yield). mp 68−70 °C; 1HNMR (300MHz, CDCl3):
δ 1.03 (d, J = 6.6 Hz, 6H), 2.29−2.38 (m, 1H), 2.90 (d, J = 7.2
Hz, 2H), 7.54−7.67 (m, 4H), 8.13−8.16 (m, 1H), 8.46 (d, J =
7.8 Hz, 1H), 8.60−8.65 (m, 2H); 13C{1H} NMR (75 MHz,
CDCl3): δ 22.5, 27.9, 37.8, 120.6, 121.1, 122.7, 123.4, 123.6,
125.8, 126.05, 126.14, 127.1, 127.3, 128.6, 128.9, 134.3, 144.7,
165.5; FT-IR (KBr, cm−1): 724.3, 751.8, 1051.7, 1323.7, 1450.5,
1556.5, 1578.9, 2870.9, 2926.6, 2959.9; HRMS (ESI-TOF)m/z
calcd for C19H18NO [M + H]+: 276.1388, found 276.1393.

(R)-2-sec-Butylphenanthro[9,10-d]oxazole (4m). The com-
pound was prepared following GP-I employing 9,10-phenan-
threnequinone (1.0 mmol, 208 mg) and isoleucine (1.1 mmol,
144 mg). Purification by column chromatography (2% EtOAc-
pet ether) afforded the title compound as yellow oil (250 mg,
0.91 mmol, 91% yield). [α]D

20: +1.46° (c 2.667, CHCl3);
1H

NMR (300MHz, CDCl3): δ 0.95 (t, J = 7.5 Hz, 3H), 1.47 (d, J =
6.9 Hz, 3H), 1.74−1.83(m, 1H), 1.94−2.10 (m, 1H), 3.13−3.20
(m, 1H), 7.56−7.67 (m, 4H), 8.16−8.19 (m, 1H), 8.45−8.48
(m, 1H), 8.64−8.69 (m, 2H); 13C{1H} NMR (75 MHz,
CDCl3): δ 11.8, 18.3, 28.4, 36.1, 120.6, 121.1, 122.7, 123.3,
123.6, 125.7, 125.9, 126.2, 126.5, 127.0, 127.2, 128.5, 128.8,
134.1, 144.5, 169.4; FT-IR (KBr, cm−1): 724.1, 754.9, 1053.2,
1324.3, 1452.1, 1521.4, 1578.5, 1618.7, 2932.3, 2967.9; HRMS
(ESI-TOF) m/z calcd for C19H18NO [M + H]+: 276.1388,
found 276.1383.

2-(2-(Methylthio)ethyl)phenanthro[9,10-d]oxazole (4n).
The compound was prepared following GP-I employing 9,10-
phenanthrenequinone (1.0 mmol, 208 mg) andmethionine (1.1
mmol, 164 mg). Purification by column chromatography (3%
EtOAc-pet ether) afforded the title compound as a deep yellow
solid (270 mg, 0.92 mmol, 92% yield). mp 82−84 °C; 1H NMR
(300MHz, CDCl3): δ 2.17 (s, 3H), 3.07 (t, J = 7.5 Hz, 2H), 3.33
(s, J = 7.5 Hz, 2H), 7.57−7.69 (m, 4H), 8.11 (d, J = 7.5 Hz, 1H),
8.44 (d, J = 7.8 Hz, 1H), 8.60 (t, J = 4.1 Hz, 2H); 13C{1H} NMR
(75MHz, CDCl3): δ 15.6, 29.3, 31.3, 120.6, 120.9, 122.6, 123.4,
123.6, 125.9, 126.0, 126.2, 127.2, 127.3, 128.7, 128.9, 134.2,
144.8, 163.9; FT-IR (KBr, cm−1): 726.6, 763.0, 1054.3, 1321.7,
1432.1, 1558.7, 1576.7, 2853.3, 2922.5; HRMS (ESI-TOF)m/z
calcd for C18H16NOS [M + H]+: 294.0953, found 294.0957.

1-(Phenanthro[9,10-d]oxazol-2-yl)ethanol (4o). The com-
pound was prepared following GP-I employing 9,10-phenan-
threnequinone (1.0 mmol, 208 mg) and threonine (1.1 mmol,
131 mg). Purification by column chromatography (10% EtOAc-
pet ether) afforded the title compound as a yellow solid (218mg,
0.83 mmol, 83% yield). mp 178−180 °C; 1H NMR (300 MHz,
CDCl3): δ 1.61 (dd, J1 = 1.8 Hz, J2 = 1.8 Hz, 3H), 5.04−5.10 (m,
1H), 6.00 (brs, 1H), 7.66−7.78 (m, 4H), 8.19 (d, J = 7.5 Hz,
1H), 8.36 (d, J = 7.8 Hz, 1H), 8.89 (t, J = 8.1 Hz, 2H); 13C{1H}
NMR (75 MHz, CDCl3): δ 21.0, 62.1, 119.8, 121.6, 123.6,
123.8, 125.0, 125.8, 126.3, 127.3, 127.4, 127.8, 128.0, 132.8,
143.4, 167.1; FT-IR (KBr, cm−1): 715.8, 1245.9, 1426.8, 1501.3,
1654.2, 1729.5, 2928.7, 3087.5, 3325.6; HRMS (ESI-TOF)m/z
calcd for C17H14NO2 [M + H]+: 264.1025, found 264.1030.

Phenanthro[9,10-d]oxazole (4p).92−94 The compound was
prepared following GP-I employing 9,10-phenanthrenequinone
(1.0 mmol, 208mg) and glycine (1.1 mmol, 83mg). Purification
by column chromatography (1% EtOAc-pet ether) afforded the
title compound as a yellow solid (193 mg, 0.88 mmol, 88%
yield). 1H NMR (300 MHz, CDCl3): δ 7.59−7.70 (m, 4H),
8.12−8.18 (m, 2H), 8.47 (d, J = 7.5 Hz, 1H), 8.59 (d, J = 6.3 Hz,
2H); 13C{1H} NMR (75 MHz, CDCl3): δ 120.85, 120.93,
122.7, 123.4, 123.6, 126.0, 126.2, 127.2, 128.9, 129.4, 133.4,
144.5, 151.2.

5,10-Dibromo-2-methylphenanthro[9,10-d]oxazole (4r).
The compound was prepared following GP-I employing 1,6-
dibromo-9,10-phenanthrenequinone (1.0 mmol, 366 mg) and
alanine (1.1 mmol, 98 mg). Purification by column chromatog-
raphy (2% EtOAc-pet ether) afforded the title compound as a
light yellow solid (320 mg, 0.82 mmol, 82% yield). mp 150−152
°C; 1H NMR (300 MHz, CDCl3): δ 2.62 (s, 3H), 6.89 (d, 1H, J
= 2.4 Hz), 6.95−6.98 (m, 1H), 7.17−7.28 (m, 1H), 7.27 (d, 1H,
J = 8.7 Hz), 7.46−7.53 (m, 2H); 13C{1H} NMR (75 MHz,
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CDCl3): δ 15.1, 119.8, 119.9, 121.4, 121.8, 122.8, 128.9, 130.8,
131.4, 131.8, 135.0, 136.5, 137.6, 139.6, 140.2, 141.1, 164.0; FT-
IR (KBr, cm−1): 744.7, 756.8, 1046.7, 1228.8, 1399.8, 1601.7,
1775.6, 2826.8, 2970.5; HRMS (ESI-TOF) m/z calcd for
C16H10Br2NO [M +H]+: 389.9129, found 389.9133 (one of the
major peaks).
5,10-Dibromo-2-isopropylphenanthro[9,10-d]oxazole

(4s). The compound was prepared following GP-I employing
1,6-dibromo-9,10-phenanthrenequinone (1.0 mmol, 366 mg)
and valine (1.1 mmol, 129 mg). Purification by column
chromatography (1% EtOAc-pet ether) afforded the title
compound as a light yellow solid (335 mg, 0.80 mmol, 80%
yield). mp 118−120 °C; 1H NMR (300 MHz, CDCl3): δ 1.25
(d, J = 6 Hz, 6H), 2.85−2.94 (m, 1H), 6.98−7.04 (m, 1H),
7.07−7.11 (m, 1H), 7.32−7.41 (m, 1H), 7.53−7.66 (m, 3H);
13C{1H} NMR (75 MHz, CDCl3): δ 21.1, 30.2, 119.1, 119.8,
120.6, 122.3, 123.0, 125.5, 128.5, 130.3, 133.7, 138.7, 140.1,
140.6; FT-IR (KBr, cm−1): 701.7, 748.7, 801.7, 1051.7, 1101.9,
1299.7, 1508.7, 1602.0, 1659.4, 2889.7, 2971.2; HRMS (ESI-
TOF) m/z calcd for C18H14Br2NO [M + H]+: 417.9442, found
417.9437 (one of the major peaks).
General Procedure for the Synthesis of Oxazines 6a-i

(GP-II). To a mixture of phenanthrenequinone (1, 1.0 mmol)
and α-substituted amine (5a-e)/amino acid ester (5f, g, 1.1
mmol, 1.1 equiv.) in dioxane (2 mL), I2 (20 mol %, 50 mg) was
added, and the solution was refluxed under air to complete the
reaction, which was monitored by TLC. Dioxane was removed
from the reaction mixture, and the residue was purified by silica
gel column chromatography using a suitable eluent to afford the
desired product.
3-Phenyl-2H-Phenanthro[9,10-b][1,4]oxazine (6a). The

compound was prepared following GP-II employing 9,10-
phenanthrenequinone (1.0 mmol, 208 mg) and α-methylben-
zylamine (1.1 mmol, 0.14 mL). Purification by column
chromatography (2% EtOAc-pet ether) afforded the title
compound as a yellow solid (247 mg, 0.80 mmol, 80% yield).
mp 136−138 °C; 1H NMR (300 MHz, CDCl3): δ 5.22 (s, 2H),
7.49−7.68 (m, 7H), 8.10 (t, J = 3.6 Hz, 2H), 8.25−8.28 (m,
1H), 8.61 (t, J = 9.3 Hz, 2H), 8.74 (d, J = 8.1 Hz, 1H); 13C{1H}
NMR (75 MHz, CDCl3): δ 62.8, 122.5, 122.7, 122.77, 122.82,
124.7, 124.8, 125.1, 126.7, 126.8, 127.0, 127.1, 127.2, 128.8,
130.2, 130.7, 130.9, 135.8, 139.0, 154.7; FT-IR (KBr, cm−1):
722.6, 752.0, 1127.5, 1324.6, 1449.1, 2853.6, 2924.5; HRMS
(ESI-TOF) m/z calcd for C22H16NO [M + H]+: 310.1232,
found 310.1237.
11-Phenyl-10H-pyreno[4,5-b][1,4]oxazine (6b). The com-

pound was prepared following GP-II employing pyrene-4,5-
dione (1.0 mmol, 232 mg) and α-methylbenzylamine (1.1
mmol, 0.14 mL). Purification by column chromatography (20%
DCM-pet ether) afforded the title compound as a yellow solid
(246 mg, 0.74 mmol, 74% yield). mp 146−148 °C; 1H NMR
(300 MHz, CDCl3): δ 5.26 (s, 2H), 7.457.49 (m, 3H), 7.90−
8.11 (m, 8H), 8.43 (d, J = 7.8 Hz, 1H), 8.90 (dd, J1 = 1.5 Hz, J2 =
6 Hz, 1H); 13C{1H} NMR (75 MHz, CDCl3): δ 62.8, 119.8,
120.0, 121.5, 123.8, 124.3, 125.3, 125.6, 126.0, 126.3, 126.7,
127.7, 128.7, 129.2, 130.9, 131.0, 135.7, 140.0, 155.0; FT-IR
(KBr, cm−1): 717.3, 825.1, 1051.7, 1384.6, 1455.5, 1567.5,
1646.3, 2857.4, 2932.2; HRMS (ESI-TOF) m/z calcd for
C24H16NO [M + H]+: 334.1232, found 334.1227.
3-(Naphthalen-2-yl)-2H-phenanthro[9,10-b][1,4]oxazine

(6c). The compound was prepared following GP-II employing
9,10-phenanthrenequinone (1.0 mmol, 208 mg) and 1-
(naphthalen-2-yl)-ethylamine (1.1 mmol, 0.13 mL). Purifica-

tion by column chromatography (2% EtOAc-pet ether) afforded
the title compound as a yellow crystalline solid (291 mg, 0.81
mmol, 81% yield). mp 104−106 °C; 1H NMR (300 MHz,
CDCl3): δ 5.13 (s, 2H), 7.19−7.74 (m, 8H), 7.80−7.99 (m,
3H), 8.28−8.34 (m, 1H), 8.58−8.78 (m, 3H); 13C{1H} NMR
(75 MHz, CDCl3): δ 65.6, 122.4, 122.67, 122.74, 122.9, 124.2,
124.6, 125.0, 125.2, 125.3, 125.9, 126.3, 126.6, 126.8, 127.0,
127.2, 127.3, 128.3, 128.6, 130.1, 130.7, 133.0, 134.1, 134.5,
139.0, 157.1; FT-IR (KBr, cm−1): 718.6, 749.3, 756.5, 1026.2,
1235.2, 1508.1, 1674.4, 2852.0, 2923.0; HRMS (ESI-TOF)m/z
calcd for C26H18NO [M + H]+: 360.1388, found 360.1393.

3-p-Tolyl-2H-phenanthro[9,10-b][1,4]oxazine (6d). The
compound was prepared following GP-II employing 9,10-
phenanthrenequinone (1.0 mmol, 208 mg) and 1-(4-methyl-
phenyl)-ethylamine (1.1 mmol, 0.16 mL). Purification by
column chromatography (2% EtOAc-pet ether) afforded the
title compound as a yellow solid (242 mg, 0.75 mmol, 75%
yield). mp 118−120 °C; 1H NMR (300 MHz, CDCl3): δ 2.41
(s, 3H), 5.19 (s, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.54−7.68 (m,
4H), 7.99 (d, J = 8.1 Hz, 2H), 8.24−8.27 (m, 1H), 8.58−8.64
(m, 2H), 8.73−8.76 (m, 1H); 13C{1H} NMR (75 MHz,
CDCl3): δ 21.5, 62.6, 122.3, 122.5, 122.6, 124.6, 124.7, 124.9,
126.5, 126.6, 127.0, 129.4, 130.1, 130.4, 133.0, 138.8, 141.3,
154.7; FT-IR (KBr, cm−1): 721.9, 755.9, 1032.4, 1126.2, 1179.5,
1384.2, 1494.5, 1608.1, 2853.1, 2923.9; HRMS (ESI-TOF)m/z
calcd for C23H18NO [M + H]+: 324.1388, found 324.1386.

2-Methyl-3-phenyl-2H-phenanthro[9,10-b][1,4]oxazine
(6e). The compound was prepared following GP-II employing
9,10-phenanthrenequinone (1.0 mmol, 208 mg) and α-ethyl-
benzylamine (1.1 mmol, 0.16 mL). Purification by column
chromatography (2% EtOAc-pet ether) afforded the title
compound as a yellow solid (258 mg, 0.80 mmol, 80% yield).
mp 172−174 °C; 1H NMR (300 MHz, CDCl3): δ 1.43 (d, J =
6.6 Hz, 3H), 5.80 (q, J = 6.9 Hz, 1H), 7.42−7.72 (m, 7H), 8.12−
8.15 (m, 2H), 8.30−8.33 (m, 1H), 8.60−8.66 (m, 2H), 8.82
(dd, J1 = 0.6 Hz, J2 = 9 Hz, 1H); 13C{1H} NMR (75 MHz,
CDCl3): δ 16.1, 67.6, 122.4, 122.5, 122.7, 123.4, 124.9, 125.5,
126.6, 126.7, 126.8, 127.0, 127.9, 128.4, 128.7, 130.0, 130.7,
132.8, 135.4, 136.3, 157.8; FT-IR (KBr, cm−1): 682.5, 760.5,
1057.9, 1427.8, 1564.1, 2853.9, 2925.5; HRMS (ESI-TOF)m/z
calcd for C23H18NO [M + H]+: 324.1388, found 324.1383.

3-Cyclohexyl-4H-phenanthro[9,10-b][1,4]oxazine (6f).
The compound was prepared following GP-II employing
9,10-phenanthrenequinone (1.0 mmol, 208 mg) and 1-cyclo-
hexylethylamine (1.1 mmol, 0.16 mL). Purification by column
chromatography (3% EtOAc-pet ether) afforded the title
compound as a pale yellow low melting solid (215 mg, 0.68
mmol, 68% yield). 1H NMR (300 MHz, CDCl3): δ 1.51−1.63
(m, 4H), 1.73−1.77 (m, 2H), 1.84−1.88 (m, 2H), 2.13−2.23
(m, 2H), 2.84−2.92 (m, 1H),6.81 (s, 1H), 7.52−7.64 (m, 5H),
8.05−8.08 (m, 1H), 8.26−8.28 (m, 1H), 8.66 (d, J = 8.1 Hz,
2H); 13C{1H} NMR (75 MHz, CDCl3): δ 26.0, 29.7, 31.7, 37.8,
99.6, 120.3, 121.1, 122.6, 123.4, 123.6, 123.9, 124.8. 125.2,
126.75, 126.83, 127.6, 128.0, 128.4, 147.8, 163.1; FT-IR (KBr,
cm−1): 754.3, 1215.7, 1450.9, 1632.5, 1728.5, 2854.6, 2927.0,
3019.2; HRMS (ESI-TOF)m/z calcd for C22H22NO [M +H]+:
316.1701, found 316.1697.

Ethyl 2-Phenyl-2H-phenanthro[9,10-b][1,4]oxazine-3-car-
boxylate (6g).95 The compound was prepared following GP-II
employing 9,10-phenanthrenequinone (1.0 mmol, 208 mg) and
phenylalanine ethyl ester (1.1 mmol, 193 mg). Purification by
column chromatography (8% EtOAc-pet ether) afforded the
title compound as a yellow solid (271 mg, 0.71 mmol, 71%
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yield). 1H NMR (300 MHz, CDCl3): δ 1.41 (t, J = 7.2 Hz, 3H),
4.41−4.46 (m, 2H), 6.60 (s, 1H), 7.17−7.22 (m, 3H), 7.33−
7.37 (m, 2H), 7.54−7.68 (m, 4H), 8.32−8.35 (m, 1H), 8.54
(dd, J1 = 8.1 Hz, J2 = 15 Hz, 2H), 8.64 (dd, J1 = 1.2 Hz, J2 = 15
Hz, 1H); 13C{1H} NMR (75 MHz, CDCl3): δ 14.1, 29.6, 62.2,
122.3, 122.7, 122.8, 123.4, 123.5, 124.4, 125.4, 126.7, 126.9,
127.4, 128.5, 128.6, 129.0, 129.5, 132.1, 135.6, 139.5, 147.4,
163.3.
Ethyl 2-Phenyl-2H-phenanthro[9,10-b][1,4]oxazine-3-car-

boxylate (6h). The compound was prepared following GP-II
employing 9,10-phenanthrenequinone (1.0 mmol, 208 mg) and
tyrosine ethyl ester (1.1 mmol, 209 mg). Purification by column
chromatography (15% EtOAc-pet ether) afforded the title
compound as a deep yellow solid (322 mg, 0.81 mmol, 81%
yield). mp 192−194 °C; 1HNMR (300MHz, CDCl3): δ 1.39 (t,
J = 7.2 Hz, 3H), 4.40 (q, J = 6.9 Hz, 2H), 6.49 (s, 1H), 6.60 (d, J
= 8.7 Hz, 2H), 7.20 (d, J = 10.5 Hz, 2H), 7.51−7.66 (m, 5H),
8.28 (d, J = 7.8 Hz, 1H), 8.46−8.57 (m, 2H), 8.65 (d, J = 8.1 Hz,
1H); 13C{1H} NMR (75 MHz, DMSO-d6): δ 13.5, 61.2, 70.8,
115.1, 121.5, 122.2, 122.47, 122.54, 122.8, 123.5, 124.7, 125.2,
125.8, 126.9, 127.3, 128.2, 128.3, 128.5, 130.8, 138.2, 148.1,
158.0, 161.9; FT-IR (KBr, cm−1): 724.4, 755.0, 1170.0, 1229.5,
1514.2, 1613.1, 1715.7, 2853.4, 2924.7, 3370.8; HRMS (ESI-
TOF) m/z calcd For C25H20NO4 [M + H]+: 398.1392, found
398.1388.
4,5-Dibromo-11-phenyl-10H-pyreno[4,5-b][1,4]oxazine

(6i). The compound was prepared following GP-II employing
4,5-dibromopyrene-4,5-dione (1.0 mmol, 390 mg) and α-
methylbenzylamine (1.1 mmol, 0.14 mL). Purification by
column chromatography (15% DCM-pet ether) afforded the
title compound as a bright yellow solid (344 mg, 0.70 mmol,
70% yield). mp 156−158 °C; 1H NMR (300 MHz, CDCl3): δ
4.93 (s, 2H), 7.64−7.68 (m, 3H), 8.10−8.30 (m, 8H); 13C{1H}
NMR (75 MHz, CDCl3): δ 60.7, 118.8, 119.0, 120.5, 122.8,
123.3, 124.3, 124.6, 124.7, 125.3, 125.7, 126.7, 127.7, 128.2,
129.9, 130.0, 135.1, 139.1, 155.0; FT-IR (KBr, cm−1): 720.2,
900.1, 1021.5, 1121.5, 1314.9, 1422.7, 1601.7, 1678.6, 2823.2,
2954.7; HRMS (ESI-TOF) m/z calcd for C24H14Br2NO [M +
H]+: 489.9442, found 489.9447 (one of the major peaks).
General Procedure for the Synthesis of Oxazine-2-

ones 8a−c (GP-III). To a mixture of phenanthrenequinone (1,
1.0 mmol) and amino acid ester (5i−k, 1.1 mmol, 1.1 equiv.) in
dioxane (2 mL), I2 (20 mol %, 50 mg) was added, and the
solution was refluxed under air to complete the reaction, which
was monitored by TLC. Dioxane was removed from the reaction
mixture, and the residue was purified by silica gel column
chromatography using a suitable eluent to afford the desired
product.
Ethyl 2-Phenyl-2H-phenanthro[9,10-b][1,4]oxazine-3-car-

boxylate (8a). The compound was prepared following GP-III
employing 9,10-phenanthrenequinone (1.0 mmol, 208 mg) and
alanine ethyl ester (1.1 mmol, 117 mg). Purification by column
chromatography (8% EtOAc-pet ether) afforded the title
compound as a yellow solid (201 mg, 0.77 mmol, 77% yield).
mp 198−200 °C; 1H NMR (300 MHz, CDCl3): δ 2.66 (s, 3H),
7.63−7.75 (m, 4H), 8.42 (d, J = 8.1 Hz, 1H), 8.56−8.62 (m,
2H), 8.77−8.79 (m, 1H); 13C{1H} NMR (75 MHz, CDCl3): δ
21.3, 122.4, 122.5, 122.7, 123.4, 126.9, 127.4, 127.7, 128.0,
128.3, 129.0, 130.8, 131.3, 141.1, 153.6; FT-IR (KBr, cm−1):
723.7, 763.3, 1086.3, 1396.5, 1731.5, 1741.8, 2853.0, 2923.3.
HRMS (ESI-TOF) m/z calcd For C17H12NO2 [M + H]+:
262.0868, found 262.0864.

3-Isopropyl-2H-phenanthro[9,10-b][1,4]oxazin-2-one
(8b). The compound was prepared following GP-III employing
9,10-phenanthrenequinone (1.0mmol, 208mg) and valine ethyl
ester (1.1 mmol, 145 mg). Purification by column chromatog-
raphy (3% EtOAc-pet ether) afforded the title compound as a
yellow solid (201 mg, 0.77 mmol, 77% yield). mp 148−150 °C;
1H NMR (300 MHz, CDCl3): δ 1.40−1.43 (m, 6H), 3.48−3.56
(m, 1H), 7.61−7.70 (m, 4H), 8.39 (d, J = 7.8 Hz, 1H), 8.50−
8.56 (m, 2H), 8.80 (d, J = 7.8 Hz, 1H). 13C{1H}NMR (75MHz,
CDCl3): δ 20.0, 32.1, 122.4, 122.6, 122.7, 123.4, 123.5, 126.9,
127.4, 127.6, 128.0, 128.6, 128.9, 131.2, 153.0, 160.5; FT-IR
(KBr, cm−1): 723.1, 751.1, 1036.3, 1451.7, 1623.9, 1731.3,
2853.6, 2925.8. HRMS (ESI-TOF) m/z calcd for C19H16NO2
[M + H]+: 290.1181, found 290.1176.

3-Isopropyl-2H-phenanthro[9,10-b][1,4]oxazin-2-one
(8c). The compound was prepared following GP-III employing
9,10-phenanthrenequinone (1.0 mmol, 208 mg) and leucine
ethyl ester (1.1 mmol, 159 mg). Purification by column
chromatography (2% EtOAc-pet ether) afforded the title
compound as a pale yellow solid (218 mg, 0.72 mmol, 72%
yield). mp 106−108 °C; 1H NMR (300 MHz, CDCl3): δ 1.01
(d, J = 6.6 Hz, 6H), 2.39−2.43 (m, 1H), 2.83 (d, J = 6.9 Hz, 2H),
7.54−7.66 (m, 4H), 8.25 (d, J = 7.8 Hz, 1H), 8.40−8.44 (m,
2H), 8.65−8.68 (m, 1H); 13C{1H} NMR (75 MHz, CDCl3): δ
22.6, 26.3, 42.5, 122.3, 122.4, 122.6, 123.2, 123.3, 126.8, 127.2,
127.5, 127.8, 128.3, 128.8, 131.0, 140.6, 153.4, 155.7. FT-IR
(KBr, cm−1): 725.2, 764.7, 1193.4, 1293.8, 1397.2, 1451.1,
1495.8, 1554.6, 1734.2, 2870.4, 2926.6, 2955.6. HRMS (ESI-
TOF) m/z calcd for C20H18NO2 [M + H]+: 304.1338, found
304.1333.
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