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Abstract

Analyses of 15,314 electron velocity distribution functions (VDFs) within ±2 hr of 52 

interplanetary (IP) shocks observed by the Wind spacecraft near 1 au are introduced. The electron 

VDFs are fit to the sum of three model functions for the cold dense core, hot tenuous halo, and 

field-aligned beam/strahl component. The best results were found by modeling the core as either a 

bi-kappa or a symmetric (or asymmetric) bi-self-similar VDF, while both the halo and beam/strahl 

components were best fit to bi-kappa VDF. This is the first statistical study to show that the core 

electron distribution is better fit to a self-similar VDF than a bi-Maxwellian under all conditions. 

The self-similar distribution deviation from a Maxwellian is a measure of inelasticity in particle 

scattering from waves and/or turbulence. The ranges of values defined by the lower and upper 

quartiles for the kappa exponents are κec ~ 5.40–10.2 for the core, κeh ~ 3.58–5.34 for the halo, 

and κeb ~ 3.40–5.16 for the beam/strahl. The lower-to-upper quartile range of symmetric bi-self-

similar core exponents is sec ~ 2.00–2.04, and those of asymmetric bi-self-similar core exponents 

are pec ~ 2.20–4.00 for the parallel exponent and qec ~ 2.00–2.46 for the perpendicular exponent. 

The nuanced details of the fit procedure and description of resulting data product are also 

presented. The statistics and detailed analysis of the results are presented in Paper II and Paper III 

of this three-part study.
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1. Background and Motivation

The solar wind is an ionized gas experiencing collective effects where Coulomb collisions 

occur, but the rates are often so low that, for instance, two constituent particle species, s′ 
and s, are not in thermodynamic or thermal equilibrium, i.e., (Ts′/Ts)tot ≠ 1 for s′ ≠ s, and 

the relevant scale lengths are orders of magnitude smaller than the collisional mean free path 

(e.g., Wilson et al. 2018). Therefore, for any process dependent on scales like the thermal 

gyroradii, ρcs, or inertial lengths, λs, the media is considered collisionless (see Appendix A 

for definitions). That the solar wind is a nonequilibrium, weakly collisional, kinetic gas 

results in multicomponent velocity distribution functions (VDFs) for both ions (e.g., Kasper 

et al. 2006, 2012, 2013; Maruca et al. 2011; Maruca & Kasper 2013; Wicks et al. 2016) and 

electrons (e.g., Schwartz & Marsch 1983; Maksimovic et al. 1997, 1998; Lin 1998; Pierrard 

et al. 1999, 2001; Štverák et al. 2008, 2009; Pulupa et al. 2014a).

The electron VDFs in the solar wind below ~1 keV are composed of a cold core with 

energies Eec ≾ 15 eV (e.g., Pilipp et al. 1987a, 1987b, 1987c, 1990; Maksimovic et al. 1997, 

1998; Bale et al. 2013; Pulupa et al. 2014a), a hot, tenuous halo with Eeh ≿ 20 eV (e.g., 

Maksimovic et al. 1997, 1998; Štverák et al. 2008, 2009; Pulupa et al. 2014a), and an 

antisunward, field-aligned beam called the strahl with Eeb ~ a few tens of eV (e.g., Crooker 

et al. 2003; Štverák et al. 2009; Bale et al. 2013; Graham et al. 2017, 2018; Horaites et al. 

2018; see, e.g., Figure 1 for an illustrative example). The electrons also dominate the solar 

wind heat flux (e.g., Crooker et al. 2003; Pagel et al. 2005, 2007; Bale et al. 2013), arising 

from the consistent skewness in the VDFs, specifically the halo and/or strahl components. 

Note that there also exists a suprathermal superhalo with Eesh ≿ 1 keV (e.g., Lin 1998; Wang 

et al. 2012, 2015), but these higher-energy electrons are not examined herein.

The three electron components below ~1 keV are predicted and observed to be coupled 

through multiple processes from wave–particle interactions (e.g., Phillips et al. 1989a, 

1989b; Vocks & Mann 2003; Vocks et al. 2005; Saito & Gary 2007; Saito et al. 2008; 

Pierrard et al. 2011, 2016; Yoon et al. 2012, 2015, 2016; Yoon 2014) to adiabatic transport 

effects (e.g., Schwartz & Marsch 1983) to collisional effects (e.g., Schwartz & Marsch 1983; 

Pilipp et al. 1987a, 1987b, 1987c). They have also been shown to behave differently across 

collisionless shocks depending on shock strength (e.g., Wilson et al. 2009, 2010).

An illustrative example, showing the three electron components typically observed in the 

solar wind near 1 au below ~1.2 keV, is shown in Figure 1. The component parameters are 

exaggerated10 for illustrative purposes but are based on the fit results of the VDF shown in 

Figure 4. The core is modeled by a symmetric bi-self-similar VDF and the halo and beam/

10The following were enhanced to increase contrast and for ease of viewing differences: parallel core temperature, perpendicular halo 
temperature, and parallel core drift speed.
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strahl by a bi-kappa VDF (see Section 3.1). In this case, the self-similar exponent reduced to 

2, so the VDF reduced to a qbi-Maxwellian (see Section 3.1). This example is 

phenomenologically consistent with the majority of solar wind electron VDFs (e.g., Pilipp et 

al. 1987a, 1987b, 1987c; Phillips et al. 1989a, 1989b; Štverák et al. 2008, 2009).

Despite its collisionless, nonequilibrium nature, the solar wind can support the existence of 

shock waves. That the particles are in neither thermal nor thermodynamic equilibrium leads 

to a nonhomogeneous partition of energy not only among electrons and ions but also among 

the components of each species, e.g., the core electrons do not have the same response as the 

halo to collisionless shock waves. The reason for the nonhomogeneous partition of energy 

lies in the energy-dependent mechanisms that transfer the bulk flow kinetic energy lost 

across the shock ramp to other forms like heat or particle acceleration (see, e.g., Coroniti 

1970; Tidman & Krall 1971; Sagdeev 1966; Kennel et al. 1985; Treumann 2009; Wilson 

2016; Wilson et al. 2017, and references therein). The mechanisms can also be dependent on 

pitch angle and species (e.g., Sagdeev 1966; Artemyev et al. 2013, 2014, 2015, 2016, 2017a, 

2017b, 2018). Most collisionless shocks are subsonic to electrons, yet electrons still respond 

to the shock, showing even Mach-number-dependent effects (e.g., Feldman et al. 1982, 

1983a, 1983b; Thomsen et al. 1985, 1987, 1993; Wilson et al. 2010; Masters et al. 2011). 

This is all further complicated by recent observations showing that the evolution of the 

electron VDF through a collisionless shock is not a trivial, uniform inflation of the entire 

distribution but a multistage process that deforms and redistributes/exchanges energy for 

different energies and pitch angles at different stages (e.g., Chen et al. 2018; Goodrich et al. 

2018, 2019). There is no currently known way to quantify these nonhomogenous changes to 

capture the energy- and pitch-angle-dependent effects; therefore, the next best systematic 

approach for a statistical study is to parameterize the electron components by their velocity 

moments. This is further supported by the fact that nearly all theories describing the 

evolution of electron VDFs rely on either the velocity moments or a model VDF (e.g., 

Schunk 1975, 1977; Schwartz & Marsch 1983; Schwartz et al. 1988; Livadiotis 2015, 2017; 

Nicolaou et al. 2018; Shizgal 2018).

In this first part of a multipart study we describe the methodology and numerical analysis 

techniques used to model the solar wind eVDFs below ~1.2 keV observed by the Wind 
spacecraft near 1 au around 52 interplanetary (IP) shocks. This is the first statistical study to 

show that the core electron distribution is better fit to a self-similar VDF than a bi-

Maxwellian under all conditions. The analysis differs from numerous previous studies in its 

approach and the model functions used, each of which is justified herein using physically 

significant arguments. A benefit of the analysis is an improved, semianalytic relationship 

between the spacecraft potential and ion number density. The paper also includes procedural 

documentation to disclose the nuances and issues associated with applying a nonlinear least-

squares fitting algorithm to in situ VDF data in the solar wind. This serves as a reference for 

use of the resulting data product described herein. In Paper II (Wilson et al. 2019a) the 

statistical results of the model fits are presented with comparison to previous studies and 

associated discussions. In Paper III (Wilson et al. 2019b) the analysis and interpretation of 

the model fit results are presented.
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This paper is outlined as follows: Section 2 introduces the data sets and event selection; 

Section 3 introduces the methodology of the fit analysis, model functions, parameter 

constraints, quality control, and summary of fit results; Section 4 discusses the statistics of 

the fit exponents and drift velocities; and Section 5 discusses the results and interpretations 

with reference to further analysis in the following Papers II and III. Appendices are also 

included to provide additional details of the parameter definitions (Appendix A), spacecraft 

potential and detector calibration (Appendix B), numerical analysis procedure (Appendix 

C), numerical instabilities (Appendix D), direct fit method comparisons (Appendix E), and 

the data product produced by this effort (Appendix F).

2. Data Sets and Event Selection

In this section we introduce the instrument data sets and shock database used to examine the 

data observed by the Wind spacecraft (Harten & Clark 1995) near 1 au. The data described 

herein spanned from 00:55:40 UTC on 1995 February 26 to 23:04:00 UTC on 2000 

February 20. Additional supplemental material, including a PDF file containing the list of 

interplanetary shock event dates with associated parameters, shock parameter definitions, 

shock normal technique definitions, additional statistics in the form of histograms, and 

additional information about the model VDFs used herein, can be found at [doi:10.5281/

zenodo.2875806] (Wilson et al. 2019c). The supplemental material also includes two ASCII 

files of fit results described in Appendix F. The symbol/parameter definitions are found in 

Appendix A.

Quasi-static magnetic field vectors (Bo) were measured by the Wind/MFI dual, triaxial 

fluxgate magnetometers (Lepping et al. 1995) using the 3 s cadence data for each particle 

distribution. The components/directions of some parameters are defined with respect to Bo 

using the subscript j. That is, the parallel (j = ‖) and the perpendicular components (j = ⊥) of 

any vector or pseudo-tensor (e.g., temperature) are defined with respect to Bo.

The electron VDFs were measured by the Wind/3DP low-energy (i.e., few eV to ~1.2 keV) 

electron electrostatic analyzer (Lin et al. 1995) or EESA Low. The instrument operated in 

both burst and survey modes for the data presented herein, which have cadences of ~3 s and 

~24–78 s, respectively. The energy and angular resolutions are commandable, but the 

instrument typically operates with ΔE/E ~ 20% and Δϕ ~ 5°−22°.5 depending on the 

poloidal anode11 (see, e.g., Wilson et al. 2009, 2010, for instrument details).

The EESA Low measurements are contaminated with photoelectrons from the spacecraft, 

something that must be accounted for to obtain accurate velocity moments or any other 

results. The details of how the spacecraft potential, ϕsc, was numerically determined for each 

VDF are described in Appendix B. The VDFs are transformed into the ion frame prior to 

any fit using relativistically correct Lorentz transformations, where the steps are as follows: 

(1) convert the units of the VDFs to phase-space density (# cm−3 s+3 km−3), (2) correct the 

energies by ϕsc, (3) convert the energy-angle bins to velocity coordinates, and (4) transform 

the velocities into the ion rest frame using proper Lorentz transformations. Nothing need be 

11The ecliptic plane bins have higher angular resolution than the zenith.
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done to VDFs once in units of phase-space density, as phase-space density is a Lorentz 

invariant (Van Kampen 1969) (see Appendices B and C for details).

We also examined solar wind proton and alpha-particle velocity moments determined by a 

nonlinear least-squares fitting algorithm (e.g., Kasper et al. 2006; Maruca & Kasper 2013) 

observed by the Wind/SWE Faraday cups (Ogilvie et al. 1995). Similar quality requirements 

for the SWE results to those discussed in Wilson et al. (2018) were used herein.

The VDFs examined are found within ±2 hr of 52 IP shocks found in the Wind shock 

database from the Harvard Smithsonian Center for Astrophysics.12 Of those 52 IP shocks, 

there were 16 quasi-parallel (θBn ⩽ 45°), 36 quasi-perpendicular (θBn > 45°), 45 low Mach 

number (〈Mf〉up < 3), and 7 high Mach number (〈Mf〉up ⩾ 3) shocks. The shock parameters 

for the 52 IP shocks examined in this three-part set of papers are shown in Table 1 (see, e.g., 

Wilson et al. 2019c, for a full list of values for each shock). The IP shocks examined were 

selected because of burst mode 3DP availability. See Appendix A for definitions of symbols 

and/or parameters.

3. Fit Methodology

This section (and Appendix C) introduces and discusses the nuances of the approach and 

software used to numerically compute the model fit parameters for every electron VDF 

examined. The nuances and details are provided for reproducibility and documentation for 

the data product discussed in Appendix F.

The data are fit to a user-defined model function using a nonlinear least-squares fitting 

algorithm called the Levenberg–Marquardt algorithm (LMA; Moré 1978). The generalized 

LMA software used for the present study is called MPFIT (Markwardt 2009). The specific 

details for its use are outlined in Appendix C.

The components of the electron VDFs are fit to bi-Maxwellian, bi-kappa, or bi-self-similar 

model functions (see Section 3.1). The components can be fit separately because the solar 

wind is a nonequilibrium, weakly collisional, kinetic gas. That is, in the absence of a 

magnetic field, each electron component could, in principle, stream past the other 

components for nearly an astronomical unit without significant interaction. Thus, there is 

physical justification to fit to the sum of three model functions (see Appendix C for details).

Given that the bi-self-similar reduces to the bi-Maxwellian in the limit as the exponential 

argument goes to 2 and that it consistently yielded lower reduced chi-squared values, χs
2, the 

symmetric bi-self-similar function was used as the default core model function. In the 

downstream of strong (i.e., 〈Mf〉up ≿ 2.5) IP shocks it was found that the asymmetric bi-self-

similar function produced the best results and so was the default core model function.13 

Note that of all the core VDFs fit to a symmetric bi-self-similar function, ~80.5% satisfied 

2.0 ⩽ sec ⩽ 2.05. That is, the majority of the distributions would be nearly indistinguishable 

12https://www.cfa.harvard.edu/shocks/wi_data/
13The parallel and perpendicular profiles at low energies differ greatly in these regions and required the use of the asymmetric 
function to accommodate the differences. Using a symmetric function resulted in very poor fit qualities, as defined in Section 3.3.
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from a bi-Maxwellian on visual inspection. The halo and beam/strahl were modeled with a 

bi-kappa model function for all VDFs examined since they always have a power-law tail and 

previous work found kappa model functions to be the best approximation (e.g., Maksimovic 

et al. 2005; Štverák et al. 2009).

For each IP shock, an iterative process was followed to correct for the spacecraft potential, 

ϕsc (details found in Appendix B), and define fit parameter initial guess values and 

constraints to yield stable solutions for the most VDFs (detailed steps found in Appendix C, 

and list of initial guess values and constraints found in Supplemental Material ASCII files 

(Wilson et al. 2019c) described in Appendix F). The process of defining the initial guess 

values and constraints is discussed in Section 3.2, and the quantified estimates of the fit 

quality are discussed in Section 3.3.

A total of 15,314 electron VDFs were observed by the Wind spacecraft within ±2 hr of 52 IP 

shocks. Of those 15,314 VDFs, 15,210 progressed to fit analysis, and stable model function 

parameters were found for 14,847 (~98%) core fits, 13,871 (~91%) halo fits, and 9567 

(~63%) beam/strahl fits. The reason for the large disparity in beam/strahl fits compared to 

the other two components will be discussed in Section 3.3 and Appendix C.

3.1. Velocity Distribution Functions

This section introduces and defines the model functions used to fit to the particle VDFs in 

this study with examples provided to illustrate shape and dependences on parameters.

The most common VDF used to model particle VDFs in space plasmas is the bi-Maxwellian 

(e.g., Feldman et al. 1979a, 1979b, 1983b; Kasper et al. 2006), given by

f V , V⊥ = AM e

−

V − v
o

V
T

2

+
V⊥ − vo ⊥

VT ⊥

2

,
(1a)

where AM is given by

AM =
no

π3/2VT ⊥
2 V

T

, (1b)

where vo,j is the drift speed of the peak relative to zero along the jth component, VT , j
2  is the 

thermal speed given by Equation (6c), Vj is the velocity ordinate of the jth component, and 

no is the number density.

The second most popular model VDF is the kappa distribution. The kappa velocity 

distribution has gained popularity in recent years owing to improvements in particle 

detectors and the ubiquitous non-Maxwellian tails observed for both ions and electrons (e.g., 

Mace & Sydora 2010; Pulupa et al. 2014b; Lazar et al. 2015a, 2015b, 2016, 2017, 2018; 

Livadiotis 2015; Livadiotis et al. 2018; Saeed et al. 2017; Shaaban et al. 2018), but 

references to and use of kappa or kappa-like (e.g., modified Lorentzian) distributions have 
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been around for decades (e.g., Vasyliunas 1968; Feldman et al. 1983a; Maksimovic et al. 

1997; Salem et al. 2003). It is beyond the scope of this study to explain the physical 

interpretation/origin of this function, but there are several detailed discussions already 

published on the topic (e.g., Livadiotis 2015; Livadiotis et al. 2018). A generalized power-

law particle distribution is given by a bi-kappa VDF (e.g., Mace & Sydora 2010; Livadiotis 

2015), for electrons here as

f V⊥, V = Aκ 1 +
Bκ

κ − 3
2

−(κ + 1)

, (2a)

where Aκ is given by

Aκ = 1
π κ − 3

2

3/2
noΓ(κ + 1)

VT ⊥
2 V

T
Γ κ − 1

2
(2b)

and Bκ is given by

Bκ =
V − v

o
V

T

2

+
V⊥ − vo ⊥

VT ⊥

2
, (2c)

where Γ(z) is the Riemann gamma function of argument z and VTj is again the most 

probable speed of a 1D Gaussian for consistency, i.e., it does not depend on κ.

The last model VDF is called a self-similar distribution, which results when a VDF evolves 

under the action of inelastic scattering (e.g., Dum et al. 1974; Dum 1975; Horton et al. 1976; 

Horton & Choi 1979; Jain & Sharma 1979; Goldman 1984) or flows through disordered 

porous media (e.g., Matyka et al. 2016). The symmetric form is given by

f V , V⊥ = ASS e

−

V − v
o

V
T

s

+
V⊥ − vo ⊥

VT ⊥

s

,
(3a)

where ASS is given by

ASS = 2Γ 1 + s
s

−3 no

VT ⊥
2 V

T

. (3b)

Note that VTj is again the most probable speed of a 1D Gaussian for consistency, i.e., it does 

not depend on s. Further, one can see that Equation 3(a) reduces to Equation 1(a) in the limit 

where s → 2. The function in Equation 3(a) will be referred to as the symmetric self-similar 

distribution function.
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A slightly more general approach can be taken where the exponents are not uniform, which 

will be referred to as the asymmetric self-similar distribution function. The asymmetric 

functional form is given by

f V , V⊥ = AAS e

−

V − v
o

V
T

p

+
V⊥ − v0 ⊥

VT ⊥

q

,
(4a)

where AAS is given by

AAS =
noΓ−1 1 + p

p Γ−2 1 + q
q

23VT VT⊥
2 . (4b)

Again, this will reduce to a bi-Maxwellian in the limit where p → 2 and q → 2. Note that in 

the event that the exponents s, p, or q are not even integers, the velocity ordinates, (V‖ − vo‖) 

and (V⊥ − vo⊥), will become absolute values to avoid complex roots and negative values of f 
(V‖, V⊥). Example one-dimensional cuts of these three model VDFs can be found in Figure 

2 for comparison.

The self-similar exponents are mostly a new variable, since most previous work modeled the 

core electrons as a bi-Maxwellian (e.g., Štverák et al. 2008, 2009; Bale et al. 2013; Pulupa et 

al. 2014b). There are a few studies that used one-dimensional self-similar functions to model 

a select few electron VDFs near collisionless shocks (e.g., Feldman et al. 1983a, 1983b), 

finding values consistent with those presented in Table 2. However, these studies did not 

define the normalization parameter in terms of the number density and thermal speeds (see, 

e.g., Equation 3(a) and 4(a)), but rather found a numerical value from empirical fits, i.e., the 

normalization parameter was not coupled to the physical parameters of the fit function. At 

least one study in the solar wind did define the normalization constant, but they only 

considered a one-dimensional, isotropic distribution (e.g., Marsch & Livi 1985). Although 

several theoretical works predicted ranges of possible self-similar exponent values under 

various extrema scenarios (e.g., Dum et al. 1974; Dum 1975; Horton et al. 1976; Horton & 

Choi 1979; Jain & Sharma 1979; Goldman 1984), this is the first time the model has been 

used on a statistically significant set of VDFs.

The following is an illustrative example that shows how the signal-to-noise ratio of particle 

detectors strongly depends on the number density and thermal speed and that hot, tenuous 

plasmas are much more difficult to measure and accurately model. Examine the one-

dimensional cuts shown in Figures 2 and 4. The toy models in Figure 2 are shown to 

illustrate the effect of thermal speed and exponents on the model fit function peaks and 

shapes. Notice that increasing the thermal speed of the Maxwellian from VTe = 1500 to 5500 

km s−1 drops the peak phase-space density by nearly two orders of magnitude. The cut line 

also passes the ±20,000 km s−1 velocity boundary (i.e., roughly the upper energy bound of 

the EESA Low instrument) at a phase-space density roughly one order of magnitude higher 

than the colder examples. That is, the change in thermal speed reduced the dynamic range of 

observed phase-space densities by three orders of magnitude. Suppose that one examines a 
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more extreme example with ne = 15 cm−3 and VTe = 10,000 km s−1. In this case, the 

difference between the peak and the lowest phase-space density within the ±20,000 km s−1 

velocity boundary would only be a factor of ~55, i.e., slightly more than one order of 

magnitude.

For reference, the list of potential free parameters is as follows (see Appendix A for symbol 

definitions):

a. Core

a. nec

b. VTec, j or Tec, j

c. voec, j

d. sec

e. pec

f. qec

g. κec

b. Halo

a. neh

b. VTeh, j or Teh, j

c. voeh, j

d. κeh

c. Beam/Strahl

a. neb

b. VTeb, j or Teb, j

c. voeb, j

d. κeb.

For more details about derivation and normalization constants, see the Supplemental 

Material (Wilson et al. 2019c).

3.2. Fit Parameter Constraints

This section involves the discussion of the constraints/limits placed on fit parameters for 

each electron component and justifies them based on physically significant assumptions.

As an illustrative example, Figure 3 shows the densities of the protons, alpha-particles, and 

three electron components (blue squares) and the associated uncertainties (red error bars) for 

a subcritical, quasi-perpendicular IP shock (see, e.g., Wilson et al. 2019c, for shock 

parameters) observed by Wind on 1996 April 2 at 10:07:57.525 UTC. For this event, the 

plasma parameters are listed below in the form Min–Max (Mean)[Median]:
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a. Upstream

a. |Bo| ~ 0.53–3.14(1.96)[1.53] nT;

b. np ~ 11.3–15.8(12.0)[11.9] cm−3;

c. nα ~ 0.06–0.18(0.10)[0.11] cm−3;

d. sec ~ 2.00–2.09(2.00)[2.00] N/A;

e. κeh ~ 2.83–12.2(4.46)[4.40] N/A;

f. κeb ~ 1.67–12.6(4.85)[5.10] N/A;

g. nec ~ 10.7–13.0(11.7)[11.5] cm−3;

h. neh ~ 0.06–1.44(0.69)[0.54] cm−3;

i. neb ~ 0.02–0.17(0.09)[0.09] cm−3;

b. Downstream

a. |Bo| ~ 3.45–5.99(4.85)[5.19] nT;

b. np ~ 14.9–19.7(18.0)[18.1] cm−3;

c. nα ~ 0.14–0.27(0.19)[0.19] cm−3;

d. sec ~ 2.00–2.07(2.01)[2.01] N/A;

e. κeh ~ 2.72–6.96(4.39)[4.29] N/A;

f. κeb ~ 2.74–7.27(4.45)[4.50] N/A;

g. nec ~ 13.6–18.4(16.7)[16.8] cm−3;

h. neh ~ 0.02–2.53(0.56)[0.44] cm−3;

i. neb ~ 0.01–0.29(0.12)[0.11] cm−3.

Note that there are two time periods after 11:00 UTC where a few fit results satisfy neb/neh ⩾ 
1. Figure 3 is illustrative of some of the error analysis employed in the present study and the 

fact that the beam/strahl fit more often fails than the core or halo as evidenced by the number 

of points. Below the details of how the fit parameters are constrained/limited are outlined 

with physical arguments.

First, the present study differs from some previous studies in that the fits are performed on 

the two-dimensional VDF rather than separate fits on one-dimensional cuts of the two-

dimensional VDF (e.g., Maksimovic et al. 2005; Pulupa et al. 2014a, 2014b). One of the 

limitations of the latter approach is that the distribution function is not necessarily a 

separable function, which can introduce difficulty for the physical interpretation of the 

results. However, the latter approach has numerous advantages, including the stability of the 

solutions and ease with which the solutions are found with nonlinear least-squares software, 

i.e., it is generally easier to fit to a one-dimensional cut than a two-dimensional distribution.

The present study uses the former approach to avoid the difficulties introduced for 

nonseparable functions. For instance, when fitting to the parallel one-dimensional cut, the 
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amplitude of the VDF is directly tied to the amplitude of the perpendicular cut. The 

amplitude of all standard model two-dimensional, gyrotropic VDFs is dependent on ns, 

VTs,
−1 , and VTs, ⊥

−2 . While it is computationally possible to fix the amplitude to the observed 

amplitude of the data for each cut and only vary the respective thermal speeds/temperatures 

and exponents, the inversion to find ns can be problematic if care is not taken. For instance, 

the normalization constants differ for one-dimensional cuts from the two-dimensional 

gyrotropic VDF (see, e.g., Equation 1(a)). Although this approach involves fewer free 

parameters and should thus be easier to fit, it is much more restrictive in parameter space, 

i.e., ns only varies indirectly through the variation of the thermal speeds/temperatures and 

exponents.

Given that fitting to a two-dimensional gyrotropic VDF has more free parameters and orders 

of magnitude more degrees of freedom, a stable solution requires reasonable constraints/

limits on the variable parameters. There are some obvious boundaries determined by 

instrumental and physical constraints. As shown in the previous section, the difference 

between the highest and lowest phase-space densities is important for the signal-to-noise 

ratio, but it is also relevant to fitting model functions to the data. For instance, if an electron 

distribution had a population with VTe ⩾ 10,000 km s−1, the weights would not provide 

sufficient contrast between the peak and tails to constrain a stable and reliable fit without 

multiple imposed constraints. In contrast, electron VDFs with thermal speeds below ~1000 

km s−1 fall below the lowest energy of the detector and so would be artificially hotter if they 

were observed (e.g., Paschmann & Daly 1998). A similar effect is often observed by 

spacecraft with electrostatic analyzers designed for the magnetosphere, not the 

comparatively cold, fast solar wind beam (e.g., McFadden et al. 2008a, 2008b; Pollock et al. 

2016).

Statistical studies of the solar wind have shown that the maximum range of the total electron 

temperature is Te,j ~ 2.29–77.2 eV or VTe,j ~ 450–2600 km s−1 (e.g., Wilson et al. 2018). 

Previous studies have found that the electron halo temperatures satisfy Te,j ~ 14–560 eV or 

VTeh,j ~ 1100–7000 km s−1 (e.g., Feldman et al. 1975, 1978, 1979a; Maksimovic et al. 1997, 

2005; Skoug et al. 2000; Tao et al. 2016a, 2016b; Lazar et al. 2017). Previous studies have 

also found that the electron beam/strahl temperatures satisfy Teb,j ~ 20–150 eV or VTe,j ~ 

1300–3600 km s−1 (e.g., Ogilvie et al. 2000; Viñas et al. 2010; Tao et al. 2016a, 2016b). 

Thus, a range of allowed core thermal speeds from ~1000 to ~10,000 km s−1 can be 

assumed.

There are similar instrumental constraints on the drift speed of the three components. The 

core, however, is not likely to exhibit drift speeds (in the ion rest frame) in excess of several 

hundred kilometers per second (e.g., Pulupa et al. 2014a). In the present work, most fit 

results show less than 50 km s−1, i.e., only 1838 of 14,847, or ~12%, have drift speeds 

exceeding 50 km s−1, consistent with previous work.14 In contrast, owing to the physical 

interpretation of the strahl/beam component, most (8848 of 9567, or ~92%) have drift speeds 

in excess of 1000 km s−1. The allowed core, halo, and beam/strahl drift speeds loosely 

14Note that in the present work the dipole correction to ϕsc was not applied, which affects the drift velocity and heat flux velocity 
moments. Thus, the core drift velocities in our work suffer the greatest from this correction.
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ranged from ~1000 to ~10,000 km s−1 for most events. In some events, a lower bound was 

imposed to prevent unphysical fit results, e.g., beam/strahl component with near zero drift 

speed (see Supplemental Material ASCII files (Wilson et al. 2019c) described in Appendix F 

for ranges for specific events). Note that Voes,⊥ was fixed during the fitting, i.e., it was not 

allowed to vary. Originally this parameter was free to vary but resulted in fewer stable fits 

and rarely varied by more than a few kilometers per second. In some events, an explicit 

Voec,⊥ was set as the initial guess values determined from examination of the distributions, 

but this is for a small minority of events (333 of 14,847, or ~2%).

It has also been empirically found that the EESA Low detector has issues when nce ≾ 0.5 cm
−3 or nce ≿ 50 cm−3 for typical solar wind thermal speeds.15 This is rarely an issue, as only 

41 of the 14,847 VDFs analyzed (or ~0.3%) have fit results falling outside the range ~0.5–50 

cm−3. Note that the total electron density, ne = nec + neh + neb ~ ne = np + 2nα, is constrained 

by the total ion density from SWE and the total electron density from the upper hybrid line 

observed by the WAVES radio receiver (Bougeret et al. 1995), when possible (see Appendix 

B for more details).

Physically, the halo and beam/strahl components are suprathermal; thus, they should not 

have the dominant contribution to the total phase-space density of the VDF. Therefore, it is 

physically consistent to assume that the fit results should satisfy neh/nec < 1 and neb/nec < 1. 

The solutions were constrained to satisfy neh/nec < 0.5 and neb/nec < 1 based on results found 

in previous studies near 1 au (e.g., Feldman et al. 1975; Maksimovic et al. 1997, 2005; 

Skoug et al. 2000; Štverák et al. 2009; Viñas et al. 2010; Pierrard et al. 2016; Tao et al. 

2016b).

In numerous previous studies that assumed a three-component solar wind electron VDF near 

1 au (e.g., Maksimovic et al. 2005; Štverák et al. 2009; Pulupa et al. 2014a, 2014b), 

constraints were sometimes assumed such as that the fits satisfy neb/neh < 1. There is no 

restriction on this ratio16 imposed during the fit process, and 1824 of 9313 (or ~20%) of the 

fits satisfy neb/neh ⩾ 1. In fact, it was found that imposing the constraint neb/neh < 1 during 

the fit process actually greatly reduced the number of stable solutions found for the beam/

strahl component.17 Previous work did show that the ratio neb/neh decreases with increasing 

radial distance from the Sun, dropping below unity before 1 au, on average, but the ranges 

overlapped, allowing for neb/neh ⩾ 1 (e.g., Štverák et al. 2009).

Another constraint that is often assumed/used is that the strahl/beam component be only 

antisunward along Bo (e.g., Maksimovic et al. 2005; Štverák et al. 2009; Pulupa et al. 2014a, 

2014b), though some magnetic field topologies have sunward-directed beam/strahl 

components (e.g., Owens et al. 2017). This constraint is imposed in this study, but it is 

important to note that some IP shocks examined have observable electron foreshocks. A 

consequence is that the halo component of the fit results effectively absorbs both the halo 

15Technically, this is an issue for nearly all electrostatic analyzers designed and flown to date. This is largely unavoidable without 
increasing the dynamic range of the detector significantly.
16The number of good ratios differs from the number of beam/strahl fits because some VDFs had a stable halo or beam/strahl but not 
the converse.
17Note that there was a post-fit constraint imposed limiting neb/neh < 3 because it was found empirically that most fits exceeding this 
threshold were bad/unphysical. However, not all were bad as evidenced by the example in Figure 6.
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and the shock-reflected electron component in the events where this is directed sunward 

along Bo (this is very rare). If the shock-reflected electron component is directed 

antisunward, they will be included in the beam/strahl fit (this is much more common). The 

net result for the former is a smaller (T⊥/T‖)eh and on the latter is a larger (T⊥/T‖)eb and neb.

The lower bound of possible κes values is defined for mathematical/physical reasons as 

being ≿3/2 (e.g., Livadiotis 2015; Livadiotis et al. 2018). The upper bound is set to 100 

solely because above that value the difference between a bi-Maxwellian and bi-kappa VDF 

is smaller than the accuracy of the measurements. Although the upper bound is allowed to 

extend to 100, the typical upper bound observed near 1 au is <20 (e.g., Maksimovic et al. 

1997; Štverák et al. 2009; Pierrard et al. 2016; Tao et al. 2016a, 2016b; Lazar et al. 2017). 

The range of possible values for sec, pec, or qec falls between 2 and 10 for physical reasons 

(e.g., Dum et al. 1974; Dum 1975; Horton et al. 1976; Horton & Choi 1979; Jain & Sharma 

1979; Goldman 1984).

Finally, by definition the halo and beam/strahl components represent the lowest-energy 

suprathermal components of the electrons. Therefore, it is natural to assume that Teh/Tec > 1. 

There is no explicit restriction on this ratio imposed, and only 384 of 13,867 (or ~3%) of the 

fits satisfy Teh/Tec < 1, and these occur downstream of strong shocks where core heating 

dominates. However, there are numerous events where limits/constraints were imposed on 

the component temperatures individually. So the low percentage is not entirely unexpected. 

In contrast, there were no corresponding attempts to limit Teh/Teb in any way other than to 

fit to the data.

3.3. Quality Analysis

The initial approach was to use the reduced chi-squared value χs
2 of component s (see 

Appendix D for definition) as a test of the quality of the fit. However, it was quickly 

determined that some fit lines matched well with the data but had χs
2 > 10 while others did 

not fit well at all despite having χs
2 ≲ 1. The issue is partly related to the calibration of the 

detector and thus the quality of the 𝒲 values (see Appendix B for more details). The issue is 

also related to fitting a gyrotropic model function to data that is not, in general, gyrotropic. 

A possible improvement would fold the entire VDF into a forced gyrotropy prior to fitting to 

improve counting statistics and the comparison between data and model functions, but that is 

beyond the scope of the current study. Therefore, a new quantity was defined to provide an 

additional definition of the quality of any given fit by direct comparison.

Let us use f (0) as the actual data and f (m) (=f (core) + f (halo) + f (beam)) as the total model fit 

results. Then one can define the ratio of these two parameters as ℛ = f (0)/ f (m), which is a 

two-dimensional array of values. Then one calculates the median of this array, ℛ, to 

determine the percent deviation given by

δℛ = |1 − ℛ| ⋅ 100%, (5)
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where δℛ is computed for each electron VDF. The values of δℛ were then used as 

uncertainties/error bars for all fit parameters for the associated VDF for all components. In 

general, the percent magnitude of the uncertainty in each of the six fit parameters should not 

be uniform as is used herein (see Appendix E for discussion of 1σ uncertainties). The 

uncertainty of any variable calculated using these fit parameters was propagated assuming 

uncorrelated errors.

Note that the δℛ value alone does not always characterize the quality of any given fit. 

Therefore, a combination of parameters is chosen to define a set of fit quality flags from best 

with a value of 10 to worst with a value of 0 (see Appendix F for definitions). In general, fits 

with flags of at least 2 or higher can be used, but low fit flags should be treated with caution. 

Only ≾1% of all core, halo, and beam/strahl fits had flags of 1, while >95% of core, >89% 

of halo, and >61% of beam/strahl flags were at least 2.

Figure 4 shows an example VDF that had a low χs
2 for each component and a δℛ 3.0%, i.e., 

this is an example of an ideal fit. The distribution was fit using a symmetric bi-self-similar 

distribution for the core and a bi-kappa distribution for both the halo and beam/strahl 

components. The fit results are as follows:

1. ne{c,h,b} = {15.43, 2.01, 0.056} cm−3;

2. VTe{c,h,b},‖ = {1959.6, 2500.0, 3964.7} km s−1;

3. VTe{c,h,b},⊥ = {1937.9, 2575.5, 4516.2} km s−1;

4. Voe{c,h,b},‖ = {+44.58, −0.00, −3898.7} km s−1;

5. Voe{c,h,b},⊥ = {−0.00, −0.00, −0.00} km s−1;

6. {sec, κeh, κeb} = {2.00, 4.58, 2.57}, where sec is the self-similar exponent and κes 

is the kappa value;

7. χe c, h, b
2 = 1.07, 1.36, 0.41 ;

8. χtot
2 = 6.14; and

9. Fit Flag {c,h,b} = {10, 10, 10}.

In contrast, Figure 5 shows an example VDF that had a high χs
2 for two components yet still 

a small δℛ 9.4%, i.e., this is still an example of a good fit despite the bad χs
2 values for the 

core and beam/strahl fits. The fit results are as follows:

1. ne{c,h,b} = {4.41, 0.57, 0.32} cm−3;

2. VTe{c,h,b},‖ = {3882.6, 2624.5, 4574.5} km s−1;

3. VTe{c,h,b},⊥ = {2728.2, 2986.3, 2387.6} km s−1;

4. Voe{c,h,b},‖ = {−0.00, −594.9, +2000.0} km s−1;

5. Voe{c,h,b},⊥ = {−0.00, −0.00, −0.00} km s−1;
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6. {pec, qec, κeh, κeb} = {4.00, 2.00, 2.27, 4.61}, where pec(qec) is the parallel 

(perpendicular) self-similar exponent and κes is the kappa value;

7. χe c, h, b
2 = 28.5, 0.55, 14.4 ;

8. χtot
2 = 14.40; and

9. Fit Flag {c,h,b} = {4, 6, 5}.

Further, the example VDF in Figure 5 differs from that in Figure 4 in that an asymmetric 

self-similar model is used for the former. The total fit lines also illustrate a weakness of the 

method used. Since the components are fit separately, the respective weights change with 

each fit to prevent the fitting software from giving too much emphasis to, for instance, the 

core of the distribution when fitting to the halo.18 Thus, the resultant f (m) can exceed f (0) in 

some places. The software does a post-fit check for instances where either the combined or 

any component model fit exceeds the data by user-specified factors.19 For most events, the 

threshold is set between ~2 and 4, but this varies, as some events have known issues. For 

instance, the known density from the upper hybrid line is 10 cm−3, but no variation of ϕsc 

yields fit results with ne ~ 10 cm−3 without the model exceeding the data at low energies. 

The reason is related to known calibration issues (see Appendix B).

Finally, Figure 6 shows an example VDF that had a high χs
2 for the core component and 

moderate for beam/strahl but a small δℛ 2.1%. This example VDF was chosen to illustrate a 

good fit even when neb/neh > 1. As previously discussed, there are post-fit constraints 

applied to the data based on statistical and physical constraints. The constraint relevant to 

Figure 6 is that requiring neb/neh < 3. This is why the fit flag value for the beam/strahl is zero 

and why χtot
2  is larger than a few. The fit results are as follows:

1. ne{c,h,b} = {3.37, 0.03, 0.14} cm−3;

2. VTe{c,h,b},‖ = {2609.8, 5293.2, 4686.9} km s−1;

3. VTe{c,h,b},⊥ = {2286.9, 5494.9, 2516.2} km s−1;

4. Voe{c,h,b},‖ = {−0.00, −222.8, +3273.0} km s−1;

5. Voe{c,h,b},⊥ = {−0.00, −0.00, −0.00} km s−1;

6. {sec, κeh, κeb} = {2.00, 3.83, 3.53};

7. χe c, h, b
2 = 17.84, 0.17, 5.14 ;

8. χtot
2 = 13.17; and

9. Fit Flag {c, h, b} = {6, 6, 0}.

18That is, the weights for the halo and beam/strahl fits are modified to force the software to examine only one side of the velocity 
distribution at a time. The weights also remove elements from the core fit to avoid including the core in the fit.
19For instance, below ~1000 km s−1 in Figure 5 the magnitude of f (m) f (0) stays below ~1.7 and exceeds 2.0 on the antiparallel side 
above ~10,000 km s−1. The latter was not flagged by the software because it resulted from the beam/strahl fit and that is the only fit to 
the parallel side for this VDF.
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One can see from the figure that the halo component is rather weak compared to the beam/

strahl, which could be the result of an enhancement from the electron foreshock of this IP 

shock or the fast nature of the solar wind upstream of this IP shock. Regardless, the purpose 

of this example is to illustrate that stable and good fit solutions can be found that satisfy 

neb/neh > 1 even at 1 au.

After examining thousands of fit results, it was determined that δℛ with χs
2 and χtot

2  are 

consistently more reliable quantities used in combination for defining the quality of the fit 

than using χs
2 alone. The value is also used as a proxy for the uncertainty of any given fit 

parameter, e.g., δnes = ± δℛ ⋅ nes/2 shown as the red error bars in Figure 3. Note that values 

of 100% correspond to fill values or bad fit results. In the following section the one-variable 

statistics of the χs
2 and δℛ values are listed for reference to typical/expected values when 

evaluating the quality of a fit. In general, the best fits have small values for δℛ and all χs
2.

Further tests of consistency were also performed to validate the fit results. First, the EESA 

Low detector is known to saturate when the count rate exceeds ~107 counts s–1 (Lin et al. 

1995). Examination of all VDFs found that a total of 10 energy-angle bins (from a total of 

20,184,120), or ~5 × 10−5%, exceeded the maximum count rate. Therefore, it is not thought 

that saturation has a significant impact on the methodology and results of this study. Second, 

as illustrated in Figure 3, the total electron density satisfies ne ~ np + 2nα for nearly all 

intervals. Statistically, the difference between the fit result for ne = nec + neh + neb and np 

+ 2nα is within expectations. The median, lower quartile, and upper quartile values are 

10.3%, 4.9%, and 19.0%, respectively, which is consistent with our δℛ statistics.

Finally, the total electron current, je,tot = Σs nes vos,‖, in the ion rest frame should be zero to 

maintain a net zero current in the solar wind. The mean, median, lower quartile, and upper 

quartile for all data examined are ~22 km s−1 cm−3, ~0 km s−1 cm−3, ~−214 km s−1 cm−3, 

and ~351 km s−1 cm−3, consistent with previously published work on this data set (e.g., Bale 

et al. 2013; Pulupa et al. 2014a) and consistent with work in progress (C. S. Salem et al. 

2019, in preparation). Normalizing je,tot by ne times VTec,tot yields a mean, median, lower 

quartile, and upper quartile for all data examined of ~0.17%, ~10−8%, ~−0.95%, and ~1.3%, 

respectively. Thus, the values are all small compared to unity. Quantitatively, ~97.5% of the 

je,tot/(neVTec,tot) values satisfy ≾5.5%.

Figure 7 shows both je,tot and je,tot/(neVTec,tot) versus seconds from every shock ramp center 

time in this study. One can see that although there are locations with significant deviation 

from zero (e.g., the shock ramp, which is not tremendously surprising, as that is where 

currents are supposed to exist), the mean (red horizontal line) and median (orange horizontal 

line) are small for both the raw and normalized current densities. Note that the data in Figure 

7 include fit results where there may not be a solution for one or more components (see 

discussion of first data product ASCII file in Appendix F).

As a final note, there is the question about the validity of using a new model function to 

describe the thermal core. Of the 11,874 core VDFs fit with a symmetric bi-self-similar 
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model function, there were 9559, or ~80.5%, that satisfied 2.0 ⩽ sec ⩽ 2.05. That is, the 

majority of the distributions would be nearly indistinguishable from a bi-Maxwellian on 

visual inspection. Therefore, the use of the symmetric bi-self-similar model function is not 

entirely inconsistent with previous work that modeled the solar wind core with a bi-

Maxwellian (e.g., Feldman et al. 1979a, 1979b). In fact, these results show that most core 

VDFs are not far from thermal velocity distributions, consistent with results showing 

evidence for collisional effects on the core (e.g., Salem et al. 2003; Bale et al. 2013).

3.4. Summary of Fit Results

For the 52 IP shocks examined there were a total of 15,314 VDFs observed by Wind. Of 

those 15,314 VDFs, 15,210 progressed to fit analysis, and for the core only 534 (~4%) were 

modeled as bi-kappa VDFs, 12,095 (~80%) were modeled as symmetric bi-self-similar 

VDFs, and 2581 (~17%) were modeled as asymmetric bi-self-similar VDFs. All core bi-

kappa VDFs were found in the upstream, and all downstream core VDFs used either a 

symmetric or asymmetric bi-self-similar model. All halo and beam/strahl components were 

fit to a bi-kappa model. The justifications for the use of these functions are given in Section 

3 and Appendix C. Of those 15,210 that progressed to fit analysis, stable solutions were 

found for 14,847 (~98%) f (core), 13,871 (~91%) f (halo), and 9567 (~63%) f (beam).

Recall that the fit results presented herein were performed on two-dimensional, (assumed) 

gyrotropic velocity distributions in the proton bulk flow rest frame. Most prior work 

numerically fit to one-dimensional cuts of the VDF or to one-dimensional reduced VDFs. 

There are benefits for either method, but here it is shown that the method employed is valid 

by illustrating the consistency with previous work. The statistical results of the densities are 

summarized below in the form lower quartile–upper quartile(Mean)[Median]:

a. All

a. nec ~ 6.44–19.5(13.7)[11.3] cm−3;

b. neh ~ 0.21–0.63(0.52)[0.36] cm−3;

c. neb ~ 0.09–0.27(0.21)[0.16] cm−3;

b. Upstream

a. nec ~ 4.06–12.5(8.90)[8.09] cm−3;

b. neh ~ 0.17–0.49(0.42)[0.27] cm−3;

c. neb ~ 0.09–0.26(0.22)[0.16] cm−3;

c. Downstream

a. nec ~ 8.44–24.2(17.3)[16.6] cm−3;

b. neh ~ 0.26–0.70(0.59)[0.44] cm−3;

c. neb ~ 0.09–0.28(0.21)[0.17] cm−3;

which are consistent with previous results near 1 au (e.g., Feldman et al. 1975, 1979a, 

1983b; Maksimovic et al. 1997; Phillips et al. 1989a, 1989b; Nieves-Chinchilla & Viñas 
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2008; Skoug et al. 2000; Salem et al. 2001; Štverák et al. 2009; Pierrard et al. 2016). The 

full statistical results and associated histograms are presented in Paper II.

The statistical results of the quality analysis are listed below in the form lower quartile–

upper quartile(mean)[median]:

a. All

a. δℛ 6.8% − 16.3%(12.7%)[10.7%];

b. χc
2 0.90 − 4.28(6.47)[1.94];

c. χh
2 0.41 − 1.59(2.11)[0.72];

d. χb
2 0.36 − 1.28(1.50)[0.66];

e. χtot
2 2.85 − 9.39(1459)[4.92];

b. Upstream

a. δℛ 7.0% − 16.1%(12.8%)[10.9%];

b. χc
2 0.74 − 3.66(3.99)[1.63];

c. χh
2 0.40 − 1.43(1.63)[0.66];

d. χb
2 0.31 − 0.98(0.93)[0.51];

e. χtot
2 2.69 − 8.47(1105)[4.50];

c. Downstream

a. δℛ 6.5% − 16.4%(12.6%)[10.5%];

b. χc
2 1.10 − 6.32(9.12)[2.29];

c. χh
2 0.43 − 1.74(2.63)[0.78];

d. χb
2 0.47 − 1.72(2.14)[0.86];

e. χtot
2 3.03 − 10.7(1835)[5.43].

The purpose of listing these statistics is to provide a range of typical or expected χs
2 and δℛ

values for reference when determining the quality of any given fit. Note that the statistics for 

δℛ shown above were performed on arrays that excluded the lower and upper boundaries, 

i.e., 0.1% and 100% values. The statistical results of the model function exponent and drift 

speed results are presented below, and the full data product resulting from this work is 

described in Appendix F.
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4. Exponents and Drifts

Table 2 shows the one-variable statistics for the exponents from the model fits of the electron 

VDFs for the core (s = c), halo (s = h), and beam/strahl (s = b). The VDFs, modeled as bi-

kappa (κes), symmetric bi-self-similar (ses), and asymmetric bi-self-similar velocity 

distributions (pes for parallel and qes for perpendicular), are summarized for all time periods, 

upstream only, downstream only, low Mach number only, high Mach number only, quasi-

perpendicular only, and quasi-parallel only. The rows showing N/A (not available) for every 

entry had no fit results, i.e., the core was only modeled as a bi-kappa in the upstream and an 

asymmetric bi-self-similar only in the downstream, and therefore the converse had no results 

to examine.

For the VDFs fit to a bi-kappa, the core values typically lie between ~5 and 10, while the 

halo and beam/strahl lie in the ranges of ~3.5–5.4 and ~3.4–5.2, respectively. Only the core 

was fit to the bi-self-similar functions, and nearly all symmetric exponents are between 

~2.00 and 2.04, while most of the asymmetric parallel and perpendicular exponents lie in the 

ranges of ~2.2–4.0 and ~2.0–2.5, respectively.

The κeh and κeb values are consistent with previous solar wind observations near 1 au (e.g., 

Maksimovic et al. 1997, 2005; Štverák et al. 2009; Pierrard et al. 2016; Tao et al. 2016a, 

2016b; Lazar et al. 2017; Horaites et al. 2018). The κec values are also consistent with 

previous solar wind observations (e.g., Nieves-Chinchilla & Viñas 2008; Broiles et al. 2016).

There are several interesting things to note from Table 2. The mean, median, and lower/

upper quartile values for κec are slightly higher for high than for low Mach number shocks, 

though only the median and lower quartile values are significant. Since a bi-kappa model 

was only used for upstream core VDFs, this may imply that shock strength is somehow 

dependent on the upstream core electron distribution profiles. One possible physical 

interpretation would be that the sound speed depends on the polytropic index for each 

species, i.e., the equation of state assumed for the system. A bi-kappa core VDF could affect 

the estimate of the sound speed, thus altering the fast mode Mach number. However, the 

shape of the upstream VDFs will also affect the shock dissipation mechanisms. For instance, 

it is known that the existence of power-law tails improves the efficiency of shock 

acceleration (e.g., Trotta & Burgess 2019). Therefore, the larger κec associated with higher 

Mach number shocks may imply that lower energy particles have entered the tails, thus 

increasing the exponent.20

In contrast, the asymmetric bi-self-similar exponents, only used in downstream regions, are 

effectively the same between low and high Mach number shocks. However, this changes 

when comparing quasi-parallel and quasi-perpendicular shocks. The pec exponent has higher 

mean, median, and lower/upper quartile values for quasi-parallel than quasi-perpendicular 

shocks. The opposite is true for the qec exponent.

This is interesting, as higher pec values are predicted to occur in the nonlinear saturation 

stages of ion-acoustic waves (e.g., Dum et al. 1974; Dum 1975). Such waves are driven by 

20Recall that κec values only exist for upstream VDF fits, so the dependence on Mach number is not about thermalization.
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relative electron–ion drifts (i.e., currents) and are observed near both quasi-parallel and 

quasi-perpendicular shocks (e.g., Fuselier & Gurnett 1984; Wilson et al. 2007, 2010, 2012, 

2014a, 2014b; Breneman et al. 2013), but their amplitudes increase with increasing shock 

strength (e.g., Wilson et al. 2007). If the largest ion-acoustic waves generate the largest 

values of pec, then one would expect maximum values downstream of strong quasi-

perpendicular shocks, which is not the case here. This leads to the question of what fraction 

of energy goes to increasing pec versus what fraction goes to increasing Tec,‖. This would 

depend on the effective inelasticity of the wave–particle interactions, where larger 

inelasticity increases pec and smaller inelasticity increases Tec,‖ (e.g., Dum et al. 1974; Dum 

1975; Horton et al. 1976; Horton & Choi 1979; Jain & Sharma 1979; Goldman 1984). The 

interaction between a wave and a particle can be treated as inelastic if the particle affects the 

wave amplitude and kinetic energy during the interaction. Most test-particle treatments do 

not handle this self-consistently, and if the effect is distributed to an entire VDF, the net 

result can be a stochastic heating that increases pec from 2.0 (e.g., Dum et al. 1974; Dum 

1975).

Another theory predicts that flat-top electron distributions (i.e., pec → ⩾4 and qec → ~2–3) 

can result from the combined effects of a quasi-static, cross-shock electric potential and 

from fluctuation electric fields (e.g., Feldman et al. 1983a; Hull et al. 1998) through a 

process called maximal filling (e.g., Morse 1965). However, similar to the predictions for 

wave-driven flat tops, this theory should generate stronger flat tops (i.e., larger values of pec) 

for stronger quasi-perpendicular shocks, which we do not observe. Thus, the evolution of the 

electron VDFs does not seem consistent with the standard quasi-static, cross-shock electric 

potential, but rather in agreement with recent high-resolution observations at the bow shock 

(e.g., Chen et al. 2018; Goodrich et al. 2018).

Another interesting result is the difference in the κeh values under different conditions. 

When the values of κeh are larger (smaller), that implies a less (more) energized halo, i.e., 

softer (harder) spectra. One can see that κeh is larger downstream than upstream and near 

high rather than low Mach number shocks. That is, the halo is less energized downstream of 

IP shocks and near strong IP shocks than the converse, which is somewhat unexpected, as 

strong shocks should more readily energize suprathermal particles (e.g., Malkov & Drury 

2001; Treumann 2009; Caprioli & Spitkovsky 2014; Park et al. 2015; Trotta & Burgess 

2019). In contrast, κeh is slightly smaller (~10%) near quasi-parallel than quasi-

perpendicular shocks, which implies more energized halo electrons. Although quasi-parallel 

shocks are predicted (e.g., Malkov & Drury 2001; Caprioli & Spitkovsky 2014) and 

observed (e.g., Wilson et al. 2016) to be more efficient particle accelerators, the predictions 

are usually specific to ions, while mildly suprathermal electrons are thought to most 

efficiently interact with quasi-perpendicular shocks (e.g., Wu 1984; Park et al. 2013; Trotta 

& Burgess 2019). Further, very recent simulation results suggest that the upstream electron 

suprathermal tail will become flatter (i.e., smaller kappa values) with increasing Mach 

number for quasi-perpendicular shocks (Trotta & Burgess 2019). This may explain why both 

κeh and κeb are smaller in the upstream than downstream. The time evolution of these kappa 

values will be examined in more detail in Paper III.
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A major caveat of the above discussion is the exchange of particles between the various 

electron VDF components, i.e., former core electrons can be energized and move to the halo 

or the converse. Therefore, one needs to be careful when interpreting the change in a given 

component-specific parameter. This will be discussed in more detail in Paper III.

Finally, the κeb values show a similar behavior between upstream and downstream and 

shock geometry as κeh, but they differ between low and high Mach number shocks. That is, 

stronger shocks appear to energize the beam/strahl component more than weaker shocks. 

This is likely due to the electron foreshock component observed upstream of strong IP 

shocks (e.g., Bale et al. 1999; Pulupa & Bale 2008; Pulupa et al. 2010), combined with the 

usual solar wind beam/strahl component.

Figure 8 shows histograms of κes, sec, pec, qec, and the drift speed magnitudes, Voes,j (s for 

electron components and j for parallel or perpendicular), for the three electron populations. 

These histograms show distributions corresponding to the first part of Table 2, i.e., all VDF 

solutions. In many of the panels there are isolated, dominant peaks, nearly all of which result 

from constraints imposed for specific events, not necessarily an underlying physical reason. 

For instance, the peaks for pec = 3 and 4 in panel (c) are for strong shocks exhibiting flat-top 

VDFs in the downstream, where the fit routines were not finding stable solutions without 

imposing constraints on both the exponents and the minimum number density for the core 

distribution.

One can see that, as discussed previously, the core parallel drift speeds (violet line, panel 

(d)) tend to fall below ~100 km s−1, consistent with previous results (e.g., Pulupa et al. 

2014a). In fact, most of the core and halo drifts are near zero, with the number of results 

satisfying Voec,‖ ⩽ 1 km s−1 and Voeh,‖ ⩽ 1 km s−1 being 8735 (~59%) and 7311 (~53%), 

respectively. Note that although there is sometimes a sizable perpendicular core drift (blue 

line, panel (d)) for some shock crossings, these were explicitly set after visual inspection of 

the VDFs during the iterative fitting process. The nonzero perpendicular drifts almost 

certainly result from inaccuracies in the calculation of the solar wind rest frame and a dipole 

correction to ϕsc not included in the present analysis (e.g., Pulupa et al. 2014a; see Appendix 

B for more details).

The magnitudes of Voeh,⊥ and Voeb,⊥ never deviated from zero.21 The magnitudes of Voeh,‖ 
range from ~0 to 8860 km s−1, with a lower to upper quartile range of ~0–850 km s−1 and a 

mean (median) of ~580 km s−1 (~0.1 km s−1). The magnitudes of Voeb,‖ range from ~1000 

to 9330 km s−1, with a lower to upper quartile range of ~1750–3090 km s−1 and a mean 

(median) of ~2580 km s−1 (~2480 km s−1). As previously discussed, the lower bound for 

Voeb,‖ was imposed on the basis of physical arguments, while the magnitude of Voeh,‖ was 

allowed to go to zero. If only magnitudes satisfying Voes,‖ ⩽ 1 km s−1 are considered, the 

mean (median) and lower to upper quartile ranges are ~42 km s−1 (~30 km s−1) and ~14–52 

km s−1 for Voec,‖ and ~1227 km s−1 (~903 km s−1) and ~362–1695 km s−1 for Voeh,‖.

21This was an explicit constraint imposed on all fits but would also have resulted largely from the initial guess that both Voeh,⊥ and 
Voeb,⊥ equal zero. That is, the fit software uses initial guesses to estimate gradient magnitudes for changes between iterations. So if 
the initial guess is null, the step size will be null as well.
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5. Discussion

A total of 15,314 electron VDFs were observed by the Wind spacecraft within ±2 hr of 52 IP 

shocks, of which 15,210 had a stable solution for at least one component. Stable model 

function parameters were found for 14,847 (~98%) core fits, 13,871 (~91%) halo fits, and 

9567 (~63%) beam/strahl fits. The fit parameters are consistent with previous studies and 

will be discussed in detail in the following two parts of this study. Of the 15,210 VDFs 

examined herein, the core was modeled as a bi-kappa for 534 (~4%) VDFs, as a symmetric 

bi-self-similar for 12,095 (~80%) VDFs, and as an asymmetric bi-self-similar for 2581 

(~17%) VDFs. This is the first statistical study to find that the core electron distribution is 

better fit to a self-similar VDF than a Maxwellian under all conditions.

The exponents are summarized below in the form lower quartile–upper quartile(Mean)

[Median]:

a. All

a. sec ~ 2.00–2.04(2.03)[2.00];

b. pec ~ 2.20–4.00(3.09)[3.00];

c. qec ~ 2.00–2.46(2.24)[2.00];

d. κec ~ 5.40–10.2(9.15)[7.92];

e. κeh ~ 3.58–5.34(4.62)[4.38];

f. κeb ~ 3.40–5.16(4.57)[4.17];

b. Upstream

a. sec ~ 2.00–2.03(2.01)[2.00];

b. pec ~ N/A;

c. qec ~ N/A;

d. κec ~ 5.40–10.2(9.15)[7.92];

e. κeh ~ 3.25–4.83(4.16)[4.10];

f. κeb ~ 3.25–4.70(4.22)[3.81];

c. Downstream

a. sec ~ 2.00–2.06(2.05)[2.01];

b. pec ~ 2.20–4.00(3.09)[3.00];

c. qec ~ 2.00–2.46(2.24)[2.00];

d. κec ~ N/A;

e. κeh ~ 3.80–5.70(4.94)[4.62];

f. κeb ~ 3.61–5.44(4.82)[4.45].
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Overall the κeh and κeb values are consistent with previous solar wind observations near 1 au 

(e.g., Štverák et al. 2009; Pierrard et al. 2016; Lazar et al. 2017; Horaites et al. 2018). The 

κec values are also consistent with previous solar wind observations (e.g., Nieves-Chinchilla 

& Viñas 2008; Broiles et al. 2016). The values for sec, pec, and qec are consistent with 

previous results as well (e.g., Feldman et al. 1983a, 1983b).

The interesting aspect of VDFs being well modeled by bi-self-similar functions is that such 

functions are used to describe the evolution of distributions for either the flow through 

disordered porous media (e.g., Matyka et al. 2016) or the influence of inelastic scattering 

(e.g., Dum et al. 1974; Dum 1975; Horton et al. 1976; Horton & Choi 1979; Jain & Sharma 

1979; Goldman 1984). It is unlikely that the former applies directly, but the latter may be 

interpreted in the following manner. The typical approach for test-particle simulations used 

to examine wave–particle interactions does not include feedback from the particles on the 

waves. In a real plasma, the particles can alter three properties of electromagnetic waves: 

their amplitude (potential energy), momentum, and kinetic energy. Consider a simple 

scenario whereby a particle reflects off of an electromagnetic wave field along one 

dimension. If done self-consistently, the particle can reduce the wave amplitude in addition 

to affecting the field momentum and kinetic energy. In the case of a reduced wave 

amplitude, the resulting scattering problem can be treated as a simple inelastic collision.22 

Thus, the net result of an ensemble of particles interacting with a wave field can be 

stochastic (e.g., Dum et al. 1974; Dum 1975), which provides one physical justification for 

the use of the bi-self-similar functions. These functions are also convenient in that they 

reduce to bi-Maxwellians in the limit where the exponents go to 2, i.e., the deviation from a 

Maxwellian is a measure of inelasticity in the particles’ interactions with waves and/or 

turbulence.23 Further, as previously discussed, ~80.5% of the core VDFs modeled with a 

symmetric bi-self-similar function had exponents satisfying 2.0 ⩽ sec ⩽ 2.05. Therefore, the 

majority of the core electron VDFs would be visually indistinguishable from a bi-

Maxwellian, which supports previous work that used thermal distributions to model the core 

(e.g., Feldman et al. 1979a, 1979b) and work that found evidence for collisional effects in 

the core distribution (e.g., Salem et al. 2003; Bale et al. 2013).

The κec seem to correlate with 〈Mf〉up, which may suggest a shock strength dependence on 

the shape of the upstream electron VDFs. In contrast with expectations from a dependence 

on quasi-static fields, the values of pes are higher for quasi-parallel shocks, while qes are 

higher for quasi-perpendicular shocks, yet neither depends on 〈Mf〉up.

Somewhat surprisingly, the values of κeh are larger downstream than upstream, and they 

increase with increasing 〈Mf〉up. That is, the halo spectra are softer downstream and near 

strong shocks. Quasi-parallel shocks, however, correlate with smaller κeh, i.e., harder halo 

spectra. Generally, quasi-parallel shocks are predicted to be more efficient particle 

accelerators for suprathermal ions and very energetic electrons24 (e.g., Caprioli & 

22That is, the particle kinetic energy may not be preserved through the interaction even if the wave kinetic energy is conserved.
23It is also worth noting that a finite time correlation included in wave–particle interactions, something missing from quasi-linear 
theory, can yield a similar VDF profile (work in progress by coauthors).
24Suprathermal is defined here for ions in the several to tens of keV energy range, while the electrons are many tens to hundreds of 
keV for typical 1 au solar wind collisionless shocks.
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Spitkovsky 2014), but electrons in the halo energy range are predicted to be energized the 

most efficiently at shocks satisfying θBn > 80° (e.g., Park et al. 2013).

Unlike the halo, κeb are smaller near high Mach number shocks than near low Mach number 

shocks. The difference is likely a twofold consequence of the combined effects from shock-

accelerated foreshock electrons and the method used to fit the distributions. That is, the 

beam/strahl component is always fit to the antisunward, field-aligned side of the VDF, while 

the halo is fit to the opposite. For nearly all IP shocks at 1 au, the shock normal is 

antisunward in a direction that would be aligned with the nominal, ambient beam/strahl 

electron component. For both the halo and beam/strahl, the ratios of 〈keh〉dn/〈keh〉up and 

〈keb〉dn/〈keb〉up increase with increasing 〈Mf〉up. That is, the downstream halo and beam/

strahl spectra are softer than the upstream for stronger shocks. Again, this is likely a 

consequence of the foreshock electrons that are not observed upstream of weak shocks. The 

details of the electron component velocity moments and associated changes will be 

discussed further in Papers II and III.

In summary, the first part of this three-part study presented the first statistical study to find 

that the core electron distribution is better fit to a self-similar VDF than a bi-Maxwellian 

under all conditions. This is an important result for kinetic theory and solar wind evolution. 

This work also provides the methodology and details necessary to reproduce and qualify the 

results of the nonlinear least-squares fitting performed herein. In Papers II and III, the 

statistical and analysis results of the velocity moments will be presented in detail. These 

observations are relevant for comparisons with astrophysical plasmas like the intra-galaxy-

cluster medium, and they provide a statistical baseline of electron parameters near 

collisionless shocks for the recent Parker Solar Probe and upcoming Solar Orbiter missions.
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Appendix A: Definitions and Notation

In this appendix we define the symbols and notation used throughout. In the following, for 

all direction-dependent parameters we use the subscript j to represent the direction, where j 
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= tot for the entire distribution, j = ‖ for the parallel direction, and j = ⊥ for the 

perpendicular direction. Note that parallel and perpendicular are with respect to the quasi-

static magnetic field vector, Bo (nT). The generic subscript s is used to denote the particle 

species (e.g., electrons, protons) or the component of a single particle species (e.g., electron 

core). For the electron components, the subscript will be s = ec for the core, s = eh for the 

halo, s = eb for the beam/strahl, s = eff for the effective population, and s = e for the total/

entire population. Below are the symbol/parameter definitions:

a. one-variable statistics

a. Xmin ≡ minimum

b. Xmax ≡ maximum

c. X≡ mean

d. X≡ median

e. X25% ≡ lower quartile

f. X75% ≡ upper quartile

b. fundamental parameters

a. εo ≡ permittivity of free space

b. μo ≡ permeability of free space

c. c ≡ speed of light in vacuum (km s−1) = (εo μo)−1/2

d. kB ≡ the Boltzmann constant (J K−1)

e. e ≡ the fundamental charge (C)

c. plasma parameters

a. ns ≡ the number density (cm−3) of species s

b. ms ≡ the mass (kg) of species s

c. Zs ≡ the charge state of species s

d. qs ≡ the charge (C) of species s = Zs e

e. Ts, j ≡ the scalar temperature (eV) of the jth component of species s

f. (Ts′/Ts)j ≡ the temperature ratio (N/A) of species s and s′ of the jth 

component

g. (T⊥/T‖)s ≡ the temperature anisotropy (N/A) of species s

h. VTs, j ≡ the most probable thermal speed (km s−1) of a one-dimensional 

velocity distribution (see Equation (6c))

i. vos ≡ the drift velocity (km s−1) of species s in the plasma bulk flow rest 

frame

j. Cs ≡ the sound or ion-acoustic sound speed (km s−1) (see the 

Supplemental PDF in Wilson et al. 2019c for definitions)
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k. VA ≡ the Alfvén speed (km s−1) (see the Supplemental PDF in Wilson 

et al. 2019c for definitions)

l. Vf ≡ the fast mode speed (km s−1) (see the Supplemental PDF in 

Wilson et al. 2019c for definitions)

m. Ωcs ≡ the angular cyclotron frequency (rad s−1) (see Equation 6(d))

n. ωps ≡ the angular plasma frequency (rad s−1) (see Equation 6(e))

o. λDe ≡ the electron Debye length (m) (see Equation 6(f))

p. ρcs ≡ the thermal gyroradius (km) (see Equation 6(g))

q. λs ≡ the inertial length (km) (see Equation 6(h))

r. βs, j ≡ the plasma beta (N/A) of the jth component of species s (see 

Equations 6(i) and 6(j))

s. ϕsc ≡ the scalar, quasi-static spacecraft potential (eV) (e.g., Scime et al. 

1994b; Pulupa et al. 2014a)

t. Emin ≡ the minimum energy bin midpoint value (eV) of an electrostatic 

analyzer (see, e.g., Appendices in Wilson et al. 2017, 2018).

The variables that rely on multiple parameters are given in the following equations:

Teff, j =
∑S nSTS, j

∑S nS
(6a)

Ts, tot = 1
3 T

s,
+ 2Ts, ⊥ (6b)

VTs, j =
2kBTs, j

ms
(6c)

Ωcs =
qsBo
ms

(6d)

ωps =
nsqs

2

εoms
(6e)

λDe =
VTe, tot

2ωpe
=

εokBTe, tot
nee

2 (6f)
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ρcs =
VTs, tot

Ωcs
(6g)

λs = c
ωps

(6h)

βs, j =
2μonskBTs, j

|Bo|2 (6i)

βeff, j =
2μonekBTeff, j

|Bo|2
, (6j)

where ne is defined as

ne = ∑
S

nes . (6k)

For the macroscopic shock parameters, the values are averaged over asymptotic regions 

away from the shock transition region.

a. shock parameters

a. subscripts up and dn ≡ denote the upstream (i.e., before the shock 

arrives timewise at the spacecraft for a forward shock) and downstream 

(i.e., the shocked region)

b. 〈Q〉j ≡ the average of parameter Q over the jth shock region, where j = 

up or dn

c. nsh ≡ the shock normal unit vector (N/A)

d. θBn ≡ the shock normal angle (deg), defined as the acute reference 

angle between 〈Bo〉up and nsh

e. 〈|Vshn|〉j ≡ the jth region average shock normal speed (km s−1) in the 

spacecraft frame

f. 〈|Ushn|〉j ≡ the jth region average shock normal speed (km s−1) in the 

shock rest frame (i.e., the speed of the flow relative to the shock)

g. 〈MA〉j ≡ the jth region average Alfvénic Mach number (N/A) = 〈|Ushn|〉

j/〈VA〉j

h. 〈Mf〉j ≡ the jth region average fast mode Mach number (N/A)

i. Mcr ≡ the first critical Mach number (N/A)

j. Mww ≡ the linear whistler (phase) Mach number (N/A)

Wilson et al. Page 27

Astrophys J Suppl Ser. Author manuscript; available in PMC 2020 July 03.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



k. Mgr ≡ the linear whistler (group) Mach number (N/A)

l. Mnw ≡ the nonlinear whistler Mach number

The critical Mach numbers are phenomenologically defined as follows: for 〈Mf〉up/Mcr ⩾ 1 

an ion sound wave could not phase stand within the shock ramp (e.g., Edmiston & Kennel 

1984; Kennel et al. 1985), for 〈Mf〉up/Mww ⩾ 1 a linear magnetosonic whistler cannot phase 

stand upstream of the shock ramp (e.g., Krasnoselskikh et al. 2002), for 〈Mf〉up/Mgr ⩾ 1 a 

linear magnetosonic whistler cannot group stand upstream of the shock ramp, and for 〈Mf〉

up/Mnw ⩾ 1 a nonlinear magnetosonic whistler is no longer stable/stationary and will result 

in the shock ramp “breaking” and reforming.

These definitions are used throughout.

Appendix B: Spacecraft Potential and Detector Calibration

The electron electrostatic analyzer data suffer from several sources of uncertainty, including 

differences between the theoretical maximum detector efficiency and actual (e.g., Bordoni 

1971; Goruganthu & Wilson 1984), unknowns regarding the detector dead time25 (e.g., 

Schecker et al. 1992; Meeks & Siegel 2008), and an unknown spacecraft potential (e.g., 

Scime et al. 1994a, 1994b; Pulupa et al. 2014a; Lavraud & Larson 2016). Significant 

advances in understanding the response and calibration of electrostatic analyzers have been 

made in recent years with the development and launch of the Magnetospheric Multiscale 
(MMS) mission (e.g., Gershman et al. 2016, 2017; Pollock et al. 2016). However, the 

improvements resulted from an exhaustive ground calibration campaign that most other 

missions, including Wind, have not had. Further, the electronic dead time26 of the EESA 

Low preamp (i.e., AMPTEK A111) depends on the pulse height distribution of the previous 

pulse (J. P. McFaddon 2019, personal communication, 2011 July 18).

Although the corrections for microchannel plate (MCP) degradation, etc., have not been 

updated since very early in the mission, the last calibrations were performed well after the 

initial and most dramatic scrubbing phase that occurs when the instrument is in space (see, 

e.g., McFadden et al. 2008a, 2008b, for further discussions of MCP degradation over time). 

The currently used calibrations are those from optical geometric factor corrections, on-

ground calibrations, and in-flight calibrations (D. Larson 2019, personal communication, 

2011 July 18). Although there are expected to be corrections to these calibration values over 

the course of the time span examined in this work, the same data in the same time range 

have been presented in numerous refereed publications (including, but not limited to, Salem 

et al. 2001, 2003; Wilson et al. 2009, 2010, 2012, 2013a, 2013b, 2018; Bale et al. 2013; 

Pulupa et al. 2014a, 2014b). Updating the calibration tables is beyond the scope of this work 

but is actively being pursued (C. S. Salem et al. 2019, in preparation).

Although the Wind spacecraft has the capacity to measure electric fields (Bougeret et al. 

1995), it does not measure the DC-coupled spacecraft potential, ϕsc. It does, however, 

25The dead time is the time period when the detector is unable to measure incident particles owing to the channel’s discharge recovery 
time (i.e., time to replenish electrons to wall of conductive material in the microchannel plate), preamp cycle rates, etc.
26The cycle rate or sample rate of this preamp is listed as 2 MHz, but it is not constant.
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consistently observe the upper hybrid line (also called the plasma line), which provides an 

unambiguous measure of the total electron density, ne. For instance, the Wind/SWE Faraday 

cups (FCs; Ogilvie et al. 1995) are calibrated to these measurements assuming ne = np 

+ 2nα. Ions are generally not significantly affected by ϕsc, as they typically have ~1 keV of 

bulk kinetic energy in the solar wind.

To estimate ϕsc, an initial guess is determined numerically from the ion density. The value of 

ϕsc is then adjusted until ne = nec + neh + neb from the fits roughly equals27 np + 2nα and/or 

when photoelectrons disappear from the VDF plots.28 Once a reliable estimate of ϕsc is 

determined for each VDF for each IP shock, the software is cycled through all VDFs for that 

event and the data are saved. This process is repeated for each IP shock event. An example 

time series of ϕsc is shown in Figure 3.

Note that the values of ϕsc determined above should not be treated as the absolute or correct 

spacecraft potential values. The reason is that the detector efficiency and gain calibrations 

suffer from the issues discussed above (e.g., Bordoni 1971; Goruganthu & Wilson 1984). 

Therefore, the ϕsc values are proxies for the spacecraft potential that comprise a complicated 

nonlinear convolution of the real spacecraft potential and the detector dead time and 

efficiency. Despite this uncertainty, the ϕsc values estimated herein are consistent with those 

in previously published work on the same data set within the same time span (e.g., Bale et 

al. 2013; Pulupa et al. 2014a). Further, the consistency checks discussed in sec tion 3.3 

provide further validation of the fit results.

Table 3 provides the one-variable statistics of the ϕsc values for all VDFs, as well as 

upstream and downstream only, low and high Mach number only, and quasi-parallel and 

quasi-perpendicular only periods. There are no dramatic differences other than that the 

values of ϕsc are slightly smaller downstream than upstream, slightly higher for high than 

low Mach number shocks, and largest (by mean, median, and quartiles) for quasi-parallel 

shocks.

Figure 9 shows ϕsc versus ni as both the raw values and a renormalized version where the 

EESA Low detector Emin is used as an offset. The data were fit to a power-law-exponential, 

Y = XBeCX + D, where Y = (ϕsc + Emin) 5 (eV) and X = ni (cm−3). The fit parameters 

producing the cyan dashed line are A = 2.272 ± 0.013 (cm+3B), B = −0.431 ± 0.019 (N/A), C 
= 0.00115 ± 0.00155 (cm+3), and D = 2.0 ± 0.0 (eV), with a reduced chi-squared value of 

χ2 0.144.

The choice of the form of the fit line is empirical and matches the observations in trend. The 

typical approach is to measure the spacecraft potential and number density and then fit to a 

function of the spacecraft potential for the number density, i.e., ni = ni (ϕsc) (e.g., Scudder et 

al. 2000). As previously stated, Wind cannot actively measure ϕsc, and the values shown in 

Figure 9 are really a proxy owing to the uncertain values for the dead time and efficiency for 

27Note that the value of ne for a constraint is taken from SWE and the upper hybrid line observed by the WAVES radio receiver 
(Bougeret et al. 1995), when possible.
28When ϕsc is too low, a discontinuous “spike” appears in the cuts of the VDF. The spike-like feature can also be seen in 1D energy 
spectra shown in the spacecraft frame with no adjustment for ϕsc.
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each detector anode. The purpose of the above approach is to find a semianalytical 

expression for ϕsc that only depends on ni (or ne) as an initial estimate. The unexpected 

result here is that the trend depends on Emin as an offset, which is likely only reflecting a 

one-sided measurement boundary, preventing the detector from observing the entire VDF.

Note that similar analysis on the same data set has also found a small dipolar correction to 

the typical monopolar approximation used herein (e.g., Pulupa et al. 2014a). The dipole term 

is typically less than 1 eV, however, and only ~1.5% of all the VDFs examined in our study 

satisfied ϕsc < 1.5 eV. Further, the dipole correction will only affect the odd velocity 

moments, i.e., the drift velocity and heat flux. We did not calculate the heat flux, but we did 

observe perpendicular core velocity drifts previously shown to be affected by the dipole 

correction (e.g., Pulupa et al. 2014a).

Appendix C: Numerical Analysis Procedure

The data are fit to a user-defined model function using the nonlinear least-squares fit 

algorithm called the LMA (Moré 1978). The generalized LMA software, called MPFIT 

(Markwardt 2009), requires at minimum the following inputs when fitting to a two-

dimensional array of data:

FUNC: a scalar [string] defining the model function routine file name;

X(Y): N(M)-element [numeric] array defining the first (second) dimension coordinate 

abscissa values;

Z: NxM-element [numeric] array defining the dependent data associated with X and 

Y abscissa values;

ERR: NxM-element [numeric] array defining the error associated with each element 

of Z; and

PARAM: K-element [numeric] array defining the initial guesses for the fit parameters 

supplied to the model function routine FUNC.

The error array will be ignored if the user supplies an array of weights, 𝒲. The details of the 

use of the software and documentation are provided by the author at https://

www.physics.wisc.edu/~raigm/idl/fitting.html and in the publication Markwardt (2009).

For the purposes of finding numerical fits to electron VDFs in the solar wind, a substantial 

set of wrapping routines were written for use with the MPFIT libraries and can be found at 

https://github.com/lynnbwilsoniii/wind_3dp_pros. The wrapping software also provides 

detailed documentation with extensive manual pages and numerous comments throughout.

The approach used for each electron VDF is as follows:

1. The raw VDF data, f (0r), are retrieved as an IDL structure with the data in units 

of counts. A copy is created, and the data structure tag is replaced with the 

square root of the number of counts, f (0cr), i.e., Poisson statistics are assumed.

2. A unit conversion is applied to change to units of phase-space density (i.e., cm−3 

km−3 s+3), and then the energies are adjusted to account for the spacecraft 
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potential (e.g., Salem et al. 2001; Wilson et al. 2014a, 2016) (details are 

discussed in Appendix B), giving f (0sc) and f (0csc).

3. Then f (0sc) and f (0csc) are transformed into the ion bulk flow rest frame (e.g., 

Compton & Getting 1935; Ipavich 1974) following the methods described in 

Wilson et al. (2016) using a relativistically correct Lorentz transformation. The 

data are then interpolated onto a regular grid using Delaunay triangulation in the 

plane defined by the quasi-static magnetic field, Bo, along the horizontal and 

transverse components of the ion bulk flow velocity, Vi, i.e., (Bo × Vi) × Bo. The 

result is a two-dimensional gyrotropic VDF, f (0), and the associated Poisson 

errors/uncertainties, f (0 c), both as functions of the parallel, V‖, and 

perpendicular, V⊥, velocity with respect to Bo.

4. Numerous weighting schemes were tried, and the best results (for Wind/3DP) 

were achieved by defining 𝒲 = f (0c) −2
 for the weights.29

5. Every f (0) is fit to the sum of three model functions in two dimensions30 for the 

core, halo, and beam/strahl components. Again, the components can be fit 

separately because the solar wind is a nonequilibrium, weakly collisional, kinetic 

gas.31 The allowed model functions (defined in Section 3.1) are bi-Maxwellian 

(e.g., Kasper et al. 2006), bi-kappa (e.g., Vasyliunas 1968; Mace & Sydora 2010; 

Livadiotis 2015), symmetric bi-self-similar (e.g., Dum et al. 1974; Dum 1975), 

and asymmetric bi-self-similar (defined in Section 3.1).

a. It is important to note that the fit is not done for all components 

simultaneously. This was the initial approach but proved to require 

stringent constraints for nearly all fit parameters, and the software 

exited before all fit parameters were varied owing to numerical 

instabilities32 (e.g., Liavas & Regalia 1999), discussed in Appendix D.

b. Thus, the core fit, f (core), is performed first, and then the model result is 

subtracted from the data to yield the first residual, f (1).

c. The halo fit, f (halo), is next but only to the side of f (1) opposite to that 

expected for the strahl/beam, where the latter is defined as the 

antisunward direction along Bo. The entire two-dimensional halo fit is 

then subtracted from f (1) to yield the second residual, f (2), i.e., both 

sides are subtracted, but only one side is used for the fit.

29Several approaches were tried for the 𝒲 values, but the most reliable and robust was to use Gaussian weights on Poisson errors. 
Reliable and robust here mean that the fitting software required the fewest number of constraints and user-imposed limits to find fit 
parameters that well represent the observations.
30That is, the data are not fit to two one-dimensional cuts of a two-dimensional VDF separately, but rather both dimensions are fit 
simultaneously.
31It should also be noted that initial approaches tried to fit all electron components simultaneously but failed. Later approaches tried to 
fit the combination of only the core and halo simultaneously, but again the analysis was too unstable. Thus, the final approach fit to 
each component sequentially from core to beam/strahl.
32There is also an issue of threshold tests for convergence. The software allows the user to define the thresholds for various gradients 
in the Jacobian. If the gradient magnitudes fall below these thresholds, the software exits with a specific fit status parameter associated 
with the specific threshold. For numerous reasons, the initial approach of fitting to all three components simultaneously prevented 
accurate fit results owing to these thresholds being satisfied too early in the iteration process.
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d. The beam/strahl fit, f (beam), is last and fit to only the side of f (2) that is 

in the antisunward direction along Bo.

6. Not all VDFs will have fit results for all three components. In fact, f (beam) is 

often not found either because f (halo) left too few finite elements in f (2) or for 

numerical instability reasons (discussed in Appendix D).

All model functions are defined with six input parameters to be varied by the LMA software 

in the following order: PARAM[0] is the number density, ns (cm−3); PARAM[1] and 

PARAM[2] are the parallel and perpendicular thermal speeds, VTs,j (km s−1); PARAM[3] 

and PARAM[4] are the parallel and perpendicular drift speeds, Vos,j (km s−1); and 

PARAM[5] is the function exponent. The exponent input is ignored for the bi-Maxwellian 

routine, as it is always 2.0 but can vary in the other routines. For the asymmetric bi-self-

similar routine PARAM[4] is the parallel exponent and PARAM[5] is the perpendicular 

exponent (see Section 3.1 for functional form).

Initial guesses are defined for all elements of PARAM that are specific to each shock event 

determined through an iterative trial-and-error approach. For each event, a zeroth-order 

guess is used on a subset of all VDFs, and the PARAM arrays for each component are 

adjusted accordingly to maximize the number of stable fit results for all components. Note 

that the PARAM arrays for each component differ depending on whether the VDF is located 

upstream or downstream of the shock ramp. In stronger shocks, the function used also varies 

(i.e., use symmetric bi-self-similar upstream and asymmetric bi-self-similar downstream).

Appendix D: Numerical Instability

The LMA software works by minimizing the chi-squared value given by

χs
2 = ∑

i = 0

N − 1
∑
j = 0

M − 1
f i j, s

(0) − f i j, s
(mod) 2|𝒲i j, s|, (7)

where f s
mod  is the model fit function of component s returned by the model function routine 

FUNC (see Section C), χs
2 is the chi-squared value of the fit of component s, and the i and j 

subscripts correspond to the indices of the parallel and perpendicular velocity space 

coordinates, respectively.

A total reduced chi-squared, χtot
2 , value was also calculated for all VDFs analyzed herein. 

The difference in calculation is that the weights were not offset and the model function and 

distribution function are for the entire VDF, not the components. Further, unlike the 

components, the χtot
2  values used all data points in f (0) and 𝒲 even if they were excluded 

during the fit process.33 However, the χtot
2  calculation excluded data below the nine-count 

level to avoid non-Gaussian weights in low-count values and removed “spiky” solutions in 

33Specific energy-angle bins were excluded for various physical reasons in some VDFs, including, for instance, energy and/or pitch-
angle range constraints to avoid “contamination” by other components as is done to examine the halo-only and beam/strahl-only parts 
of the VDF.
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the beam or halo fits defined by small Tes,j and κes. That is, “spiky” solutions are defined as 

those satisfying (kes ⩽ 3) ∧((Tes,‖ ⩽ 11.8) ∨ (Tes,⊥ ⩽ 11.8)) for model fit parameters. As 

evidenced by Figures 4–6, the χtot
2  parameter alone is not necessarily an accurate measure of 

the quality of the fit.

An unexpected nuance arose during the development and testing of the software. The typical 

phase-space density of any given element of f (0) for electrons near 1 au varies from ~10−18 

to 10−8 cm−3 km−3 s+3. The LMA software uses a combination of gradients by constructing 

a Jacobian matrix of the input model fit function.34 This is problematic when the magnitude 

of the input data and output model function are much much less than unity as results in 

numerical instabilities (e.g., Liavas & Regalia 1999). That is, the partial derivative of a 

number on the order of 10−18 with respect to a number slightly greater than unity can 

produce exceedingly small gradients.

While the limits of double precision are not, in general, challenged by such computations, 

the LMA software (Markwardt 2009) was designed such that all the inputs are near unity. 

The solution was to multiply 𝒲 by a constant offset to increase the contrast in the Jacobian 

components that are used to minimize χ2. A consequence of this approach is that the output 

χ2, f (m), and 1σ error estimates of the fit parameters must be renormalized by this offset 

factor. The more standard approach is to perform the fit in logarithmic space, which reduces 

the dynamic range of the data. However, as discussed in Appendix E, this does not 

necessarily produce better fit results.

The above approach worked well except for cases with so-called flat-top distributions (e.g., 

Feldman et al. 1983a; Thomsen et al. 1987), modeled using the self-similar distributions 

(e.g., Dum et al. 1974; Dum 1975; Horton et al. 1976; Horton & Choi 1979; Jain & Sharma 

1979; Goldman 1984) given by either Equation (3(a)) or Equation (4(a)). In cases where the 

phase-space densities were independent of energy for the core, the use of the weights above 

was not sufficient to constrain the fits. In these cases, shock-specific constraints/limits were 

imposed on the least number of fit parameters necessary to reliably and robustly produce 

good results (see the Supplemental Material ASCII files in Wilson et al. 2019c, described in 

Appendix F for list of constraints by shock).

Appendix E: Numerical Method Comparisons

As stated in Appendix D, the standard approach to avoiding numerical instabilities due to 

the small magnitude of f (0) usually involves fitting to the logarithm of f (0) (e.g., Štverák et 

al. 2009). To illustrate the validity of the method used herein, an example VDF was chosen 

from a different study (C. J. Farrugia et al. 2019, in preparation) that examines a single 

shock-magnetic-cloud system.

Figure 10 shows a comparison of three different fit results to illustrate the validity of the 

method used herein. Given the hindsight and statistics of the results from the present 

analysis, more refined constraints and better initial guesses were available. The fit shown in 

34That is, the partial derivatives are with respect to the fit parameters, not the velocity coordinates.
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panels (b) and (c), referred to as the test fit from here on, was found following the automated 

method used for the 52 events examined in this study, i.e., the software is given initial 

guesses for parameters and constraints defined by knowns like ne and then allowed to find 

the best fit. The test fit results shown in panels (b) and (c) were then used as initial guesses 

(first perturbed, of course) on the same VDF to compare the method used herein (referred to 

as the linear method) to the base-10 logarithm approach (referred to as the log method). A 

larger range of constraints were used to provide a more open parameter space. Thus, in the 

following a comparison between the linear and log methods is presented as an illustrative 

test.

Panels (d) and (e) show the fit results using the linear method with the new initial guesses 

and parameter constraints, while panels (f) and (g) show the log method fit results. 

Unexpectedly, the log method did much worse in the core fit than the linear method but did 

well for the halo and beam/strahl fits. The numerical fit results are as follows:

a. Test Fit (Panels (b) and (c))

a. nec(h)[b] ~ 1.407(0.054)[0.060] cm−3;

b. VTec(h)[b],‖ ~ 2028.0(3621.7)[4183.7] km s−1;

c. VTec(h)[b],⊥ ~ 1927.2(3486.6)[2833.1] km s−1;

d. Voec(h)[b],‖ ~ +50.4(0.0)[−3752.6] km s−1;

e. Voec(h)[b],⊥ ~ 0.0(0.0)[0.0] km s−1;

f. sec ~ 2.002;

g. κeh ~ 1.908;

h. κeb ~ 5.151;

i. δℛ 14.1%;

j. χc(h)[b]
2 4.52(1.82)[2.98];

k. χtot
2 1.30;

l. Fit Flag {c,h,b} = {8, 8, 8}.

b. Linear Method Fit (Panels (d) and (e))

a. nec(h)[b] ~ 1.122(0.051)[0.055] cm−3;

b. VTec(h)[b],‖ ~ 2183.7(3694.7)[4154.0] km s−1;

c. VTec(h)[b],⊥ ~ 1947.4(3557.0)[2863.1] km s−1;

d. Voec(h)[b],‖ ~ 0.0(0.0)[−3960.1] km s−1;

e. Voec(h)[b],⊥ ~ 0.0(0.0)[0.0] km s−1;

f. sec ~ 2.000;

g. κeh ~ 1.901;
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h. κeb ~ 5.073; and

i. δℛ 12.5%;

j. χc(h)[b]
2 3.73(1.82)[2.98];

k. χtot
2 1.01;

l. Fit Flag {c,h,b} = {8, 8, 8}.

c. Log Method Fit (Panels (f) and (g))

a. nec(h)[b] ~ 1.086(0.089)[0.062] cm−3;

b. VTec(h)[b],‖ ~ 3248.5(2938.9)[3762.2] km s−1;

c. VTec(h)[b],⊥ ~ 2086.3(3043.6)[2652.4] km s−1;

d. Voec(h)[b],‖ ~ 0.0(0.0)[−4206.0] km s−1;

e. Voec(h)[b],⊥ ~ 0.0(0.0)[0.0] km s−1;

f. sec ~ 2.000;

g. κeh ~ 1.852;

h. κeb ~ 4.016;

i. δℛ 20.0%;

j. χc(h)[b]
2 82.7(2.51)[2.15];

k. χtot
2 0.71;

l. Fit Flag {c,h,b} = {2, 6, 6}.

Thus, one can see that the log method did not produce a better fit for this specific example, 

which was not the expected outcome. This is almost certainly a consequence of the large 

constraint ranges, and a better fit would be found for a tighter range. That is, this example is 

not meant to argue that the linear method is better than the log method. Rather, the example 

is meant to illustrate that the linear method is a viable approach.

A point should also be made about the initiation stability of the LMA software. During the 

course of fitting all the VDFs in the present study, it was found that the choice of initial 

guess parameters was critical. For instance, in the example shown in Figure 10, the initial 

guess values used for the core fit were nec ~ 2.0 cm−3, VTec,‖ [⊥] ~ 2297 [2297] km s−1 (i.e., 

15 eV temperatures), Voec,‖ [⊥] ~ +10.0 [0.0] km s−1, and sec ~ 2.0. If any of the parameters 

were perturbed by ~20%–30% away from these initial guesses, the log method would not 

initiate fit iterations owing to diverging deviates and/or diverging model results, i.e., the 

software could not establish an initial Jacobian.35 Unexpectedly, the linear method was more 

tolerant of perturbed initial guess parameters. There are still several checks for each 

35This is associated with a fit status code of −16 as reported in the fit results ASCII file discussed in Appendix F.

Wilson et al. Page 35

Astrophys J Suppl Ser. Author manuscript; available in PMC 2020 July 03.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



component fit to address this possible noninitiation error, but even so this sometimes did not 

fix the issue, which is one reason why not all VDFs had stable solutions.

Finally, a note about the 1σ uncertainties of every fit parameter. These values are not 

reported because it was found that they do not accurately or consistently reflect the quality 

of fit. For instance, the 1σ uncertainties of neh and VTeh,‖ for the log method in the example 

VDF shown in Figure 10 (panels (f) and (g)) are ~19,988 km s−1 (i.e., ~617% error) and 

~3.53 cm−3 (i.e., ~5163% error), respectively, even though χh
2 2.51. The 1σ uncertainties for 

the same parameters but for the fit in panels (d) and (e) are ~110.1 km s−1 (i.e., ~3.1% error) 

and ~0.0047 cm−3 (i.e., ~8.5% error), and χh
2 1.82. That is, the reduced chi-squared values 

differ by only ~39%, but the 1σ uncertainties differ by hundreds to thousands of percent. 

The 1σ uncertainties determined by the LMA software that are assigned to the output fit 

parameters are not representative of the actual uncertainties. The reason is related to the 

orthogonal basis constructed during the qr-factorization (ultimately used to minimize χs
2), 

which is not the same basis as that for the fit parameters. The output uncertainties thus 

contain nonlinear convolution of 1σ uncertainties from potentially multiple fit parameters. 

The effect is analogous to electric field measurements from two antennas with differing 

noise levels. If the electric field data are rotated to a new coordinate basis from the original 

instrument basis, the resulting field components will have a nonlinear convolution of noise 

from the original components. Thus, the 1σ uncertainties were not used as errors for each 

parameter.

The 1σ errors are also forced to zero in the software when the fit value reaches a user-

defined boundary/constraint/limit. This is reported in the fit constraints ASCII file described 

in Appendix F (i.e., under the heading “Peg” in the ASCII file). As previously stated, the δℛ
value alone does not always characterize the quality of any given fit. Therefore, a 

combination of parameters were used to define fit quality flags (see Appendix F for 

definitions), which should be used for determining the reliability of any given fit.

Appendix F: Data Product

One of the primary purposes of this first part of this three-part study is to describe the 

methodology and nuances of the fit procedure to provide context and documentation for the 

resulting data product (Wilson et al. 2019c). This will serve as the reference document for 

use of the data product by the heliospheric and astrophysical communities. The nuances and 

details of the procedure are critical for reproducibility and quality control in the use of the 

data product described in this section. While Papers II and III discuss the statistics and 

analysis results in detail, this first part is critical for any statistical or physical interpretation 

of the data, and it includes analysis of the exponents and drifts.

The fit results are provided in two ASCII files. The first contains all fit parameters for the 

three electron components in addition to several other relevant parameters. The nonelectron 

data products are linearly interpolated to the midpoint time stamp of each electron VDF. The 

ASCII file contains a detailed header with descriptions and explanations of the parameters 

with associated units. The data included are as follows: UTC time of electron VDF midpoint 
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time stamp; np and nα measured by SWE (cm−3); ni measured by 3DP (cm−3); Tp,j and Tα,j 

measured by SWE (eV); Ti,j measured by 3DP (eV); Bo,j measured by MFI (nT); Vp,j and 

Vα,j measured by SWE (km s−1); Vi,j measured by 3DP (km s−1); ϕsc determined from fit 

process (eV); δℛ calculated from fit process (%); nes from 3DP fits (cm−3); Tes,j from 3DP 

fits (eV); Voes,j from 3DP fits (km s−1); κes, pes, and qes from 3DP fits (N/A); χs
2 from 3DP 

fits (N/A); and the numeric fit status value for each electron component (N/A). The total 

reduced chi-squared values for all fits are also included in the ASCII file. The fit flags for 

each component fit are also included. Let Ξ ≡ Σsχs
2; then, the list is as follows:

1. Fit Flag c, h, b = 0:(100% ⩽ δℛ) ∨ nonfinite for any of the following: Ξ, χs
2, δℛ

2. Fit Flag c, h, b = 1: 100 ⩽ χtot
2 < 1030 ∧ Ξ < 200 ∨ χs

2 ⩽ 200 ∧ (δℛ < 95%)

3. Fit Flag c, h, b = 2: 0 ⩽ χtot
2 < 100 ∧ (Ξ < 100) ∨ χs

2 ⩽ 100 ∧ (δℛ < 75%)

4. Fit Flag c, h, b = 3: 0 ⩽ χtot
2 < 100 ∧ (Ξ < 50) ∨ χs

2 ⩽ 40 ∧ (δℛ < 55%)

5. Fit Flag c, h, b = 4: 0 ⩽ χtot
2 < 100 ∧ Ξ < 40 ∨ χs

2 ⩽ 30 ∧ δℛ < 50%

6. Fit Flag c, h, b = 5: 0 ⩽ χtot
2 < 100 ∧ Ξ < 30 ∨ χs

2 ⩽ 20 ∧ δℛ < 45%

7. Fit Flag c, h, b = 6: 0 ⩽ χtot
2 < 100 ∧ Ξ < 20 ∨ χs

2 ⩽ 10 ∧ δℛ < 40%

8. Fit Flag c, h, b = 7: 0 ⩽ χtot
2 < 30 ∧ Ξ < 15 ∨ χs

2 ⩽ 9 ∧ δℛ < 30%

9. Fit Flag c, h, b = 8: 0 ⩽ χtot
2 < 30 ∧ Ξ < 10 ∨ χs

2 ⩽ 7 ∧ δℛ < 20%

10. Fit Flag c, h, b = 9: 0 ⩽ χtot
2 < 15 ∧ Ξ < 7 ∨ χs

2 ⩽ 5 ∧ δℛ < 15%

11. Fit Flag c, h, b = 10: 0 ⩽ χtot
2 < 7 ∧ Ξ < 5 ∨ χs

2 ⩽ 3 ∧ δℛ ⩽ 10% .

The second ASCII file contains the fit constraints, initial guesses, whether the fit parameters 

reached a fit constraint boundary, the number of iterations required to reach a stable fit, the 

chi-squared of the fit, degrees of freedom of the inputs, and a two-letter code for the model 

function used.

Both ASCII files contain fit results even if they are not high-quality or reliable results, which 

can be determined from the combination of χs
2, χtot

2 , and δℛ used to define the fit flags in the 

first ASCII file, as discussed previously. The entries with fill values (listed in the header) 

resulted because a stable fit was not found or the fit was determined to be “bad,” as defined 

in Section 3.3 and Appendix C. When there is a significant discrepancy between np and ni 

(e.g., differ by a factor exceeding ~40%), the more reliable/accurate of the two is np. Under 

these circumstances, Ti,j and Vi,j should be subject to scrutiny as well. The model function 

used for the core is given in the second ASCII file.
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Note that the second ASCII file will contain nonfill, fit values for the same parameters that 

are all fill values in the first ASCII file. Although many constraints were set as far from the 

expected values as possible to avoid a parameter from being limited during the fit, some 

were imposed after all the fits were found for a given shock crossing. These were imposed 

for physical reasons (see, e.g., Section 3.2) and to avoid issues during regridding and/or 

interpolation for comparison with other data sets (e.g., magnetic fields). These post-fit 

constraints are 1.5 < κeh ⩽ 20, 1.5 < κeb ⩽ 20, 0 ⩽ neh/nec ⩽ 0.75, 0 ⩽ neb/nec ⩽ 0.50, 0.0 ⩽ 
neb/neh ⩽ 3.0, 11.4 eV ⩽ Teh,j ⩽ 285 eV, and 11.4 eV ⩽ Teb,j ⩽ 285 eV. All statistics and fit 

results presented herein are with respect to the first ASCII file values, but we include all the 

fit results in the second ASCII file for reference. This is because some of our post-fit 

constraints eliminated good fits like that shown in Figure 6, which failed the neb/neh < 3 test. 

Most of the fits that failed this specific test were clearly bad fits, but not all.

The purpose of providing the detailed inputs for the fit results is for reproducibility and for 

quality control/sanity checks for researchers in the heliospheric and astrophysical 

communities interested in future use of the data. The data product will benefit current and 

future missions like Parker Solar Probe, in addition to providing a statistical comparison 

with astrophysical shocks, which is currently not available.
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Figure 1. 
Illustrative example VDFs of the core, halo, and beam/strahl components of the electron 

VDFs in the solar wind near 1 au. The top row (panels (a) through (c)) shows contours of 

constant phase-space density (cm−3 km−3 s+3) of a two-dimensional cut through a three-

dimensional VDF. The plane and coordinate basis are defined by the quasi-static magnetic 

field, Bo, and the ion bulk flow velocity, Vi. The vertical axis is defined by the unit vector 

(Bo × Vi) ´ Bo and the horizontal axis by Bo. The bottom row (panels (d) through (f)) shows 

one-dimensional cuts of the VDF along the horizontal (solid red line) and along the vertical 

(solid blue line). The locations of these cuts are defined by the color-coded crosshairs in the 

top row of panels. The VDF is shown in the ion bulk flow rest frame.
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Figure 2. 
Examples of one-dimensional cuts through multiple model VDF functions to illustrate the 

functional dependence on various parameters. The top row (panels (a) through (c)) shows the 

dependence on the thermal speed, denoted generically as Vth here. The bottom row (panels 

(d) and (e)) shows the exponent dependencies. Panel (a) shows bi-Maxwellian VDFs 

(Equation 1(a)), panels (b) and (d) show bi-kappa VDFs (Equation 2(a)), and panels (c) and 

(e) show bi-self-similar VDFs (Equation 3(a) and 4(a)). All examples shown have the same 

number density of 5 cm−3, denoted generically as no here.
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Figure 3. 
Example IP shock crossing observed on 1996 April 2 by the Wind spacecraft. The panels are 

as follows from top to bottom: |Bo| (nT), Bo (nT, GSE); value of spacecraft potential used for 

fits ϕsc (eV); np (red line) and 100 × nα (blue line) (cm−3, SWE); sec (blue circles), κeh 

(green circles), and κeb (magenta circles); nec values (blue circles) and uncertainty (red error 

bars) (cm−3, 3DP fit); neh (cm−3, 3DP fit); and neb (cm−3, 3DP fit). The error bars for the 

four electron fit parameter panels are defined by the percent deviation discussed in Section 

3.3. The error for this date satisfied 0.2% < δℛ ⩽ 54% with a median of 10.3%.
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Figure 4. 
Example VDF observed at 02:55:41.008 UTC on 1999 August 4 by the Wind/3DP EESA 

Low detector. Panel (a) shows a 2D cut through the 3D VDF as contours of constant phase-

space density, where the cut plane is defined by the unit vectors (Bo × Vi) × Bo on the 

vertical and Bo on the horizontal, where Bo = (+6.41, −7.64, −8.48) (nT, GSE). The origin in 

velocity space is defined by Vi = (−388.38, +3.13, −32.63) (km s−1, GSE). The value of ϕsc 

for this VDF is 6.35 eV. Projected onto panel (a) are the following vectors: ion bulk flow 

velocity Vi or Vbulk (purple arrow), Bo (cyan arrow), shock normal vector nsh (green arrow), 

and the Sun direction (magenta arrow). The small cyan circles show the location of actual 

measurements prior to regularized gridding with Delaunay triangulation. Panels (b) and (c) 

show the 1D parallel cuts along the horizontal (solid red line is data in both panels), and 

panels (d) and (e) show the 1D perpendicular cuts along the vertical (solid blue line is data 

in both panels). Panels (b) and (d) show the individual electron component fit results, while 

panels (c) and (e) show the sum of the fit results all as dashed lines and with color-coded 

labels. Panel (c) shows the one-count level for reference.
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Figure 5. 
Another example VDF observed at 20:22:43.490 UTC on 1999 January 22 by the Wind/3DP 

EESA Low detector in burst mode. The format is the same as in Figure 4, where this VDF 

has Bo = (−6.95, +9.78, −8.77) (nT, GSE), Vi = (−619.12, +26.66, +21.19) (km s−1, GSE), 

and ϕsc = 9.45 eV.
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Figure 6. 
Another example VDF observed at 18:23:06.116 UTC on 1999 January 22 by the Wind/3DP 

EESA Low detector in burst mode. The format is the same as in Figures 4 and 5, where this 

VDF has Bo = (−0.89, −0.32, −10.57) (nT, GSE), Vi = (−626.59, +93.06, +76.13) (km s−1, 

GSE), and ϕsc = 10.67 eV.
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Figure 7. 
Two superposed epoch analysis plots of the total electron current density, je,tot (Mm s−1) (top 

panel), and normalized values, je,tot/(neVTec,tot) (%) (bottom panel), vs. seconds from the 

shock ramp center. Shown in each panel are the lower (Q1) and upper (Q2) quartiles as 

magenta lines, the mean as a red line, and the median as an orange line for all data. That is, 

the lines are computed for the entire set of data, not at each time stamp. For reference, the 

axis ranges were defined as 110% of the maximum of the absolute value of X2.5 and X97.5, 

where X2.5 and X97.5 are the bottom 2.5th and top 97.5th percentiles.
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Figure 8. 
Histograms of the exponents (top row) and bulk drift velocity magnitudes (bottom row) for 

the different electron components for all time periods as percentage of total counts. Panel (a) 

shows the κes values for the core (violet), halo (blue), and beam/strahl (red) components. 

Panel (b) shows the sec for the core (violet). Panel (c) shows the pec (blue) and qec (red) 

values for the core. Panels (d)–(f) show the magnitude of the parallel (violet) and 

perpendicular (blue) drift velocities for the core, halo, and beam/strahl components, 

respectively. The statistics for the exponents are listed in Table 2. Note that the tick marks 

are individually labeled in all panels.
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Figure 9. 
Spacecraft potential, ϕsc, shown vs. the total ion density, ni, observed by the Wind/3DP ion 

electrostatic analyzer (PESA Low). The top panel shows the value of ϕsc (eV) determined 

iteratively, as described in this appendix, vs. ni (cm−3), where the color code is defined by 

the IP shock data given in the lower left corner. The bottom panel shows the same data, but 

now ϕsc is offset by the detector minimum energy, Emin, and divided by the constant 5.0 to 

keep the magnitudes near unity. The Emin are color-coded and date-specific, as in the top 

panel. The solid magenta line is a smoothed median trend line, and the magenta shaded 

region indicates the standard deviation of the values at each ni. The cyan dashed line 

indicates a fit line to the data using the model function defined near the top center of this 

panel.
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Figure 10. 
Example VDF observed at 04:21:03.646 UTC on 1998 February 3 by the Wind/3DP EESA 

Low detector. The format is similar to Figures 4–6, except that each of the one-dimensional 

cut panel columns shows a different fit result and only the total model fits are shown. The 

values of the relevant parameters for this VDF are Bo = (+4.59, −5.43, +1.79) (nT, GSE), Vi 

= (−323.98, −36.55, +30.66) (km s−1, GSE), and ϕsc = 12.04 eV. Panels (b), (d), and (f) show 

the 1D parallel cuts along the horizontal (solid red line is data in both panels), and panels 

(c), (e), and (g) show the 1D perpendicular cuts along the vertical (solid blue line is data in 

both panels). Panel (d) shows the one-count level for reference.
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Table 2

Electron Exponent Parameters

Exponent Xmin
a

Xmax
b Xc Xd

X25%
e

X75%
f

All: 15,210 VDFs

κec 2.14 100.0 9.15 7.92 5.40 10.2

sec 2.00 3.00 2.03 2.00 2.00 2.04

pec 2.00 5.43 3.09 3.00 2.20 4.00

qec 2.00 3.29 2.24 2.00 2.00 2.46

κeh 1.51 19.7 4.62 4.38 3.58 5.34

κeb 1.52 20.0 4.57 4.17 3.40 5.16

Upstream Only: 6546 VDFs

κec 2.14 100.0 9.15 7.92 5.40 10.2

sec 2.00 2.31 2.01 2.00 2.00 2.03

pec N/A N/A N/A N/A N/A N/A

qec N/A N/A N/A N/A N/A N/A

κeh 1.52 18.4 4.16 4.10 3.25 4.83

κeb 1.52 19.6 4.22 3.81 3.25 4.70

Downstream Only: 8664 VDFs

κec N/A N/A N/A N/A N/A N/A

sec 2.00 3.00 2.05 2.01 2.00 2.06

pec 2.00 5.43 3.09 3.00 2.20 4.00

qec 2.00 3.29 2.24 2.00 2.00 2.46

κeh 1.51 19.7 4.94 4.62 3.80 5.70

κeb 1.53 20.0 4.82 4.45 3.61 5.44

〈Mf〉up < 3 Only: 12,988 VDFs

κec 2.14 100.0 9.02 6.83 4.40 9.93

sec 2.00 3.00 2.03 2.00 2.00 2.04

pec 2.00 5.43 3.10 3.00 2.18 4.00

qec 2.00 3.14 2.26 2.01 2.00 2.49

κeh 1.51 19.7 4.54 4.34 3.58 5.26

κeb 1.52 20.0 4.62 4.20 3.46 5.19

〈Mf〉up ⩾ 3 Only: 2222 VDFs

κec 4.32 27.2 9.30 8.60 6.89 10.4

sec 2.00 2.30 2.03 2.00 2.00 2.08

pec 2.00 5.00 3.08 2.50 2.18 4.00

qec 2.00 3.29 2.16 2.00 2.00 2.50

κeh 1.60 19.2 5.06 4.68 3.62 6.05

κeb 1.52 18.8 4.25 3.84 2.89 4.94
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Exponent Xmin
a

Xmax
b Xc Xd

X25%
e

X75%
f

θBn > 45° Only: 10,940 VDFs

κec 4.05 27.2 7.77 7.18 4.84 9.11

sec 2.00 2.31 2.02 2.00 2.00 2.05

pec 2.00 5.43 3.00 2.62 2.17 4.00

qec 2.00 3.29 2.28 2.04 2.00 2.56

κeh 1.51 19.7 4.73 4.44 3.67 5.47

κeb 1.52 20.0 4.67 4.20 3.33 5.33

θBn ⩽ 45° Only: 4270 VDFs

κec 2.14 100.0 16.0 11.7 10.0 14.5

sec 2.00 3.00 2.06 2.00 2.00 2.04

pec 2.00 4.28 3.29 4.00 4.00 4.28

qec 2.00 3.00 2.14 2.00 2.00 2.16

κeh 1.55 19.4 4.32 4.18 3.37 5.09

κeb 1.53 16.5 4.31 4.10 3.57 4.82

Notes. For symbol definitions, see Appendix A.

a
Minimum.

b
Maximum.

c
Mean.

d
Median.

e
Lower quartile.

f
Upper quartile.
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