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Abstract

Background: As sequencing technology improves, the concept of a single reference genome is becoming
increasingly restricting. In the case ofMycobacterium tuberculosis, one must often choose between using a genome
that is closely related to the isolate, or one that is annotated in detail. One promising solution to this problem is through
the graph based representation of collections of genomes as a single genome graph. Though there are currently a
handful of tools that can create genome graphs and have demonstrated the advantages of this new paradigm, there
still exists a need for flexible tools that can be used by researchers to overcome challenges in genomics studies.

Results: We present GenGraph, a Python toolkit and accompanying modules that use existing multiple sequence
alignment tools to create genome graphs. Python is one of the most popular coding languages for the biological
sciences, and by providing these tools, GenGraph makes it easier to experiment and develop new tools that utilise
genome graphs. The conceptual model used is highly intuitive, and as much as possible the graph structure
represents the biological relationship between the genomes. This design means that users will quickly be able to start
creating genome graphs and using them in their own projects. We outline the methods used in the generation of the
graphs, and give some examples of how the created graphs may be used. GenGraph utilises existing file formats and
methods in the generation of these graphs, allowing graphs to be visualised and imported with widely used
applications, including Cytoscape, R, and Java Script.

Conclusions: GenGraph provides a set of tools for generating graph based representations of sets of sequences with
a simple conceptual model, written in the widely used coding language Python, and publicly available on Github.
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Background
Modern genomics relies heavily on the use of a refer-
ence genome for common processes like variant calling,
gene expression analysis, and even genome assembly.
This reference sequence is often a consensus from a set
of sequences that collectively represent anything from
an individual isolate such as Mycobacterium tuberculo-
sis H37Rv, to an entire species, in the case of the human
genome assembly GRCh38, and the use of this single ref-
erence introduces a number of biases. The reference may
be missing genes from some strains resulting in them
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being ignored in a differential expression analysis, or con-
tain chromosomal rearrangements resulting in the effect
of an upstream variant being misinterpreted. In terms of
genome storage, the current standard is as linear sequence
stored in a fasta file. Although they have served their
purpose up until now, in the age of pangenomes and
microbiome studies these representations have become
limiting in terms of the file space they occupy, the func-
tionality they provide, and their ability to represent popu-
lation scale variation. These challenges have led to a move
towards genome graphs. Where a pangenome is a col-
lection of sequences that represent all variation between
individuals in a defined clade, a genome graph is a graph
representation of a pangenome where the sequences can
be represented as a De Bruiijn graph, directed acyclic
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graph, bidirected graph, or a biedged graph. This repre-
sentation of genomes offers a myriad of advantages over
the use of a single reference genome.
Graphs are not a new concept in genomics, and are

used for tasks including the assembly of genomes and the
alignment of reads. Now, tools like vg (variant graph) [1],
PanTools [2] and the Seven Bridges genome graph toolkit
(https://www.sbgenomics.com/graph/) allow for the cre-
ation and utilisation of genome graphs in genomics work
flows, and GfaPy allows for the creating, parsing, and
editing of GFA graphs using Python [3]. These tools are
developing rapidly, and include features that take advan-
tage of the graph structure, allowing for read alignment
and variant calling using the graph genome as a reference.
While these tools are highly capable, there still exists a
need for the development of more toolkits for genome
graphs as advocated by Paten et. al., in a recent review
that discusses these tools and the improvements they have
brought to variant calling [4].
GenGraph is a genome graph creation and manipula-

tion toolkit created in Python that focuses on providing
tools for working with bacterial genome graphs within an
initiative conceptual model. It is able to create a genome
graph usingmultiple whole genomes and existingmultiple
sequence alignment (MSA) tools, allowing any current or
future algorithm to be employed. In this article we outline
the structure of the genome graph created by GenGraph,
and themethods for its creation, and give examples of how
the provided functions may be used to extract biologically
interesting features from the graph. Further examples of
applications are available on the project Github page.

Implementation
GenGraph is written in Python, a widely used language
in the biological sciences that is easy to learn, powerful,
and has numerous useful libraries including Biopython,
Numpy and NetworkX. GenGraph was implemented as
both a Python tool and amodule withmodified NetworkX
graph objects whose attributes may be accessed in the
manner described in the NetworkX documentation.

Structure of the graph
A GenGraph graph is a directed sequence graph, where
the individual genomes are encoded as walks within the
graph along a labeled path. Each node represents a sub-
sequence that is homologous between the component
sequences. This implies the sequences have a shared evo-
lutionary origin, and are not just identical sequences,
and biological representation of the genomes is priori-
tised over a compressed data structure (Fig. 1). This is an
important design choice in that it allows for a more intu-
itive use of the graph, and a simpler conceptual model. As
the graph contains no self loops, creating functions that
require traversal is kept simpler.
The coordinate system relies on storing the relative start

and stop positions for each component sequences in each
node. This means that given only a single node, one can
determine that the first ’A’ nucleotide in the node has posi-
tion 132 in isolate A, 21,310 in isolate B, and so on. This
allows for existing annotations to be used, and for the
sequence of a gene for a particular isolate to be retrieved
from the graph given a traditional GTF file, a common
task for which a function has been created. The coordinate

Fig. 1 Representation of repeats in the genome graph. a, Two sequences where sequence 2 contains 3 additional “ATG” repeats high-lighted in
blue. b, GenGraph represents only differences, with node 1 representing both sequences, node 2 representing the additional repeats found only in
sequence 1, and node 3 the sequence that is once again shared. c, This is opposed to an approach where the “ATG” repeat is represented as a single
node with a self loop. This approach may be neater and result in better compression, but raises many practical problems including not allowing the
node to be labeled with the sequence start and stop positions

https://www.sbgenomics.com/graph/
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system also allows for inversions to be represented in a
single node (Fig. 2). This results in a more intuitive rep-
resentation of the relationship between the sequences as
genes that fall within the inverted sequence are still found
in the same node in both isolates, and the concept of
a chromosomal breakpoint is represented by the edges
either side of the node. Descriptions of the node and edge
attributes can be found in Tables 1 and 2.

Creation of the genome graph
The graph is created as a modified Python NetworkX
graph object, the details of which may be found here
(https://networkx.github.io). GenGraph currently creates
a genome graph in two steps (Fig. 3). First, large struc-
tural differences between the genomes including large
deletions and chromosomal inversions are identified by
finding large blocks of co-linear sequence between the
genomes using a tool like progressiveMauve [5]. These
represent regions of structural conservation, and are tem-
porarily stored in a single node within the initial graph,
even if they are imperfect alignments. GenGraph then
realigns the sequences in these initial nodes using the
selected MSA tool, and finds the best local alignment for
the sequences. The relative start and stop positions for
the region of aligned sequence contained within the node
is stored for each of the isolates that are included in that
node as attributes of the NetworkX node object. This
is then converted into a sub-graph by collapsing shared
regions into single nodes, and creating edges so that a path
exists for each of the original sequences through the sub-
graph. This sub-graph then replaces the initial temporary
node from the initial structural graph.

The process of identifying the co-linear blocks and sub-
sequent realignment is done using functions that wrap
existing alignment tools. Currently Muscle [6], Mafft [7]
and Clustal Omega [8] are supported for the local MSA.
The final NetworkX graph objects created by GenGraph
may be exported as GraphML, XML, or as a serialised
object, though various other formats may be added in
future. GenGraph creates a report file containing infor-
mation such as the number of nodes and edges in the
graph, the average in and out degree of the nodes, the total
sequence length of all the nodes in the graph and the den-
sity of the graph (Additional file 1). This information can
be used to monitor how graphs change as more genomes
are added as well as the relationship between the number
of features and the graph size.

Available graph functions
GenGraph is available as both a command line tool, and a
Python module. Both allow for the creation of a genome
graph, and the use of an existing genome graph for down-
stream analysis.
These functions include simple processes like extract-

ing a single genome in fasta format for a specific isolate,
or extracting a sub-sequence, as well as more complicated
functions that take advantage of the coordinate system
to translate the position of a gene in one genome to its
position in another.
To demonstrate the use of GenGraph, we downloaded

the complete genome assemblies of various Mycobac-
terium tuberculosis isolates from the NCBI database
(https://www.ncbi.nlm.nih.gov/genome/) and used them
to construct a genome graph using progressiveMauve for

Fig. 2 Representation of inversions in the genome graph. During the first step of genome graph creation, co-linear blocks are identified. In some
cases, these may be homologous sequences that have been inverted. GenGraph represents these sequences in a single node (that may be broken
down into more nodes in the second step) and represents the inverted state of the sequence by negative nucleotide position values in the node. a,
Two sequences are shown where an inversion has taken place. This is normally a larger stretch of sequence perhaps a few kb in length. b, The
positions of the sequences are different, as is generally the case with homologous sequences. The positions of the nucleotides flanking the
breakpoints are shown. c, The inversion in the second sequence is represented by reversed negative nucleotide position values. d, This way, both
sequences are represented in the same node, and to recreate sequence 2, the sequence in the node is simply reverse-complimented

https://networkx.github.io
https://www.ncbi.nlm.nih.gov/genome/
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Table 1 Information on the node attributes used in a gengraph
genome graph

Node attribute Type Description

name String A unique name identifying the node.
When a node is split, the resulting
nodes inherit the original node’s value
appended with a new number. So if
node Aln_66 is split into 4 nodes,
they are named Aln_66_1, Aln_66 _2,
Aln_66_3, Aln_66_4.

sequence String The nucleotide sequence that is
represented by this node.

ids String This is a comma separated list of the iso-
lates that are represented by this node.

(isolate)_leftend,
(isolate)_rightend

Integer For each isolate, the positions of the first
and last nucleotides represented by the
node is recorded. So for isolate H37Rv,
H37Rv_leftend = 13,203.

the structure graph, and Clustal Omega for the realign-
ment of the blocks. We then use the available functions
and simple Python code to identify conserved regions of
the genomes, compare the sequence of a gene between
isolates, and visualise a variant in a gene.

Results and Discussion
Structure of the graph
GenGraph creates the genome graph based on whole
genome sequence alignments that are conducted in two
parts. First, the identification of large co-linear blocks,
then the realignment of those blocks. This allowed for the
creation of a genome graph containing multiple bacterial
genomes, including MTB isolates like W-148 that con-
tain large chromosomal rearrangements [9]. The genome
graphs are thus able to capture all variants from large
scale structural differences between isolates such as chro-
mosomal rearrangements, down to smaller scale differ-
ences including SNPs and copy number variations. The
structure aims to represent a biologically accurate repre-
sentation of the evolutionary relationships between the
sequences of the different isolates. In doing so, it main-
tains a simple conceptual model, which makes interpret-
ing the graph simple, and in turn helps developers to
create new tools easier.

Table 2 Information on the edge attributes used in a gengraph
genome graph

Edge attribute Type Description

name String Edges are named by a combination of the
two nodes that they link. Eg: Aln_48_50 (-)
Aln_48_49 would be the name of the node
that links nodes Aln_48_50 and Aln_48_49

ids String This is a comma separated list of the isolates
that are represented by this edge.

Global and local alignment: Performance
A primary feature of GenGraph is the use of existing
MSA tools for the creation of the graph by wrapping the
tools in functions. Because GenGraph uses these align-
ment tools to create the graph structure, users may use
parameters or aligners that are best suited for the organ-
ism. With MSA being the current speed bottleneck in
the creation of genome graphs, the scalability of Gen-
Graph is dependent on the ability of these alignment
tools. This allows the toolkit to evolve and improve with
time, as well as utilise alignment tools that are best suited
to the dataset at hand, and adapt to new innovations
including GPU acceleration or field-programmable gate
array chips.
Graph generation runtime increases in a linear fash-

ion, influenced by the number of sequences being
aligned, their length, and similarity. By breaking down the
genomes into partially pre-aligned blocks, GenGraph is
able to align multiple long genomes in segments and with
the current version of mafft able to align up to 30,000
sequences in a block.
GenGraph was able to create a genome graph contain-

ing 5 MTB genomes on a 2012 i7 Macbook Pro with
8 GB ram using Mafft in 53 min and 10 genomes in 2
h and 44 min (Additional file 2). For smaller genomes,
300 HIV-1 genomes were aligned and converted to a
genome graph in 35 min. Currently GenGraph does not
take advantage of multiprocessing, an enhancement that
will be made in an upcoming update. From testing we see
the scalability of GenGraph is dependent on the power
of the latest alignment tools, the number of sequences
being aligned, their length, and their similarity, though
in general we observe a linear increase in genome graph
generation time as the number of sequences increase
(Table 3). Graph generation represents the most computa-
tionally intense and time consuming process, while down-
stream analysis benefits from the use of the data in an
aligned form.

Available graph functions & toolkit
The structure used by GenGraph and the provided func-
tions makes writing code simple for anyone that is familiar
to Python. While the toolkit provides options to create
genome graphs and extract sequences using command
line, the GenGraph module provides access to functions
and methods that can be used to create new tools or
conduct analyses.

Use case 1: Identifying conserved regions
The following code can be used to identify the largest
uninterrupted sequence common to all the isolates in the
provided genome graph. These conserved regions may
contain core genes required for survival and are often drug
target candidates.
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Fig. 3 Overview of the GenGraph algorithm. a, Co-linear blocks of sequence are identified to determine the structural relationship of the sequences.
b-c, Each block is then realigned using a MSA tool. c-d, Identical sequences are reduced into nodes and edges created

# Import graph gg_object = import_gg_graph

(< path to GG xml file >)

# Check how many isolates are included in

the graph isolate_count = len(gg_object.

ids())

# Set some starting values longest_node =

’none’ longest_node_length = 0

for a_node in gg_object.nodes():

# Go through all nodes, looking for nodes

that contain all the isolates

Table 3 An increase in file size was observed per genome added
to the graph that demonstrated the compression of data that
occurs by collapsing regions of shared aligned sequences into
single representative nodes

Number of
genomes

1 2 3 4 5 6 10

File size 4,5Mb 5,9Mb 7,6Mb 8,5Mb 11Mb 13Mb 38Mb

Number of
nodes

0 3,690 8,106 9,320 13,264 15,355 43,290

Number of
edges

0 4,886 10,868 12,485 17,823 22,296 73,652

The compression is related to the similarity of the sequences, as sequences that
only differ by few bases will only require a few additional nodes. (Additional file 3)

if len(gg_object.node[a_node][’ids’].split

(’,’)) == isolate_count:

# Check if they are longer than the current

longest node

if len(gg_object.node[a_node][’sequence’])

> longest_node_length:

longest_node = a_node

longest_node_length = len(gg_object.node

[a_node][’sequence’])

# Return the longest node print

(longest_node) print(longest_node_length)

The inverse can be done, finding all nodes with length
less than 3 bp and belonging to only one isolate. This
will represent isolate specific SNPs that could be useful
to explain unique characteristics, for example in the case
of a genome graph composed of 10 harmless and one
pathogenic strain. This process would be far more difficult
using multiple vcf files and reference genomes, particu-
larly if mutations are found in genes that are not found in
the reference genome.

Use case 2: Comparing genes between isolates
A common task is the comparison of genes from different
isolates, and describing how they differ. First we extract
the carB gene in the MTB isolate H37Rv.
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carB_subgraph = gg_object.get_region_

subgraph(1557101, 1560448, ’H37Rv’)

This subgraph contains the sequence of the carB gene.
If the graph has only one node, and all of the isolates are
found in the node ’ids’ list, then all of the isolates have the
same gene with no mutations. A user could then iterate
though all genes in an annotation file, and identify those
conserved across all strains to identify a core genome. If
there is more than one node, or not all isolates are rep-
resented in that node, further investigation can be done
by adding another attribute to each node representing
the sequence length, and then exporting the subgraph for
visualisation in Cytoscape [10].

gene_subgraph = gg_object.get_region_

subgraph(2774545, 2774565, ’H37Rv’,

neighbours=1)

# Here we add the length of the nodes as a

new attribute for a_node in gene_subgraph.

nodes():

node_length = len(gene_subgraph.node

[a_node][’sequence’])

attrs = {a_node: {’length’: node_length}}

nx.set_node_attributes(gene_subgraph,

attrs)

nx.write_graphml(gene_subgraph,

‘‘sub_view.graphml’’)

With a few simple lines of Python, we are able to com-
pare genes across different isolates, visualising interesting
differences (Fig. 4). With more complex code, functions
that calculate sequence similarity between isolates can be
created, and allow for the identification of homologues to

be done. This has been used in the creation of a homology
matrix, which is useful for interpreting results from iso-
lates with poor or missing annotations. The homology
matrix created by GenGraph allows mapping of gene
IDs between isolates to identify orthologues in a gene-
order awaremanner. As orthologues are identified by their
relative position within in the graph, and not by their
sequence similarities, the correct orthologues of genes
with multiple paralogues such as the PE/PPE genes in M.
tuberculosis are identified. Additional tools for cladogram
construction and pan-transcriptome extraction have been
created that take advantage of the genome graph structure
in a similar manner and are outlined on the GenGraph
GitHub page under the Wiki.

Comparisons
GenGraph was made to be modular and built around the
described genome graph structure. Although GenGraph
currently uses a two stage graph genome creation pipeline
the focus is not on assembly, support for cactus and de
Bruijn graphs to be collapsed into the GenGraph structure
will be provided in future releases, as well as importing of
graphs created by vg. While cactus and de Bruijn graphs
are useful for assembly and alignment, their structures are
not intuitive to the majority of downstream users. The
functionality provided by GenGraph provides support for
the downstream use of genome graphs, and designed to
make it easy for even novice programmers to start using
genome graphs in their workflows, encouraging adop-
tion and making the transition from fasta based reference
thinking simpler. The structure of graphs used in Gen-
Graph is most similar to the structure used in vg (https://
github.com/vgteam/vg/wiki/Visualization) but differs in
that vg is written in C++, and we believe a genome graph
tool for Python would be more accessible for the research
community.

Fig. 4 Plot of exported subgraph. a, Cytoscape allows for the styling of imported networks, and by mapping the node width to the sequence length
it is simple to visualise which nodes represent insertions. Nodes can be coloured by which isolates they contain, in this case Beijing isolates were
represented by red nodes, H37Rv by blue nodes, and purple nodes represent nodes shared by all isolates. b, For more detail on nodes of interest, a
table listing the node and edge attributes is also available

https://github.com/vgteam/vg/wiki/Visualization
https://github.com/vgteam/vg/wiki/Visualization
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Conclusions
GenGraph brings genome graphs into the world of
Python, with a toolkit that allows users to create genome
graphs using MSA tools. It is able to scale from small viral
genomes to bacterial genomes on desktop computers,
with further testing for large genomes already underway.
GenGraph uses external alignment tools for the creation
of the alignments used in generating the genome graph,
making it able to utilise any existing or future align-
ment tools to boost its performance. Because only existing
graph file formats are used, the graphs can be imported
and visualised by common tools, including Cytoscape and
R.
To facilitate adoption, GenGraph includes a number of

useful tools and functions in order to facilitate adoption
into work flows, allowing users to quickly create code
that carries out common tasks and analysis using genome
graphs. Combined with an intuitive conceptual model
and built for Python, one of the most widely used pro-
gramming languages in the biological sciences, GenGraph
provides a starting point for the development of a new
generation of genome graph based tools.

Availability and requirements
Project name: GenGraph
Project home page: https://github.com/jambler24/
GenGraph
Operating system(s): Platform independent
Programming language: Python 3
Other requirements: NetworkX, Mauve, and Muscle. A
docker image is also available in the github repository
containing all these requirements.
License: GNU LGPL
Any restrictions to use by non-academics: No

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3115-8.

Additional file 1: Example report file for the genome graph created by
GenGraph. The report file is in .txt format and contains details of the
generated genome graph.

Additional file 2: Genome graph containing five MTB genomes. The
graph was created from the assemblies of six MTB isolates (Beijing, C,
CDC1551, F11, H37Ra, H37Rv) from GenBank, and saved in GraphML
format. This file is viewable in Cytoscape and may be imported using
Python’s NetworkX package.

Additional file 3: Graph showing the effect of sequence similarity on file
size. To test the effect of different sequence similarities on the output file
size, single base substitution mutations were simulated at different rates
across 1 kb sequences. At 1 SNP per 1kb, there is only a slight increase in
size as more sequences are added. This represents an upper estimate, as
sequences were mutated independently, where as in related sequences
some mutations would be shared and not require new nodes to be
created. In the case of whole genomes, three closely related
Mycobacterium tuberculosis KZN strains of 4.5 MB can be converted to a
single 4.6 MB GraphML file.

Abreviations
GFF: General feature format; GTF: Gene transfer format; MSA: Multiple
sequence alignment; MTB:Mycobacterium tuberculosis; SNP: Single nucleotide
polymorphism; SRA: Sequence read archive; VCF: Variant call format
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