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Abstract

Controlling which particular members of a large protein family are targeted by a drug is key to 

achieving a desired therapeutic response. In this study, we report a rational data-driven strategy for 

achieving restricted polypharmacology in the design of anti-tumor agents selectively targeting the 

TYRO3, AXL and MERTK (TAM) family tyrosine kinases. Our computational approach, based 

on the concept of FRAgments in Structural Environments (FRASE), distills relevant chemical 

information from structural and chemogenomic databases to assemble a three-dimensional 

inhibitor structure directly in the protein pocket. Target engagement by the inhibitors designed led 

to disruption of oncogenic phenotypes as demonstrated in enzymatic assays and in a panel of 

cancer cell lines, including acute lymphoblastic and myeloid leukemia (ALL/AML) and non-small 

cell lung cancer (NSCLC). Structural rationale underlying the approach was corroborated by x-ray 

crystallography. The lead compound demonstrated potent target inhibition in a pharmacodynamic 

study in leukemic mice.

Graphical Abstract

* xiaodonw@unc.edu; dmitri.kireev@unc.edu. 

The authors declare the following competing financial interest(s): D.D., D.K.G., H.S.E., S.V.F., X.W., and D.K. have stock in Meryx, 
Inc.

Supporting Information
Hitlists including fragment structures, environment information, source pdb ids and Tscores are provided as supplementary files. The 
full FRASE database used in this study was made available to public as a shared archive at: https://drive.google.com/open?
id=1xkIIdMDz_XMZdBBVikmivr8RVRoX9Q6X.

HHS Public Access
Author manuscript
J Am Chem Soc. Author manuscript; available in PMC 2020 October 02.

Published in final edited form as:
J Am Chem Soc. 2019 October 02; 141(39): 15700–15709. doi:10.1021/jacs.9b08660.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://drive.google.com/open?id=1xkIIdMDz_XMZdBBVikmivr8RVRoX9Q6X
https://drive.google.com/open?id=1xkIIdMDz_XMZdBBVikmivr8RVRoX9Q6X


Introduction

Polypharmacology: embracing the inevitable

Large families of structurally and often functionally related proteins, such as GPCR [1,2], 

protein kinases [3,4], and more recently HDAC [5] or bromodomains [6], are the most 

important source of drug targets. Due to the high intra-family similarity, especially within 

smaller subfamilies, a single small-molecule drug, in general, binds multiple family 

members, presenting both a challenge and an opportunity for drug discovery [7]. Beyond the 

basic consideration that promiscuous binding to multiple targets is a major cause of adverse 

effects [8] and general toxicity [9], it has also been shown that excessive selectivity for a 

single target may be a fatal safety concern [10], while binding several related targets could 

be a prerequisite for more efficacious drug action [11]. Hence, to achieve a desired 

therapeutic response, a drug discoverer should ideally be able to control the 

polypharmacology of a drug candidate; that is, to disable its promiscuous binding to 

unwanted targets, while enhancing potency against therapeutically relevant targets. However, 

controlling which particular members of a large protein family would be inhibited by a drug 

is an extremely challenging endeavor. Here we describe a data-driven approach to design 

small-molecule drugs with fine-tuned selectivity profiles in the context of highly 

homologous protein targets. In our approach, 3D structures of bioactive ligands are directly 

“assembled” from smaller building blocks in the protein binding pocket.

From virtual screener to virtual chemist

Previous computational efforts to design multi-target drugs focused on extending 

bioinformatics models or scaling up cheminformatics techniques. In particular, various 

flavors of binding-pocket similarity have been used to make predictions based on the 

principle “similar targets bind similar ligands” [12–14]. Alternatively, broad panels of 

computational structure-activity relationship (SAR) models were used to predict targets for 

ligand libraries [15–18]. Most practical applications focused on the two largest drug-target 

families: G-protein coupled receptors (GPCRs) [19] and protein kinases [20]. Although 

highly diverse in terms of underlying principles and assumptions, all previously reported 

approaches share one common function: they act as a “virtual screener”, that is, receive a 

ligand structure as the input and report its activity against a given target as the output. 

“Virtual screeners” are highly efficient when applied to a small panel of well-studied targets 
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with large SAR datasets. However, they are suboptimal for dealing with larger panels of 

predominantly novel targets: first, because there are no SAR data to develop predictive SAR 

models, and, second, a “virtual screener” still needs a human chemist to feed it with newly 

designed compounds. Yet, traditional SAR-based medicinal chemistry is difficult to scale up 

to multi-target discovery. Intuitively, the design of chemically novel ligands for understudied 

targets may benefit from (i) thousands of experimental structures of protein-ligand 

complexes, (ii) hundreds of thousands of biological activities for those ligands in public 

databases, and (iii) an intricate network of evolutionary relationships within large protein 

families. Tools are needed to jointly exploit disparate pieces of information from 

heterogeneous sources. The approach to polypharmacological ligand design, that we 

introduce, is based on the concept of a FRAgment in Structural Environment (FRASE). A 

single FRASE extracted from a high-affinity ligand explicitly encapsulates 3D structural 

information and, implicitly, SAR and sequence alignment data. Several FRASEs extracted 

from different protein-ligand complexes can be readily combined into a novel ligand for an 

orphan protein target. Hence, FRASE-based design represents a first step in the evolution of 

computer-aided drug from “virtual screener” to “virtual chemist”.

Targeting tumor-survival promoters TYRO3, AXL and MERTK

Here we demonstrate the potential of the FRASE-based approach by using it to design 

ligands that can interfere with the function of the TYRO3, AXL and MERTK (TAM) family 

of receptor tyrosine kinases [21]. These receptors play a physiologic role in dampening 

inflammatory responses, a role that is subverted in cancer-associated myeloid cells in the 

immunosuppressive tumor microenvironment [22,23]. TAM kinases, in particular MERTK, 

have been shown to upregulate expression of the T cell immune checkpoint molecule PD-L1 

and to promote phosphatidylserine-dependent efferocytosis and AKT-mediated 

chemoresistance in tumor cells [22,24]. In addition, TAM kinases are ectopically expressed 

in many human cancers, including both hematologic malignancies and solid tumors, where 

they function to promote tumor cell survival, chemoresistance and motility [23]. 

Consequently, targeted inhibition of TAM family members could reverse the 

immunosuppressive microenvironment and directly target tumor cells in a wide range of 

cancers.

The therapeutic value of TAM inhibitors may be largely dependent on their respective 

polypharmacologic profiles, both within the TAM family and with respect to other protein 

kinases. Therefore, it is important to design chemical probes selective either for a single 

TAM-family member or for any combination thereof. However, controlling the intra-family 

selectivity is challenging because TAM kinases were among the latest to evolve and, hence, 

they have highly similar kinase-domain structures and almost identical ATP pockets, 

providing almost no opportunity for developing intra-family selectivity. Here, we made use 

of FRASE-based design to develop inhibitors selective for specific TAM-family members 

and hence explore their potential as anti-cancer agents.
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Results

FRASE-based design

For a long time, ligand-and structure-based strategies in computer-aided drug design evolved 

separately, one toward embracing bigger data for more predictive and comprehensive 

activity models and the other toward faster and more accurate prediction of ligand-protein 

interactions [25,26]. However, despite significant progress, both strategies conserve their 

essential limitations. Ligand-based approaches cannot predict activities for “orphan” targets 

and structure-based techniques still have a long way to go before it might be possible to 

profile hundreds of ligands against hundreds of targets with a suitable accuracy in a 

reasonable time. FRASEs are structural descriptors that are intended to merge the chemical 

and protein structure spaces to overcome both of the above limitations. FRASE-based design 

enables processing of thousands of 3D protein-ligand complexes and tens of thousands of 

bioactivity data points to find the most appropriate building blocks for new active ligands. 

Moreover, the suggested building blocks are shown as 3D protein-bound poses and can be 

easily shuffled to yield synthetically tractable combinations with diverse family-wide 

polypharmacology profiles. A typical FRASE (Fig. 1A) includes a chemically sound 

fragment of a 3D protein-bound ligand pose, e.g., a cycle and/or functional group, as well as 

the nearby protein fragments (in this study, full residue structures). There are two primary 

assumptions behind the FRASE-based design: (a) a ligand has high affinity to a given 

protein due to an “endorsement” by every fragment it consists of; (b) a fragment is “good” 

due to its favorable interactions with its immediate protein environment. By combining (a) 

and (b) we obtain: (c) if a fragment is “good” in one protein it will also be “good” in any 

other protein that features an identical structural environment.

Conceptually, design of a new ligand for a given kinase involves (i) identification of 

structural environments (stored in the FRASE database) that match those in the binding 

pocket of the kinase of interest, and (ii) inspect locations and orientations of the ligand 

fragments belonging to the matching FRASEs (Fig. 1B) and combine them into synthetically 

tractable compounds. The algorithmic implementation of step (i) is straightforward. First, it 

must be noted that all kinase structures (either those used to create the FRASE database or 

those for which ligands are to be identified) are aligned in 3D space thus enabling an 

instantaneous projection of all FRASEs on the target structure (Fig. 1B). Hence, the i-th 

protein residue belonging to a structural environment from the FRASE database (reference 

environment) can be directly compared to the closest (i’-th) residue in the target protein and 

the match between them can be quantified as a function of their chemical similarity and 

proximity in 3D space, Tscorei = exp −2
dii′
4

2
T ii′, where dii is the distance between the 

residue centers and Tii is the Tanimoto[27] similarity between them. The total score for a 

reference environment is an average over all residues in the reference protein environment, 

Tscore = 〈Tscorei〉 (Tscore would be equal to one if all reference residues are chemically 

identical to and spatially aligned with their target counterparts). Fig. 1B exemplifies 

evaluation of a single reference environment with Tscorei shown for each individual residue. 

The total Tscore value in this example is 0.79 which is high enough and would warrant the 

selection of the respective ligand fragment as a potential building block for design. The 
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database search for matching FRASEs can be significantly restrained by setting a particular 

location for the FRASE’s ligand fragment. This would allow one to build a new ligand 

sequentially, by finding the next ligand fragment close to the attachment site of the previous 

one (which is the way ligands were designed in this study). The final selection of ligand 

fragments is closely associated with step (ii), that is, assembling fragments into synthetically 

tractable compounds. More than one factor is taken into consideration. First, Tscore is used 

to narrow down the choice. As in any screening process, the quantitative endpoint only 

serves to select a manageable number of hits that can be evaluated using alternative, more 

time-and resource-demanding criteria (a few thousand FRASEs are usually selected based 

on Tscore). There is no a clearly defined, optimal Tscore threshold. Certainly, it should not 

be set significantly lower than 0.5, but most of the times the threshold is determined by how 

many FRASE hits one can process. The next step is triage of the initial fragment hits. One 

notable aspect of ligand fragments in the FRASE database is their significant redundancy 

due to the fact that a fragment can be cut out of a ligand in multiple overlapping ways (this 

redundancy was intentionally allowed to maximize the sensitivity of the database search). 

We remove this redundancy by clustering on chemical similarity of the ligand fragments and 

the location of their geometrical centers. Finally, binding poses of the remaining fragments 

(irrespectively of their Tscores) are visually inspected and their relevance is assessed based 

on the synthetic tractability, availability of reagents, as well as the opportunity of connecting 

the selected fragment (to other fragments or the pre-existing structural template) by a 

common minimal linker, such as a single bond, ether, amide or urea. Sometimes a fragment 

can be slightly modified to facilitate its fusion with the structural template.

FRASE database, the key prerequisite for the design, integrates the information from 3D 

structures of protein-ligand complexes, ligand structures and their inhibitory potencies. First, 

a cross-search in the Uniprot[28], PDB[29] and PDBbind[30] databases was performed to 

yield 2,800 3D structures of high-affinity complexes (involving 2,100 unique ligands and 

230 kinases). Next, each ligand in every protein-ligand complex was broken into fragments 

(cycles and acyclic functional groups). Finally, each ligand fragment from the previous step 

is combined into a single structure with the nearby protein fragments (here, whole residues 

were used as protein fragments). A total of ~230,000 FRASEs were identified. We observed 

that, on average, a single structural environment can be found in ~30 kinases, that is, ~6% of 

the kinome. This appears to be an acceptable balance between uniqueness and redundancy. 

Indeed, if a structural environment occurs in every kinase it would not be useful for 

designing selective inhibitors, while if it occurs in only one kinase it would only be useful 

for designing an inhibitor for this particular kinase (and none other). The selectivity profile 

of a FRASE-based inhibitor would be an intersection of kinase lists that each individual 

FRASE is “good” for. Technical details on the development of the database and related tools 

are given in the Methods section.

Kinase back-pocket offers structural variance for selective TAM-member inhibitors

Our strategy consists of taking a type I TAM inhibitor and expanding it to new protein 

pockets featuring more significant structural differences in the vicinity of the ligand, thus 

providing a better opportunity to tune the inhibitor selectivity for any given TAM kinase. 

Structural analysis of all TAM members suggests that the “back-pocket” (Fig. 1C), located 
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between the c-helix and the adjacent antiparallel b-sheet, displays significant structural 

diversity and hence provides multiple opportunities for enhancing inhibitors’ selectivity. The 

three TAM sequences of C-helices (the rear-wall of the pocket) and adjacent antiparallel b-

sheets (the ceiling) display 44 pairwise-differing residues (Fig. 1D), whose side chains may 

either directly interact with the ligand or induce changes in relative orientations of these 

structural modules. This structural diversity in the back-pocket is in sharp contrast with the 

high conservation of the adenine pocket, to which typical type I kinase inhibitors, such as 

our pyridine-pyrimidine 1 [31] bind. In this pocket, there is only one amino-acid position 

showing variation across the TAM-family: MERTK:Ile650 vs. AXL:Met599 vs. 

TYRO3:Ala581 (Fig. 1E). In all three cases, the differing residues do not have close contacts 

or make high-energy interactions with the ligand. Hence, we hypothesized that the back-

pocket (Fig. 1C, E) would be a more suitable target for pyridine-pyrimidine expansion. A 

sequential FRASE-based strategy was applied to design TAM ligands interacting with the 

back-pocket. Inhibitor 1 was used as a structural template with its 2-amino nitrogen on 

pyrimidine ring as an attachment site for a new fragment. Then, the position of each further 

fragment was constrained by the proximity of the previous one and lying on an imaginary 

line pointing toward the back-pocket.

Opening the back-door and reaching the back-pocket

A first step in expanding the type I inhibitor 1 towards the back-pocket was to find a spacer 

that would “deliver” a functional group of choice to the back-pocket while avoiding bad 

contacts with the gatekeeper residue (MERTK:Leu671 / AXL:Leu621 / TYRO3:Leu603). To 

this end, we have extracted from our FRASE database those FRASEs that would possess the 

required spacer properties and match the respective structural environments of TAM family 

members (1,786 FRASEs from 73 unique PDB structures representing 30 kinases). The 

triage process yielded 203 non-redundant fragments from which several most minimalistic 

fragments were retained as relevant for the design (Fig. 2A). They were extracted from the 

following structures: AKT2 (PDB: 3D0E; Tscore: 0.74), CHK1 (4FST/0.53) and MELK 

(4UMP/0.52, 4UMT/0.57, 4UMU/0.56) kinases. The respective TAM inhibitor 2 was readily 

inferred, synthesized and tested in an enzymatic microcapillary electrophoresis (MCE) assay 

[32] (Fig. 2A). It had low nanomolar IC50 values against MERTK and TYRO3 and its 

potency against AXL was approximately one order of magnitude weaker (Fig. 2A and 

Supplementary Table S1 for a full account of IC50 values in this study). The new spacer is 

expected to efficiently deliver any functional group to the back pocket; any substitution at 

the alkyne-bound methyl would be past the gatekeeper residue. The next step was to identify 

a fragment that would penetrate into the back-pocket. One of the relevant FRASEs, donated 

by CHK1 (4FST), features an alkyne-aryl fragment that aligns with the aryl-alkyne group of 

2. We also searched for fragments and features located at the entry to the back-pocket and 

identified 151 such fragments (from 9 unique PDB structures). The most frequent feature at 

this location was a hydrogen bond (H-bond) acceptor pointing toward the large lobe (Fig. 

2B, top), which suggested using a 2-pyridine ring as an aromatic scaffold within the back-

pocket. The respective structural environments come from 6 PDB structures from 4 unique 

kinases (VEGFR2, c-Met, and p38a) with Tscores ranging from 0.50 to 0.84. Combining 

this 2-pyridine ring with 2 resulted in 3 (Fig. 2A). Although it demonstrated reduced 

Da et al. Page 6

J Am Chem Soc. Author manuscript; available in PMC 2020 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



potencies against all TAM members (Fig. 2A), inhibitor 3 provides a promising template to 

explore the back-pocket SAR.

Small chemical modifications in the back-pocket alter intra-family selectivity

To explore the chemical space to fill the back-pocket, we used two one-point queries, with 

the radius of 2 Å, that mostly cover its volume. One of the queries yielded 1,837 fragment 

hits (119 non-redundant, 30 unique PDB, 7 kinases) and the other, 155 hits (21 non-

redundant, 11 unique PDB, 8 kinases). The fragments from both queries can be split into 

two broad categories: rigid, flat aromatic groups and more flexible and bulky aliphatic ones 

(a few fragments featured both aromatic and aliphatic moieties). Our first step was to 

investigate the impact of aromatic groups that could be readily attached to template 3 (such 

groups were observed in several p38a structures at the previous step of design). In the course 

of further visual analysis, a set of aromatic fillings was retained to inspire our ligand design. 

These fragments were “donated” by 8 diverse kinases including BRAF1 (PDB: 3NNW, 

Tscore: 0.98), c-MET (3EFK/0.54, 2RFN/0.53), FAK2 (3FZT, 0.53), HCK (2C0O/0.69), 

JNK2 (3NPC/0.99), JNK3 (3E92/0.92, 3D7Z/0.89, 3DA6/0.65), p38a (2BAJ/0.93, 3BYS/

0.91, 3HV3/0.87, 3NNV/0.87, 3BYU/0.84, 3HV5/0.84, 3HV4/0.84, 3GCU/0.84, 3GCV/

0.83, 1W82/0.83, 2OFV/0.80, 3NNX/0.78, 3HV6/0.78, 3HV7/0.72, 3GCQ/0.80, 

1KV2/0.69, 3NNU/0.68), and PLK (3DB6/0.70). A series of such aromatic substituents 

were attached to 3 through a minimal linker (see examples in Fig. 2B). The respective 

inhibitors 4–6 have slightly improved potencies against TAM members showing, 

respectively, pan-TAM (4), MERTK/TYRO3/FLT3 (5) and MERTK/FLT3 (6) profiles. 

Unfortunately, the potency improvement achieved for 4–6 is not sufficient to warrant further 

progression of these compounds toward in vivo application. Hence, we explored flexible, 

aliphatic back-pocket-filling fragments located in potentially more diverse structural 

environments. They originate from 5 kinases, including BRAF1 (PDB: 3NNW, Tscore: 

0.98), FAK2 (3FZT, 0.53), JNK2 (3DS6/0.66), p38a (3F82/0.84, 3BYS/0.91, 3NNV/0.87, 

3CTQ/0.85, 3BYU/0.84, 3E93/0.80, 2OFV/0.80, 3NNX/0.78, 2OG8/0.71, 3P7A/0.69, 

1W83/0.69, 3P7C/0.67, 3GCQ/0.80, 3P7B/0.75, 3P79/0.75, 1WBS/0.71, 3NNU/0.68), and 

TIE2 (2OO8, 0.72). Incorporation of these aliphatic fragments in the template compound 

was less straightforward synthetically than in the previous steps of the design. We eventually 

developed a large series of modified inhibitors whose “decoration” in the back-pocket 

closely matches the respective FRASEs. Two of them, inhibitors 7 and 8, are exemplified in 

Fig. 2C and show significant improvement in potency as well as a higher diversity of 

selectivity profiles compared to 3–6. In particular, compound 7 (UNC3437A) is primarily 

selective for MERTK with slightly lower potency against FLT3; 8 is clearly AXL-biased, a 

remarkable result since none of our previously published inhibitors were selective for AXL; 

and 9 is primarily a TYRO3-biased inhibitor with slightly lower MERTK potency. The 

sensitivity of the TAM/FLT3 polypharmacology profile to small chemical changes 

demonstrates the high potential of FRASE-based design to provide a rational method of 

optimization. To corroborate the structural rationale underlying the approach we solved the 

co-crystal structure of MERTK in complex with inhibitor 7 (Fig. 3d and Supplementary 

Table S2). The structure confirmed that indeed, the pyridine-dioxolane group is bound to the 

back pocket extended toward the small lobe, consistent with the respective FRASE 

locations. On the other hand, the pyridine-pyrimidine core binding to the adenine pocket 
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featured the same interactions with hinge residues Pro672, Phe673, and Glu595 or Asp678 

as the template pyridine-pyrimidine compound 1. Overall, the x-ray structure confirmed the 

assumptions underlying the design of the novel series and, more generally, the utility of the 

FRASE-based approach for modulating TAM/FLT3 selectivity profiles.

Kinome profiling and in vivo pharmacokinetics

We selected a pan-TAM inhibitor 10 (UNC4042A) (Fig. 3) as a lead compound for more 

comprehensive biological characterization. At this initial step of the series evaluation, a 

probe with a broad TAM potency spectrum was intentionally chosen to test whether the in 
vitro inhibitory potency translates into target engagement in a broad range of cellular and in 
vivo assays.

We next sought to know whether, and how, extending type I inhibitors toward the back-

pocket would affect the inhibitors’ kinome-wide polypharmacology. To this end, we 

compared the selectivity profile of inhibitor 10 to that of inhibitor 1 (Fig. 1), the initial 

chemical template for FRASE-based design. Multiplexed inhibitor bead kinome enrichment 

coupled to quantitative mass spectrometry analysis (MIB-MS) was used to determine 

specificity of the compounds in an unbiased manner. In MIB-MS, mixtures of Sepharose 

beads with covalently immobilized, linker-adapted kinase inhibitors are used to capture a 

large portion of the kinome present in the analyzed cell lysate [33]. The identity of the 

kinases captured is then established by means of MS analysis. In a competition MIB-MS 

assay, an inhibitor is preincubated with the lysate prior to the analysis, so that the inhibitor-

bound kinases would not be captured by the beads. The kinases captured with and without 

the inhibitor present in lysate can then be compared to determine which kinases were down-

or upregulated by the inhibitor.

In this study, NOMO-1 human AML cells were treated with DMSO, 1 or 10 (both at 100 

nM) for one hour and then, kinases were enriched using MIBs and analyzed by LC-MS/MS. 

A set of 222 kinases were quantified across the samples using a label-free approach. 

Inhibitor 1 showed significantly lower kinome selectivity compared to 10 (Fig. 3); 62 

kinases showed lower enrichment on the beads upon treatment with 1 compared to DMSO 

control, whereas 27 kinases were decreased upon treatment with 10. Of these 27 kinases, 8 

were significantly decreased (p < 0.05 and log2 ratio 10/control ≥ 2). In addition to higher 

selectivity, the kinases decreased by 10 are not a mere subset of the 62 kinases decreased by 

1, suggesting a different mode of action. Detailed MIB-MS data, including results for 

inhibitors 1 and 10 at 1 μM, are given in Supplementary Datafile “FRASE-Proteomics.xlsx”.

We also assessed whether the lead compound is suitable for in vivo studies. To this end, 

pharmacokinetic (PK) studies in mice have been performed with compound 10 administered 

via intravenous (i.v.), intraperitoneal (i.p.) and oral (p.o.) routes. As can be seen from the 

evaluation of drug concentration in plasma over time, 10 has a PK profile suitable for in vivo 
application in murine models (Supplementary Fig. S1, Cmax = 435 ng/mL; AUCpo = 1661 

ng*h/mL and T1/2 = 4.97 h via i.p. route). The weak oral bioavailability of compound 10 
precludes the p.o. route. However, oral administration is not crucial for animal studies and 
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can be addressed by further chemical optimization. Details of the in vivo PK study are 

described in the Supplementary Information.

Target engagement in cellular and animal models

To confirm potent on-target inhibition and tumor suppression activity mediated by the lead 

compound 10, we evaluated the effects of treatment with 10 in solid tumor and hematologic 

malignancy models. First, we determined target engagement by monitoring the level of 

active, phosphorylated MERTK and AXL in cancer cells as a function of inhibitor 

concentration. As expected, 10 inhibited both MERTK (IC50 = 28 nM, 95% confidence 

interval = 16–52 nM) and AXL (IC50 = 32 nM, 95% confidence interval = 18–57 nM) at 

nanomolar concentrations (Fig. 4A and Supplementary Fig. S2A,B). Near complete 

inhibition of pMERTK and pAXL was observed in cells treated with higher concentrations 

of 10. This assay provides a potency level reference for pharmacologic effects of 10 that 

might be observed in cellular tumor models and be attributable to MERTK or AXL 

inhibition.

Consistent with previous data demonstrating oncogenic roles for MERTK in AML cells and 

for both MERTK and AXL in NSCLC cells [34,35], treatment with 10 mediated potent 

inhibition of colony formation in soft agar cultures of both AML and NSCLC cell lines (Fig. 

4B and Supplementary Fig. S2C). More specifically, both OCI-AML5 AML cells and 

COLO-699 NSCLC cells were very sensitive to 10, with concentrations as low as 50 nM 

mediating a 70% reduction in colony number and complete abrogation of colony formation 

in response to treatment with 300 nM 10. The NOMO-1 AML and A549 NSCLC cell lines 

were sensitive to 10 as well, although with reduced potency compared to the other cell lines. 

In these cases, a 300 nM concentration was required to affect a significant 60–75% reduction 

in colony number, perhaps indicating a requirement for more complete target inhibition. In 

addition, treatment with 300 nM 10 was sufficient to induce tumor cell death in 67% and 

41% of Kasumi-1 and NOMO-1 AML cells, respectively (Fig. 4C).

Consistent with the favorable PK profile for 10 in mice, treatment with 10 also inhibited 

MERTK phosphorylation in vivo. Immune compromised NOD/SCID/IL2Rgamma−/− 

(NSG) mice were inoculated intravenously with human B-cell ALL cells to generate 

orthotopic xenografts and mice with advanced leukemia were treated with a single 60 mg/kg 

dose of 10 administered by i.p. injection. Bone marrow cells were collected two hours post-

treatment and phosphorylated and total human MERTK proteins were detected by 

immunoblot. MERTK phosphoprotein was significantly decreased in leukemia cells 

collected from mice treated with 10 relative to mice treated with vehicle (0.23 ± 0.116 

versus 1.00 ± 0.031, p=0.0026) (Fig. 4D and Supplementary Fig. S2D). These 

pharmacodynamic data confirm inhibition of MERTK mediated by 10 in vivo and 

demonstrate the utility of 10 for translational studies utilizing murine models.
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Discussion and Conclusions

FRASE-based series of in vivo antitumor agents

The enzymatic, structural, cellular, and in vivo data obtained in this study suggest that the 

pyridine-pyrimidine-alkyne series represent useful in vivo chemical probes with readily 

adjustable intra-TAM/FLT3 selectivity profiles and potential to significantly affect their 

kinome-wide polypharmacology profiles. This is exemplified by the compound 10, which 

shows an improved kinome selectivity profile in cells compared to the initial chemical 

template 1, cell-based activity consistent with the presumed pharmacology of the target, 

abrogation of oncogenic phenotypes and induction of cytotoxicity in cell-based assays, 

chemical stability, and an SAR profile suggestive of a specific interaction with the target 

[36]. We have shown that small chemical changes, suggested by FRASE analysis, induce 

significantly different selectivity profiles within the TAM family. Hence, probes with 

varying TAM and kinome-wide selectivity can be readily derived using additional FRASEs. 

Development of a more comprehensive probe set would enable a more specific analysis of 

the role of the TAM tyrosine kinase family and individual members in their physiologic and 

pathologic functions, including prevention of chronic inflammatory responses and auto-

immunity. In particular, availability of more selective kinase inhibitors with specific TAM 

profiles may facilitate a better understanding of the extent to which inhibition of individual 

or all TAM kinases may relieve the deleterious immunosuppressive action of tumor 

associated macrophages and myeloid derived suppressor cells. Selective and potent 

inhibition would also reverse the overexpressed TAM kinase action to drive tumor cell 

survival and chemoresistance. Remarkably, these probes have been designed with the help of 

a “virtual medicinal chemist”, a cheminformatics technique that is able to “assemble” new 

bioactive compounds based on available 3D structures and chemogenomic data.

Interaction-Activity Relationships

We have chosen the polypharmacology of TAM kinase inhibitors as an opportune test case, 

given the potential importance of TAM inhibitors for cancer therapy [23]. While the focus of 

this study was on protein kinases, we expect the FRASE approach to be applicable to any 

other protein family, provided there is a sufficient amount of 3D and SAR data, and even 

across protein families. Indeed, FRASE could potentially serve as an informational key for 

data integration across multiple protein families, so that structures and data abundant in one 

family, such as protein kinases, would benefit protein classes with sparse structure-activity 

information. Such extrapolation of SAR beyond a given protein, or even a protein family, 

should be possible due to the malleable redundancy of FRASE descriptors. That is, the size 

of ligand and protein fragments constituting a single FRASE can be set small enough for 

similar structural environments to occur in multiple structurally diverse proteins. Hence, 

FRASE-based design might overcome some fundamental limitations of SAR analysis and 

structure-based design. The traditional SAR analysis is target-blind: no structural or 

sequence similarity between the target proteins is being considered. The activity (or the 

target) is identified by a label and if the labels in two SAR data sets are different, the sets 

cannot be cross-linked irrespective of how similar the respective target proteins are. New 

compounds are prioritized for synthesis based on a formal or informal examination of 

chemical similarity between active and inactive compounds. At the same time, structure-
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based design is historically SAR-blind. That is, a new compound is prioritized for synthesis 

based on a computed or an ad hoc assessment of its binding affinity to the protein of interest. 

There is no formal algorithm that allows direct involvement of available SAR data in this 

decision. FRASEs, par excellence, jointly exploit explicit representations of both ligand and 

protein structures, thus converting conventional SAR into Interaction-Activity Relationships 

to guide construction and prioritization of new compounds for synthesis. Here, we have 

shown that even unweighted FRASEs, i.e., those whose “goodness” was inferred from a 

mere occurrence in a high-affinity complex, can be effectively used as building blocks for 

biologically active compounds. Future studies will focus on development and application of 

algorithms to identify FRASEs that are more likely than others to be “good” and to quantify 

the degree of “goodness”. This can potentially be achieved through a combination of 

machine learning techniques with a proven efficiency in chemoinformatics [37,38] and 

specialized affinity assessment techniques developed for structure-based design [39–41].

Methods Summary

Methods and any associated references are available in the online version of the paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: FRASE-based approach to “assemble” inhibitors selective for specific TAM-family 
members.
A. Example of a typical FRASE: the constituent fragments are rendered as thick sticks (gray 

for the protein portion of the FRASE, blue for the ligand portion);

B. Simplified representation of the FRASE-based design: (left to right) A target kinase (gray 

cartoon) with projected reference FRASEs from the database (magenta and blue sticks); 

Evaluation of how individual components of a reference protein environment (magenta 

sticks) match the nearby target residues (gray sticks)(the numbers represent per-residue 

Tscore values, for a total Tscore of 0.79); Ligand fragments from the matching FRASEs 

(blue sticks) that can be used for design.

C. Adenine (cyan) and back-pockets (pink) in a kinase enzyme;

D. Aligned sequences of residues lining the back-pocket show 44 pairwise differences;

E. The only amino-acid position (rendered as ball-and-sticks) showing variance in the 

adenine pocket of TAM kinases and the x-ray structure for the template inhibitor 1 in 

complex with MERTK.
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Figure 2: Steps toward potent TAM back-pocket binders.
A, Growing the aryl-alkyne-aryl spacer: template compound 1 (green), aryl-alkyne and aryl 

FRASEs (magenta), and TAM/FLT3 profiles of inhibitors (IC50 values given in nM) with a 

partial (2) and full (3) spacers. B, Filling the back-pocket by aromatic groups: template 

compound (green), source FRASEs (magenta) and sample inhibitors 4–6 not showing 

sufficient potency and selectivity. C, Filling the back-pocket with smaller aliphatic groups: 

template compound (green), source FRASEs (magenta) and sample inhibitors 7, 8 showing 

high potency and promising selectivity. D, Co-crystal structure of 7 in complex with 

MERTK and its major interactions with the adenine pocket (Pro672, Phe673 and Glu595) 

and back-pocket (Lys619).

Da et al. Page 15

J Am Chem Soc. Author manuscript; available in PMC 2020 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Kinome selectivity profiles.
MIB-MS kinome profiles for inhibitor 10 (see structure and TAM/FLT3 IC50 values) and 

the initial template 1. Each kinase features an orange (inhibitor 1) and a blue (inhibitor 10) 

bars, with bar heights corresponding to log2 of the inhibitor/control ratio. Thresholds of −1 

and 1 (shown in dotted lines) specify significant enrichment or decrease of kinases on the 

beads with respect to control. The brackets with labels on the top of the charts indicate the 

respective kinase family.

Da et al. Page 16

J Am Chem Soc. Author manuscript; available in PMC 2020 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Target engagement in cellular and animal tumor models.
Compound 10 inhibits MERTK and AXL phosphorylation, decreases colony forming 

potential, and induces cell death in tumor cell lines. A, 697 ALL cells (pMERTK assay) and 

A549 NSCLC cells (pAXL assay) were cultured with 10 or vehicle for 1 hour and then 

treated with pervanadate phosphatase inhibitor to stabilize phosphorylated proteins. MERTK 

and AXL were immunoprecipitated from cell lysates and phosphorylated and total MERTK 

or AXL proteins were detected by immunoblot. Phosphorylated and total proteins were 

quantitated by densitometry. B, NSCLC (A549 and COLO-699) cells were cultured in soft 

agar overlaid with medium containing 10 or vehicle only for 14 days. Media and 10 were 

refreshed every 3 days. C, Kasumi-1 and NOMO-1 AML cells were cultured with 10 or 

vehicle for 72 hours, then cells were stained with PoPro-1-iodide (PoPro) and propidium 

iodide (PI) dyes and apoptotic (PoPro+, PI-) and dead (PI+) cells were detected by flow 
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cytometry. Mean values and standard errors from 3–4 independent experiments are shown. 

Statistically significant differences relative to vehicle were determined using 1-way ANOVA 

(**p<0.01, ***p<0.001). D, Compound 10 inhibits MERTK phosphorylation in bone 

marrow leukemia cells in vivo. NSG mice were transplanted with 697 human leukemia cells 

and leukemic mice were treated with a single dose of 60 mg/kg 10 or saline vehicle (VEH) 

by intraperitoneal injection. Bone marrow cells were isolated from femurs 2 hours later and 

incubated with pervanadate phosphatase inhibitor for 10 minutes to stabilize 

phosphoproteins. Phosphorylated and total human MERTK proteins were quantitated by 

densitometry. The ratio of phosphorylated and total MERTK proteins was determined for 

each sample and values relative to the mean for vehicle-treated mice in each experiment 

were determined. Mean values and standard errors derived from 2 independent experiments 

are shown (** p = 0.0026, student’s unpaired t test).
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