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Abstract

Background—Implementation of phenotype algorithms requires phenotype engineers to 

interpret human-readable algorithms and translate the description (text and flowcharts) into 

computable phenotypes – a process that can be labor intensive and error prone. To address the 

critical need for reducing the implementation efforts, it is important to develop portable 

algorithms.

Methods—We conducted a retrospective analysis of phenotype algorithms developed in the 

Electronic Medical Records and Genomics (eMERGE) network and identified common 

customization tasks required for implementation. A novel scoring system was developed to 

quantify portability from three aspects: Knowledge conversion, clause Interpretation, and 
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Programming (KIP). Tasks were grouped into twenty representative categories. Experienced 

phenotype engineers were asked to estimate the average time spent on each category and evaluate 

time saving enabled by a common data model (CDM), specifically the Observational Medical 

Outcomes Partnership (OMOP) model, for each category.

Results—A total of 485 distinct clauses (phenotype criteria) were identified from 55 phenotype 

algorithms, corresponding to 1153 customization tasks. In addition to 25 non-phenotype-specific 

tasks, 46 tasks are related to interpretation, 613 tasks are related to knowledge conversion, and 469 

tasks are related to programming. A score between 0 and 2 (0 for easy, 1 for moderate, and 2 for 

difficult portability) is assigned for each aspect, yielding a total KIP score range of 0 to 6. The 

average clause-wise KIP score to reflect portability is 1.37±1.38. Specifically, the average 

knowledge (K) score is 0.64±0.66, interpretation (I) score is 0.33±0.55, and programming (P) 

score is 0.40±0.64. 5% of the categories can be completed within one hour (median). 70% of the 

categories take from days to months to complete. The OMOP model can assist with vocabulary 

mapping tasks.

Conclusion—This study presents firsthand knowledge of the substantial implementation efforts 

in phenotyping and introduces a novel metric (KIP) to measure portability of phenotype 

algorithms for quantifying such efforts across the eMERGE Network. Phenotype developers are 

encouraged to analyze and optimize the portability in regards to knowledge, interpretation and 

programming. CDMs can be used to improve the portability for some ‘knowledge-oriented’ tasks.

Graphical Abstract

Keywords

Phenotyping; Electronic health records; Portability

1. Background

Electronic health record (EHR) phenotyping refers to the identification of a cohort of 

patients with a specific clinical profile by developing an algorithm to query a wide spectrum 

of EHR data elements, such as diagnoses, laboratory tests, medications, procedures and 

derived concepts from clinical narratives using natural language processing (NLP) [1]. With 

domain experts’ input, phenotyping algorithms can be developed using knowledge 
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engineering [2–6] methods of developing “rule-based” strategies or machine learning 

methods [6]. When a phenotype algorithm is developed, relevant features and the 

corresponding EHR data representations are identified and combined using logic to define 

cohort selection rules [3]. The resulting cohort can then be used for observational studies, 

clinical trial cohort identification, comparative effectiveness research and more recently, 

genome-wide and phenome-wide association studies for specific disease [7], syndrome [8] 

or complex trait [9].

The Electronic Medical Records and Genomics (eMERGE) Network (an NIH-funded 

national consortium that aims to conduct large scale and cross-site genomic studies by 

linking DNA biobanks to EHRs) leverages EHRs to develop phenotype algorithms across its 

participating sites in order to have larger sample size for its genomic research [2,10]. The 

process of developing and validating a phenotype algorithm can take a very long time, 

sometimes up to 6–10 months, depending on the complexity [11]. eMERGE has created the 

Phenotype KnowledgeBase website (PheKB, http://phekb.org) [11] to enable cross-site 

sharing of phenotype algorithms. Up to date, 90 phenotypes are under development or 

testing, 41 phenotypes have been validated, and 53 phenotypes have been finalized and are 

available to public access. A phenotype algorithm shared in the eMERGE network is 

represented by a narrative description, augmented by pseudocodes and flowcharts to 

illustrate the logical reasoning. Necessary codes for clinical concepts are embedded in the 

description or attached as an appendix. Additionally, each phenotype is tagged with the 

owner institution, owner phenotyping groups, development status and other metadata.

To implement a phenotype at another site, the first step is to understand the algorithm 

described in the narrative within the site-specific context of the data and clinical 

sublanguage [12] available. Then, phenotype engineers translate the site-dependent 

interpretation of the algorithm to machine executable code and deploy it within a site-

specific clinical environment. Consequently, human intervention on both interpretation and 

implementation is required. Using a narrative description to promote the algorithm sharing, 

while assisting the interpretation, may also generate a labor-intensive and error-prone 

implementation process affecting efficiency. Given this, implementing a phenotype 

algorithm can also take several months. Developing and implementing phenotype algorithms 

consumes substantial resources from each eMERGE site. In addition, the current process 

does not scale well and the resulting phenotype algorithms often have limited portability.

In this paper, a “phenotype engineer” is defined as a person who develops or implements 

electronic phenotypes that mainly use knowledge engineering methods which transform and 

model problem-solving expertise on defining diseases, syndromes or complex traits from a 

knowledge source to computer programs such as SQL [13,14]. From our point of view, 

“phenotype engineers” are “knowledge engineers” who are specialized at electronic 

phenotyping. Knowledge engineers are different from software engineers considering that 

knowledge engineers focus on transforming domain knowledge to computer programs while 

software engineers focus on directing the life-cycle of software development [15] For 

example, software engineers focus on developing MedLEE for medical concept extraction 

from clinical narratives. Knowledge engineers focus on applying and customizing MedLEE 

to deliver a specific phenotyping solution.
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A portable phenotype is one that can be implemented faithfully [16] and easily at a different 

site while maintaining a similar performance [17]. In other words, the portability of an 

algorithm can be measured by the performance achieved at an implementation site combined 

with the time and efforts cost during the process of implementation. Studies have developed 

extensive methods to improve phenotype portability on performance consistency [18,19]. 

However, it is hard to measure and achieve the portability of phenotype algorithms in respect 

of implementation efforts due to the heterogeneity of EHR systems, data representations and 

clinical documentation patterns among different sites. Various strategies have been explored 

to achieve portability, including the development of the NQF Quality Data Model [20], the 

Phenotype Execution and Modeling Architecture [21,22], and algorithm design patterns 

[23]. However, measuring portability and recognizing hurdles for algorithm portability have 

yet to be analyzed systematically.

In this study, we focus on quantifying the implementation work or the customization tasks 

(referred to as “task” hereafter) involved to make a phenotype algorithm portable. The task 

is defined as what work needs to be done by the implementation site before executing the 

computable phenotype (e.g., a database SQL query, SAS/R implementation, KNIME 

application, ATLAS query). Furthermore, we assess whether a common data model (CDM), 

such as the Observational Medical Outcomes Partnership (OMOP) CDM, can alleviate the 

implementation burden. Finally, we will discuss best practices in designing portable 

phenotyping algorithms.

2. Methods

The workflow of this study is shown in Fig. 1. Overall, we disassembled 55 phenotype 

algorithms obtained from PheKB, identified the customization tasks from phenotyping 

engineers’ implementation experiences and reached agreement through iterative review and 

group consensus, and then grouped them into representative categories. A category is a 

conceptual grouping of customization tasks that are considered similar by relating to the 

same facet of the phenotype implementation. Experienced engineers from the participating 

eMERGE sites were then surveyed to estimate the time efforts for each identified category. 

A novel scoring system was created to quantify the portability of a phenotype algorithm. We 

will describe each step in detail next.

2.1. Phenotype and clause selection

For this study, we choose phenotypes that have “final” or “validated” status, were developed 

and validated by eMERGE sites, and have been as well implemented by at least 5 of the 10 

Phase III (current phase) eMERGE sites. These choices provide a reasonable proxy that 

sufficient firsthand implementation experiences from multiple participant sites would be 

available.

Fifty-five qualified phenotypes were downloaded from PheKB on February 7, 2019. One of 

the authors (NS) reviewed all phenotype algorithms and identified distinct clauses from the 

narrative definition of the phenotype algorithms. Each clause (Fig. 2 provides an example 

[7]) is generally one criterion for defining the phenotype or one instruction corresponding to 

a specific decision or action node in the algorithm and may contain one or more sentences. 
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Figure workflows, chart review instructions, software installation instructions and data 

dictionaries from the phenotype algorithms were not included in the analysis.

All clauses were then reviewed and grouped into multiple clause summaries (see example in 

Fig. 2). The clause summary is defined as a brief statement in general terms to describe the 

goal of a phenotyping rule and is used for sampling clauses in the following tasks group 

review process. Details of clause summaries and corresponding examples can be found in 

Appendix 1. At the same time, relevant data types used in each clause were also identified 

(e.g., diagnosis, visit, pathology report).

2.2. Task identification and Knowledge-Interpretation-Programming (KIP) scoring

As not all variables defined by the algorithm development site are ready-to-extract from the 

clinical data warehouse of each implementing site, customization tasks can potentially affect 

the portability of the algorithm. Tasks may include getting input from domain experts and 

data curators, exploring data for understanding specific medical events, and generating 

middle-step products for extracting phenotype relevant variables. Using the set of curated 

clauses, two of the authors (NS and CL) identified all likely tasks involved in a specific 

clause, based on their collective experience in phenotype implementation. The task is from 

the implementation site’s perspective and reflects the actual work that two authors have 

conducted for converting phenotype algorithms to executable phenotypes. Overall, the task 

is defined as the customization that the implementation site needs to do for achieving the 

specific goal defined in the clause.

To the best of our knowledge, no previous work has defined a quantitative measure for 

portability to date, we developed a scoring system to quantify the portability of each clause 

based on the tasks involved. Our scoring system considers three aspects of an 

implementation: Knowledge conversion (K), clause Interpretation (I) and Programming (P). 

Table 1 provides the definitions and examples of the KIP scoring system. In general, 

knowledge conversion defines how much knowledge of the data or clinical knowledge 

related to this phenotype that a phenotype engineer is required to know before finishing this 

task. If the process to acquire the knowledge is more difficult and time consuming, then the 

portability is lower. For example, since consulting a domain expert often takes more time 

than checking a mapping table between two vocabularies, the knowledge conversion 

difficulty can be higher for defining a medical concept based on local clinical environment 

than a simple vocabulary mapping. Clause interpretation mainly refers to the consistency of 

phenotype engineers’ understanding of the algorithm according to the algorithm developers’ 

intent. Programming is defined by the level of computational complexity required for the 

implementation. If a task involves more advanced skills, the implementation may be more 

difficult, and therefore result in a lower portability. For example, a “GROPU BY” SQL 

query to count a diagnosis event is, in general, simpler than implementing a complicated 

name entity recognition (NER) system for specific events from unstructured data.

Two authors (NS and CL) worked independently to identify customization tasks and assign a 

KIP score for each clause (scaled with 0 as easy, 1 as moderate, and 2 as difficult for each 

aspect K, I, and P). Through iterative discussion and review, they developed a consensus set 

of customization tasks, and also arrived at a consensus for KIP score on each clause. Due to 
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the iterative and collaborative nature of this process, the agreement rate was not calculated. 

To assess the potential bias introduced by two reviewers, a subsample (28%) of the clauses 

(Appendix 2) whose KIP total score is more than 0 was randomly selected proportionally 

from clause summary and KIP total score groups. The subsample was subsequently 

reviewed by 9 experienced phenotype engineers from eight eMERGE sites. To assess the 

consensus on any revision of identified tasks among reviewers, the overall agreement rate 

was calculated as the ratio of the number of sampled clauses where identified tasks are 

agreed by all reviewers over the number of total sampled clauses. To assess the consensus on 

the completeness of identified tasks among reviewers, the completeness agreement rate was 

calculated as the ratio of the number of sample clauses where identified tasks are deemed as 

complete (specifically, no extra task is identified) by all reviewers over the number of total 

sampled clauses.

2.3. Estimate time efforts on customization task categories and common data model 
assistance for portable phenotyping

By incorporating the feedback, recommendations, and comments provided by all the 

phenotyping engineers participating in this collaborative study, two authors (NS and CL) 

finalized the tasks and grouped them into categories by subjective assessment. For example, 

the task of “mapping International Classification of Diseases 9 (ICD9) to ICD10 codes” 

belongs to the category of “map source vocabulary to target vocabulary among different 

versions of the terminology” (Fig. 1). This bottom-up approach facilitated the recognition of 

comprehensive considerations for algorithm portability from the detailed customized tasks 

identified by phenotype engineers.

One of the key measurements of portability of a phenotype algorithm is the implementation 

time [22]. Here the implementation time is not just the execution time for the program. 

Instead, it consists of the time required for humans to interpret the algorithm, consult the 

domain experts, make decisions for development, translate the free-text description to 

computable codes, and deploy the final algorithm product. In this study, 17 phenotype 

engineers from eight eMERGE sites with at least two-years of experience in phenotyping 

algorithm implementation were asked to estimate the time needed to implement each task 

involved in each category aforementioned. Among them, 8 respondents claim their role as 

investigator, 7 respondents claim as informatician or programmer, 1 respondent claims as 

physician and 1 respondent claims as data analyst. Given the anonymous nature of the 

second survey, we are not able to calculate the overlap between the two sets of respondents. 

We evaluated the time consumption for 20 task categories, collapsed them into five levels: 

(1) 0–1 hour, (2) < 1 hour - 1 day, (3) < 1 day - 1 week, (4) 1 week - 1 month, and (5) > 1 

month. In addition, the variance of reported time consumption was also assessed.

CDMs are generally recommended for assisting portable implementation. CDMs organize 

EHR data according to a common standard and can dramatically speed phenotype 

implementation at the cost of having to populate that data model [24]. Due to the resources 

required to populate structured and unstructured EHR data into a CDM, current CDMs are 

not fully functional for phenotyping implementation. Therefore, the same 17 phenotyping 

engineers reported their opinion whether or not each task category can be assisted by the 
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CDM. Since the OMOP CDM from Observational Health Data Sciences and Informatics 

(OHDSI) has been piloted in the eMERGE network for phenotyping implementation, the 

OMOP CDM was chosen for this study. Appendix 3 provides the survey instrument.

3. Results

3.1. Landscape of phenotype algorithms

Fifty-five phenotypes were selected, and their corresponding pseudocode were downloaded 

from PheKB. Table 2 shows a summarization of data types used among the phenotype 

algorithms (details can be found in Appendix 4). These types include structured and 

unstructured EHR data, as well as non-EHR data (such as diagnosis from cancer registry 

data, meta information of the cohort). As unstructured data, notes can refer to general 

clinical notes or specific relevant clinical notes (e.g., progress notes, observation reports). 

Different types of reports are used in different phenotypes, such as ECG, lab report, 

pathology report, radiology report. The most frequently used data type is ICD-coded 

diagnosis, which is used in 52 phenotype algorithms.

3.2. KIP score for clauses and agreement on identified tasks

485 distinct clauses with corresponding 1153 customization tasks were identified. 0–2 is 

defined as the range from easy to difficult for portability for each aspect yielding the total 

score range of 0–6. The average clause-wise KIP total score 1.37±1.38 (mean ± standard 

deviation). The K (Knowledge conversion) score is 0.64±0.66, I (clause Interpretation) score 

is 0.33±0.55, and P (Programming) score is 0.40±0.64. Among 1153 customization tasks, 46 

tasks are related to interpretation, 613 tasks are related to knowledge conversion, and 469 

tasks are related to programming (Table 3).

The overall agreement rate is 59% (51/86) and the completeness agreement rate is 87% 

(75/86). For the surveyed 293 tasks, 35 tasks were suggested revisions and 11 extra tasks 

were identified. All suggested changes were not only revised on the sampled clauses but also 

integrated to the complete clauses. As expected, the disagreement is mainly from 

discrepancies in the source EHR data and implementation methods. For example, target 

vocabularies for medications or laboratory tests can be different terminologies (e.g., local 

legacy codes) instead of RxNorm and LOINC. Different data format of required variable 

may cause different methods for conducting tasks, for example an unstructured problem list 

may require NLP effort comparing with the code search from a structured problem list. 

Different NLP tools are used in different institutions for solving same phenotyping tasks.

3.3. Task categories

The task categories resulting from the assessment are summarized in Table 3. Prior to 

implementing a phenotype algorithm, experienced phenotype engineers will familiarize 

themselves with the documentation to have an accurate understanding of the algorithm 

developer’s intent. As part of this process, clarifying communication may be necessary, 

requiring further communication, which is described by the 46 tasks in Category 9. 

Engineers then usually work together with domain experts, informaticians (who sometimes 

play an engineer’s role) and data curators to define and identify all algorithm-defined 
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variable representations from the site-dependent clinical data warehouse. The knowledge 

required can be vocabulary-related (Category 1–2), operational definition of events 

(Category 3–4), where to retrieve specific variables (Category 5), and how the variable is 

represented in the data (Category 6–8). Finally, phenotype engineers translate the algorithm 

logic into site-compatible executable programs, which include pre-processing data (Category 

10–11), extracting relevant data from non-structured EHR data (Category 12–17) using NLP 

techniques, and writing SQL query for structured EHR data retrieval (Category 18). Since 

not all variables are available from each institution, data availability (Category 19) can affect 

the portability for specific institutions at the very beginning. Some algorithms may contain 

multiple algorithms within them, thus, the task to retrieve individual variables can often 

become a full implementation process in and of themselves (Category 20).

In Table 3, estimated time efforts resulting from the survey and scoring from the KIP 

definition (Table 1) are also summarized for each category. As we can see, most categories’ 

estimated time efforts are positively correlated with the KIP score, which justified our initial 

KIP score assignment.

3.4. Time effort and CDM usefulness

Experienced phenotype engineers reported time estimation and the perceived usefulness of a 

CDM for the 20 task categories. Fig. 3 summarizes the distribution of the estimated time 

consumed for different tasks and whether a CDM can be used to reduce the time needed. In 

general, implementation of a phenotype is not an easy task. Most tasks (19/20, 95%) take 

more than one hour (median value) to finish, the majority of the tasks (14/20, 70%) take 

more than one day to finish, and a small proportion of tasks (2/20, 1%) can take more than 

one week to finish. The most time-consuming task are often NLP-related tasks (i.e., 

Category 12, 13, 14, and 16) or tasks requiring external domain expertise (Category 8). The 

variance across different researchers and sites are large. The distribution of the estimated 

time consumption can even range from less than one hour to more than one month for some 

tasks (7/20, 35%), which may indicate the portability is unevenly distributed across different 

sites and researchers.

4. Discussion

By systematically reviewing 55 phenotype algorithms published within the eMERGE 

network, we identified the main sources for implementation inefficiency, and summarized 

the most common customization tasks required for implementation. With the high 

completeness agreement rate, we believe identified tasks are comprehensive and can reflect 

the implementation efforts from the majority of the eMERGE network. Consequently, this 

systematic and comprehensive analysis can provide insights for designing more portable 

phenotype algorithms.

The portability of a phenotype algorithm is related to replicability and efficiency. 

Replicability is almost always the first consideration while developing an algorithm, and in 

fact, all algorithms developed within the eMERGE network are validated by at least one 

secondary site to ensure replicability. Consequently, multi-site studies have established that 

the algorithms are portable with consistently good performance between sites [18,19,21]. 
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However, inefficiency in implementation can be a practical barrier to reuse of an existing 

phenotype algorithm.

In our study, tasks such as compiling machine-readable input file, mapping a source 

vocabulary to a target vocabulary, identifying data source, and defining a medical event 

operational definition are identified. Some of those tasks can be easily avoided. For example, 

since the algorithms are usually described in a narrative format stored as a Microsoft Word 

or PDF document, the source vocabulary codes or the variable data dictionaries (e.g., 

medication names, keywords) embedded in free text are not easily to be retrieved by 

programming. Therefore, we encourage all algorithm authoring sites to share the vocabulary 

codes or variable data dictionaries with corresponding variable name as a plain text file to 

facilitate the programming at the implementation site. This step can potentially save some 

unnecessary file format transformation and programming difficulties.

Complicated SQL logic implementation is another time-consuming task. We believe the 

efforts can be largely reduced or even completely eliminated by directly sharing the code 

that implements the logic. We suggest that the authors divide any phenotype algorithms into 

two parts, data element extraction (and formatting) and logic implementation (or outcome 

prediction for machine-learning based phenotyping algorithm [6]) as described in Shang et 

al.’s study [25]. The logical separation has been explored initially by the Arden Syntax 

which demarcates health information system specific codes in curly braces to share task-

specific knowledge implementations across institutions [26–28]. Once the extracted 

elements are provided in a standard format (such as the data dictionary usually required in 

the eMERGE studies), the logic code can be shared and executed easily across different sites 

by taking the standard format file as an input, which can save significant implementation 

time for the algorithm with complicated logical reasoning. Even better, implementation 

codes for cohort definition can be directly shared if a CDM is used. For example, 

implementation in a JSON/SQL format conducted through ATLAS [29] is shareable if 

OMOP is used as the source data model. For decreasing human efforts in cohort execution, 

Yuan et al. [30] have developed an NLP interface Criteria2Query to automatically parse 

eligibility criteria text into SQL queries on the OMOP model. However, the input criteria are 

trained mainly from ClinicalTrials.gov. Consequently, this solution should be further 

explored or evaluated for eMERGE phenotypes which have different writing patterns.

Many labor-intensive implementation tasks are introduced as a result of the knowledge gap 

between implementation sites and development sites, such as different data representations 

or different understandings of a specific medical concept in various clinical data warehouses. 

eMERGE has adopted some common clinical vocabularies for building phenotypes (e.g., 

ICD for diagnoses, RxNorm for drugs, LOINC for laboratory measures), which help 

reconcile common terminologies for representing structured data in phenotype development. 

Furthermore, we found that it is not rare for phenotype algorithms to leverage operational 

events (e.g., “continuous enrollment”) and organization-specific EHR elements (e.g., 

providers and departments). These administrative level data and definitions can be highly 

site-dependent, and thus make portable phenotypes difficult. We argue here that the 

algorithm authoring site should try to reduce the involvement of these administrative level 

data as much as possible (or define them with common knowledge). The highly site-
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dependent nature makes it a challenge to implement at other sites efficiently. In addition, 

more research is needed to understand if the accuracy increase found by including those 

criteria is justified given the lack of portability of those elements across the network.

Hripcsak et al. [24] have demonstrated that common data models can potentially bridge the 

knowledge gap to some extent, which is supported by our results. By adopting a CDM, both 

development sites and implementation sites put in efforts ahead of time to convert the 

localized knowledge to an agreed upon common ground. The initial operational overhead 

may be challenging and time consuming, especially when complicated data, such as 

unstructured clinical narratives, are considered. However, as phenotyping initiatives expand, 

the upfront investment in effort may be justified by the resulting improvement in phenotype 

implementation efficiency. If the CDM has not been adopted or only partially adopted due to 

difficulties such as incomplete NLP, the current common practice to bridge the knowledge 

gap is to put more burden on the implementation sites, that is to convert the knowledge (e.g., 

variable, concepts, events) in the algorithm to be compatible with local environment and 

knowledge. These efforts usually include hours of data exploration and days or even weeks 

of repeated consultation with domain experts. With algorithms shared to more and more 

implementation sites, the improvements in the efficiency of implementing a CDM 

compounds. Another strategy to consider is for the development site to collaborate with 

multiple external experts who are familiar with their local clinical practice and clinical data 

warehouses, and provide an algorithm that is more reflective of the broader data 

representation across these sites. However, this is not practical due to limited resources and 

time, but knowledge towards different data representation from different institutions can be 

curated in a collaborative matter for repeat use.

Not surprisingly, the most time-consuming tasks are NLP-related, with simple keyword 

search consuming less time than more complicated NLP tasks, i.e., using developed or 

customized components, pipeline, or tools to extract information. An NLP task using 

advanced tools is often inherently more complicated than simple keyword search, which can 

often be completed inside a database. The configuration and installation of NLP pipelines at 

an implementation site without previous experience of the tools can be as time consuming as 

the computational time to run them. Multiple frameworks and pipelines have been adopted 

across the eMERGE network, and different sites are likely to develop their own custom NLP 

pipelines. For example, Vanderbilt University Medical Center developed a combination of 

SecTag [31], MedEx [32], and the KnowledgeMap Concept Identifier [33], Mayo Clinic 

built an NLP pipeline around UIMA [34] based on cTAKES [35–37], Northwestern 

University has used KNIME [22,38] for distributing NLP code, and Columbia University 

utilized MedLEE [39] to process unstructured clinical notes. Compared to structured data, 

unstructured data currently lack the same common ground on clinical documentation 

template across the network, making the development of an implementation-portable 

algorithm using clinical narratives more challenging.

In addition to implementation of phenotype algorithms themselves, phenotype algorithms 

also include data dictionaries that specify what data (e.g., demographics, covariates) to 

include with the case/control designation. Several surveyed phenotype engineers reported a 
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great amount of time was spent on extracting data compliant with specific data dictionaries, 

which is often required in the eMERGE network.

The ultimate goal of developing a portable phenotyping algorithm is to deliver an executable 

product-level software across different sites. Unfortunately, current state of phenotyping 

algorithm implementation is far away from this goal. As a beginning project of 

understanding phenotyping implementation efforts, this paper is to identify customization 

tasks in the implementation. We hope in the future when it is possible to deliver a product-

level software for phenotype implementation, we can use support tools such as CASE 

(computer-aided software engineering) and metrics to ensure the development of a high-

quality products.

There are a few limitations in this study. The first limitation of this study is lack of 

evaluation in complications when taking combination of clauses into consideration. Some 

clauses can be simple tasks if treated independently, but the logic can become complicated 

when many clauses are combined together. In addition, despite a subsample of our identified 

tasks and a team of reviewers for estimating time efforts for implementing task categories, 

we initially used only two reviewers, which may bias the overall task identification and 

summarization. In the future, we encourage more members from the phenotyping 

community or the broader biomedical informatics society to join and contribute to this 

discussion.

5. Conclusion

Recognizing the tasks makes phenotyping implementation efforts visible. The category of 

tasks presented in this study is a valuable lesson learned from the eMERGE network 

phenotyping practice. The time required to complete those tasks can vary from hours to 

months according to our results. Phenotype developers are encouraged to analyze and 

optimize the portability from the aspects of knowledge, interpretation and programming 

(KIP). The discussion on how to improve the portability under current phenotyping practice 

is intended as a starting point for a best practice in developing implementation-friendly 

algorithms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We developed a novel method (Knowledge conversion, clause Interpretation, 

and Programming, KIP) to quantify the portability of phenotype algorithms

• We uncovered substantial phenotype implementation efforts across the 

eMERGE network

• We discussed the challenges of making electronic phenotype portable and 

opportunities in using the OMOP CDM to improve phenotype portability
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Fig. 1. 
Overview of the study (*clause example is from https://phekb.org/phenotype/age-related-

macular-degeneration)
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Fig. 2. 
Example of clause selected from an algorithm
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Fig. 3. 
Phenotype engineers reported time estimation and the usefulness of CDM for the 20 task 

categories (corresponding descriptions provided in Table 3). Left: The distribution of 

estimated time needed for each category. Different color represents different time 

consumption, and the bar length is proportional to the portion of the engineers reported the 

corresponding time consumption. Right: The number of engineers believing CDM’s 

assistance on task category implementation The phenotype engineer responses suggest a 

CDM specifically OMOP can reduce the time consumption for some tasks, especially for the 

vocabulary mapping part (Category 1–2) from the structured data. However, for the most 

time-consuming tasks such as those related to the NLP, respondents had less confidence that 

the OMOP would help reduce the time needed for implementation.
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Table 1

Definition of the KIP (knowledge, interpretation and programming) scoring system for evaluating algorithm 

portability

Aspect Score Definition Example

Knowledge 
conversion

0 Require basic understanding of common vocabulary 
(ICD, CPT, RxNorm, LOINC) and EHR database 
(e.g., diagnosis, lab test, procedure, medication, 
visit)

“...with one or more code of kidney transplant. (ICD9, 
ICD10 and CPT4 codes are provided)...”

1 Require some level of ETL knowledge for 
understanding EHR database underlying structure, 
or require vocabulary mapping from strings

“...with at least one T1DM medications order. (Drug 
generic name provided in the table)...”

2 Medical insight is required from both domain 
experts and engineers to define a medical concept

“...has continuous enrollment for 5 or more years …”

Clause 
interpretation

0 Very clear understanding “…with diabetes family history…”

1 Complicated or long clause, but clear interpretation “…T2DM Dx by physician >=2 …”

2 Unclear interpretation “…Control excl: Any cause of hypo- or hyper-
thyroidism…”

Programming 0 Simple SQL implementation only “…one or more existing diagnosis of chronic kidney 
disease or other kidney disease…”

1 Simple script programming (e.g., keywords search) 
or complicated SQL

“…identify all radiology reports with keyword 
‘pneumonia’…”

2 Complicated programming (e.g., software 
configuration, post script programming, NegEx 
implementation)

“…search for a MedLEE attribute of “certainty” with 
any of the following values…”
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Table 2

Prevalence of data types used in the 55 phenotype algorithms

Data type Count of distinct phenotype

EHR

 Diagnosis 52

 Procedure 31

 Rx / Medical device 31

 Provider / Specialty / Department 31

 Demo 26

 Lab 24

 Visit 19

 Note 16

 Report 13

 Problem list 9

 Encounter 8

 Allergy 1

 Death 1

 Family History 1

non-EHR (e.g., cancer registry, meta information of the cohort) 14
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Table 3

The task category list by grouping relevant customization tasks

Cat. ID Customization Task Category Customization Task Example
Estimated time 
consumption 

(median)
Score Count

Knowledge aspect

C1

Map source vocabulary to target 
vocabulary (among different 
terminologies or same terminology 
different versions)

Vocabulary mapping to get non-ingredient RxCUI 
from ingredient RxCUI since medication may also 
be coded using brand drug codes
Vocabulary mapping to get ICD10 procedure 
codes from provided ICD9 procedure codes 
considering the data contains ICD10 coded data

<1day K 0 185

C2 Map free text to target vocabulary Vocabulary mapping to get RxCUI from provided 
medication names

<1week K 1 88

C3 Define an operational definition of 
a specific EHR data element

Find “provider specialty” that links to procedure to 
check eye exam from ophthalmology department

<1week K 1 138

C4 Define an operational definition of 
a non-EHR data element event

Define “Continuous enrollment/contact” for 
implementation

<1day - <1week K 2 20

C5 Locate the data source for a group 
of data

Identify where to find “carotid imaging study” <1day K 1 89

C6

Retrieve data attribute 
representation and contextual 
knowledge through exploring 
structured data

Find lab unit, categorical range for urine protein 
tests

<1hour K 1 61

C7

Retrieve data attribute 
representation and contextual 
knowledge through exploring 
unstructured data

Explore radiology reports to validate the local use 
of the “intravenous contrast” keywords provided 
and their occurrence prevalence

<1week K 2 18

C8
Acquire knowledge of unstructured 
clinical data from domain expert 
and through programming

Find relevant “note types” and “service groups” 
which clinical notes may contain PAD information

<1week and 
<1month

K 2 14

Interpretation aspect

C9

Understanding phenotype 
algorithm pseudocode clause

Understand if “ever” from “Taking ARBs 
(angiotensin receptor blockers) ever” means both 
structured and unstructured medication lists should 
be used

<1day I 0–2 46

Programming aspect

C10
Compile machine readable input 
file

Compile ICD codes or code groups provided in a 
pdf pseudocode appendix to a machine-readable 
file

<1day P 0 258

C11 Pre-processing data by simple 
programming

Find if relevant pathology reports exist from 
clinical data warehouse programmatically

<1week P 1 11

C12 Search keywords from 
unstructured data

Find at least 2 unique DSM-IV social interaction 
terms from notes

<1week P 1 56

C13
Search keywords with modifier 
from unstructured data

Identify non-negated diverticulosis terms (e.g., 
diverticulitis, diverticula) from relevant radiology 
reports

<1week P 2 16

C14
Extract information from 
unstructured data using advanced 
NLP implementation

Extract heart rate from ECG report <1month P 2 16

C15 Extract information from NLP tool 
processed documents

Search heart disease concepts (UMLS CUIs) from 
MedLEE parsed ECG report

<1day P 1 11

C16 Configure, install and execute NLP 
tools

Install cTAKES for parsing clinical notes <1week P 2 23
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Cat. ID Customization Task Category Customization Task Example
Estimated time 
consumption 

(median)
Score Count

C17

Populate NLP search results for 
SQL query

To exclude patient with cancer using ICD-9 and 
keywords, keywords search results from 
unstructured data need to be imported to the 
database

<1week P 1 37

C18
Implement complex SQL query Implement extrapolating height at serum creatinine 

measurement time from its pre- and post- height 
measurement based on a formula

<1day and 
<1week

P 1 41

Other (not specific to the phenotype)

C19
Check the availability and 
completeness of the needed data 
element

Potentially unavailable information of medication 
administration route, which is required for 
glaucoma phenotyping

<1week 22

C20 Implement another existing 
phenotype

Use existing eMERGE T2DM algorithm to check 
if a patient has type 2 diabetes

<1week 3

Total (1153)

J Biomed Inform. Author manuscript; available in PMC 2020 November 01.


	Abstract
	Graphical Abstract
	Background
	Methods
	Phenotype and clause selection
	Task identification and Knowledge-Interpretation-Programming (KIP) scoring
	Estimate time efforts on customization task categories and common data model assistance for portable phenotyping

	Results
	Landscape of phenotype algorithms
	KIP score for clauses and agreement on identified tasks
	Task categories
	Time effort and CDM usefulness

	Discussion
	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Table 1
	Table 2
	Table 3

