
royalsocietypublishing.org/journal/rspa

Research
Cite this article: Babaee H. 2019 An
observation-driven time-dependent basis for
a reduced description of transient stochastic
systems. Proc. R. Soc. A 475: 20190506.
http://dx.doi.org/10.1098/rspa.2019.0506

Received: 6 August 2019
Accepted: 18 October 2019

Subject Areas:
computational physics, computational
mathematics, computer modelling
and simulation

Keywords:
observation driven, matrix free, transient
dynamics, finite-time instabilities,
time-dependent modes, dimension reduction

Author for correspondence:
H. Babaee
e-mail: h.babaee@pitt.edu

An observation-driven
time-dependent basis for a
reduced description of
transient stochastic systems
H. Babaee

Department of Mechanical Engineering and Materials Science,
University of Pittsburgh, 3700 O’Hara Street, Pittsburgh,
PA 15261, USA

HB, 0000-0002-6318-2265

We present a variational principle for the extraction
of a time-dependent orthonormal basis from random
realizations of transient systems. The optimality
condition of the variational principle leads to a closed-
form evolution equation for the orthonormal basis and
its coefficients. The extracted modes are associated
with the most transient subspace of the system, and
they provide a reduced description of the transient
dynamics that may be used for reduced-order
modelling, filtering and prediction. The presented
method is matrix free; it relies only on the observables
of the system and ignores any information about
the underlying system. In that sense, the presented
reduction is purely observation driven and may be
applied to systems whose models are not known.
The presented method has linear computational
complexity and memory storage requirement with
respect to the number of observables and the number
of random realizations. Therefore, it may be used
for a large number of observations and samples.
The effectiveness of the proposed method is tested
on four examples: (i) stochastic advection equation,
(ii) stochastic Burgers equation, (iii) a reduced
description of transient instability of Kuramoto–
Sivashinsky, and (iv) a transient vertical jet governed
by the incompressible Navier–Stokes equation. In
these examples, we contrast the performance of
the time-dependent basis versus static basis such
as proper orthogonal decomposition, dynamic mode
decomposition and polynomial chaos expansion.
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1. Introduction
The ability to discover intrinsic structure from data has been called the fourth paradigm of scientific
discovery [1]. Dimension reduction enables such discoveries and clearly belongs to the fourth
paradigm. The goal of dimension reduction is to map high-dimensional data into a meaningful
representation of reduced dimensionality. As a result, dimension reduction has been widely used
in classification, visualization and compression of high-dimensional data [2]. In the scientific and
engineering applications dimension reduction has been used to build reduced-order models to
propagate uncertainty, control and optimization [3,4].

This paper focuses on dimension reduction of vector-valued observables x(t; ω) ∈ R
n generated

by a time-dependent stochastic system where ω denotes a random observation. A linear reduction
model seeks to approximate the target x with

x = Uz + ε, (1.1)

where U ∈ R
n×r is a deterministic matrix whose columns can be regarded as modes and z ∈ R

r are
the reduced stochastic variable, where r is the reduction size and ε is the reduction error. Both
U and z are in general time dependent. In view of equation (1.1), polynomial chaos expansion
(PCE) can be seen as a special case where z is represented by PCE—a static (i.e. time independent)
basis—while U = U(t) is time dependent. PCE has reached widespread popularity especially for
steady-state and parabolic stochastic partial differential equations (SPDEs) [5]. However, for time-
dependent dynamical systems with transient instabilities the number of PCE terms required for a
given level of accuracy must rapidly increase [6]. Similarly, it was shown in [7] that the reduction
size of PCE must increase in time to maintain a given accuracy. On the other hand, data-driven
methods such as proper orthogonal decomposition (POD) and dynamic mode decomposition
(DMD) belong to a class of methods where the modes U are static and they are computed from
numerical/experimental observations of the dynamical system and z(t; ω) is often obtained by
projection of the data to these modes [8]. For highly transient systems, DMD and POD require
a large number of modes to capture transient time behaviour [9,10]. This is partly because both
DMD and POD decompositions seek to obtain an optimal reduction of the data in a time-average
sense. In the case of DMD a best-fit linear dynamical system matrix A is sought so that ‖xk+1 −
Axk‖2 is minimized across all snapshots, where k shows the time snapshots. Similarly, the POD
is an optimal basis for all snapshots. However, transient instabilities, for example, by definition
have a short lifetime. The effect of these transient instabilities may be lost in a reduction based on
time average.

More recently dynamically orthogonal (DO) [11] and bi-orthogonal (BO) [12] expansions have
proven promising in tackling time-dependent SPDEs. In these reduction techniques both U(t)
and z(t; ω) are dynamic and they evolve with time. In a DO/BO framework, exact evolution
equations for the evolution of U(t) and z(t; ω) are derived. In the case of SPDEs, the evolution
equation for U(t) is a system of deterministic PDEs that are solved fully coupled with a system
of stochastic ordinary differential equations (SODEs) and an evolution equation for the mean
equation. Although DO and BO algorithms lead to different evolution equations for the stochastic
coefficient and the spatial basis, it is shown in [13,14] that both of these methods are equivalent,
i.e. the BO and DO reductions span the same subspaces. In deterministic applications, time-
dependent bases have been used for dimension reduction of deterministic Schrödinger equations
by the multi-configuration time-dependent Hartree (MCTDH) method [15,16], and later by
Koch & Lubich [17]. Recently, optimally time-dependent (OTD) reduction was introduced [18],
in which an evolution equation for a set of orthonormal modes is found that captures the most
instantaneously transient subspace of a dynamical system [19].

The motivation for this paper is to obtain a reduced description of transient dynamics
that relies only on random observations—i.e. an equation-free reduction. This is in contrast to
model-dependent reduction techniques, for example DO and BO methodologies, which require
high-dimensional ODEs/PDEs to be solved to determine the time-dependent modes. When
stochastic governing equations are complex, the derivation of evolution equations for the DO/BO
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coefficients can become very difficult, if not impossible. The reliance on the model in these
techniques impedes their application in complex multi-physics/multi-component systems. For
example, it is still unknown how to determine the boundary conditions for DO/BO modes
in a case of a single-physics/single-domain PDE subject to random boundary conditions [20].
Moreover, the evolution equation for the DO/BO modes is tied to the equation that governs the
dynamical system at hand, which would require a case-by-case implementation. On the other
hand, in the era of extreme-scale computing, concurrent high-fidelity numerical simulations are
expected to be routinely possible [21]. These simulations generate an unprecedented amount of
streaming data, whose low-rank structure can be exploited using a data-driven approach. The
low-rank structure can then be used for diagnostic purposes or to build reduced-order models.

The objective of this paper is to find a reduced description of the transient dynamics that
is observation driven and discards any information about the underlying model. To this end,
we present a variational principle for the determination of a set of time-dependent orthonormal
modes that capture the low-dimensional structure from observations of the stochastic system. We
note that the presented method is used to perform dimension reduction and not reduced-order
modelling. The structure of the paper is as follows. In §2, we present the variational principle
for the extraction of the time-dependent modes and their coefficients. In §3, we present four
demonstration cases: (i) the stochastic advection equation, (ii) the stochastic Burgers equation,
(iii) the Kuramoto–Sivashinsky equation, and (iv) a transient vertical jet in quiescent background
flow governed by incompressible Navier–Stokes equations. In §4, we present the conclusions of
our work.

2. Methodology

(a) Set-up
We consider a stochastic dynamical system in the form of

ẋ = f(x, t; ξ ), (2.1)

where x is the state space and the above dynamical system is finite dimensional, i.e. x ∈ R
m,

or infinite dimensional, expressed, for example, by SPDEs, and ξ = (ξ1, ξ2, . . . , ξd) ∈ R
d is a d-

dimensional random space with the joint probability given by ρ(ξ ). The dynamical system may
not be known and the proposed reduction relies only on vector-valued observations of the
above system. We base our formulation on continuous-time observations, represented by matrix
T(t) ∈ R

n×s, whose columns contain vector-valued observations of the stochastic system at time t,

T(t) =
[

x1(t)
∣∣∣ x2(t)

∣∣∣ . . .

∣∣∣ xs(t)
]

n×s
.

Each column of this matrix is obtained by first drawing a random sample of ξ with joint
probability distribution of ρ(ξ ) and solving the forward model given by equation (2.1). Before
we proceed we introduce the sample mean operator,

E[T(t)] = T(t)wξ ,

where wξ = [wξ 1
, wξ 2

, . . . , wξ s
]T ∈ R

s×1 represents the sample weights. For example, for standard
Monte Carlo samples, wξ = 1/s, where 1 ∈ R

s×1 is a column vector with all elements equal to 1.
For cases where controlled observations of system (2.1) is possible, the probabilistic collocation
strategy may be used for sampling. In that case wξ represents the associated probabilistic
collocation weights. Similarly, wx = [wx1 , wx2 , . . . , wxn ] ∈ R

n×1 represents the associated weights
in the state space. For applications governed by SPDEs, wx may be chosen as space integration
weights (e.g. quadrature weights), such that wT

x u approximates
∫

Ω udΩ , where Ω is the spatial
domain and u contains vector-valued observations of spatial function u. We assume that T(t) has
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zero mean, i.e. E[T(t)] = 0. This is accomplished by subtracting the ensemble mean from all the
realizations. Let us define the inner product in both state and random spaces,〈

ui, uj
〉= uT

i Wxuj

and
E[yT

i yj] = yT
i Wξyj,

where Wx = diag(wx) and Wξ = diag(wξ ) are matrices of size n × n and s × s, respectively.
Therefore,

〈
ui, uj

〉
is an inner product of ui and uj in the state space, and E[yT

i yj] is an inner product
of yi and yj in the random space. Our goal is to build a low-rank approximation that can capture
transient behaviour in the stochastic data T(t). To this end, we seek a reduction in the form of

T(t) = U(t)Y(t)T + E(t), (2.2)

with

Y(t) =
[

y1(t)
∣∣∣ y2(t)

∣∣∣ · · ·
∣∣∣ yr(t)

]
s×r

and

U(t) =
[

u1(t)
∣∣∣ u2(t)

∣∣∣ · · ·
∣∣∣ ur(t)

]
n×r

,

where Y(t) ∈ R
s×r and Y(t) = [y1(t) | y2(t) | . . . | yr(t)] and U(t) ∈ R

n×r is a set of orthonormal
modes, i.e.

〈
ui(t), uj(t)

〉= δij and E is the reduction error. In the proposed form U(t) represents a
time-dependent low-rank subspace, which we will refer to as the dynamic basis (DB), and Y(t)
are the stochastic coefficients of the DB; we will refer to Y(t) as the stochastic coefficients. In the
following we present a variational principle that results in closed-form evolution equations for
the DB U(t) and the stochastic coefficients Y(t).

(b) Variational principle
In this section we present a variational principle from which the evolution equations of the low-
rank approximation are derived. Our goal is to build a low-rank approximation that can capture
transient data. To this end, we first introduce a weighted Frobenius norm,

∥∥∥E[T]2∥∥∥1/2

F
=
( n∑

i=1

s∑
j=1

wxi wξ j
T2

i,j

)1/2
, (2.3)

where Ti,j is the entry of matrix T at the ith row and the jth column. Now we consider the
variational principle in the form of

F (U̇(t), Ẏ(t)) =
∥∥∥∥∥E
[

d(U(t)Y(t)T)
dt

− ˙T(t)
]2
∥∥∥∥∥

F

, (2.4)

subject to the orthonormality condition of the modes, i.e.
〈
ui(t), uj(t)

〉= δij. The variational
principle (2.4) seeks to minimize the difference between the rate of change of all observations and
the DB reduction, and the control parameters are U̇(t) and Ẏ(t). To incorporate the orthonormality
condition, we observe that 〈

u̇i(t), uj(t)
〉+ 〈

ui(t), u̇j(t)
〉= 0, (2.5)

and we denote φij(t) := 〈
ui(t), u̇j(t)

〉
. It is clear from the above equation that φij(t) is a skew-

symmetric matrix, i.e. φij(t) = −φji(t). We incorporate the orthonormality constraint into the
variational principle via Lagrange multipliers. This follows:

G(U̇(t), Ẏ(t)) =
∥∥∥∥∥E
[ r∑

i=1

d(ui(t)yi(t)
T)

dt
− Ṫ(t)

]2
∥∥∥∥∥

F

+
r∑

i,j=1

λij(t)
(〈

ui(t), u̇j(t)
〉− φij(t)

)
, (2.6)

where λij(t), i, j = 1, . . . , r are the Lagrange multipliers. In appendix A, we show that the first-order
optimality condition of the above functional leads to the closed-form evolution equation of U(t)
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and Y(t) as given by
U̇(t) =

∏
⊥U(t)

E[Ṫ(t)Y(t)]C(t)−1 + U(t)φ(t) (2.7)

and
Ẏ(t) = 〈 ˙T(t)T, U(t)

〉+ Y(t)φ(t), (2.8)

where C(t) = E[Y(t)TY(t)] is the reduced covariance matrix (C(t) ∈ R
r×r) and

∏
⊥U is the

orthogonal projection matrix to the space spanned by the complement of U(t), i.e.
∏

⊥U V =
V − UUTWxV = (I − UUTWx)V.

Solving equations (2.7) and (2.8) requires determination of φ(t). We show in appendix B that for
any skew-symmetric matrix φ(t) the above reduction remains equivalent for all times. Equivalent
reductions can be defined as follows: the two reduced subspaces {Y(t), U(t)} and {Ỹ(t), Ũ(t)}, where
U(t), Ũ(t) ∈ R

n×r and Y(t), Ỹ(t) ∈ R
s×r, are equivalent if there exists a transformation matrix R(t) ∈

R
r×r such that U(t) = Ũ(t)R(t) and Y(t) = Ỹ(t)R(t), where R(t) is an orthogonal rotation matrix, i.e.

R(t)TR(t) = I. Therefore, changing φ(t) does not affect any of the subspaces that U(t) and Y(t) span,
and it will only lead to an in-subpsace rotation. In the rest of this paper, we take the simplest case
of φ(t) ≡ 0. In that case the evolution of the DB reduces to

U̇(t) =
∏

⊥U(t)

E[Ṫ(t)Y(t)]C(t)−1 (2.9)

and
Ẏ(t) = 〈

Ṫ(t)T, U(t)
〉
. (2.10)

To compute the right-hand side of equation (2.9), U(t)U(t)T may not be computed or stored
explicitly. This can be done by observing that∏

⊥U(t)

E[Ṫ(t)Y(t)]C(t)−1 =
(

I − U(t)U(t)TWx

)
Ṫ(t)WξY(t)C(t)−1

= (
Ṫ(t)WξY(t) − U(t)Ṫr(t)

)
C(t)−1,

where Ṫr = UTWxṪWξY and Ṫr ∈ R
r×r. Therefore, the evolution equations for the DB and the

reduced manifold are given by

U̇(t) = (
Ṫ(t)WξY(t) − U(t)Ṫr(t)

)
C(t)−1 (2.11)

and
Ẏ(t) = Ṫ(t)TWxU(t). (2.12)

Besides the simplicity of the above evolution equations, the choice of φ(t) = 0 also leads to
an insightful interpretation of the DB reduction, namely the update of the DB U̇(t) is always
orthogonal to the space spanned by U(t), i.e. U̇(t) ⊥ U(t), and this update is driven by the
projection of E[Ṫ(t)Y(t)] onto the orthogonal complement of U(t) (see equation (2.11)). This means
that if E[Ṫ(t)Y(t)] is in the span of U(t), then

U̇(t) =
∏

⊥U(t)

E[Ṫ(t)Y(t)]C(t)−1 = 0.

However, when E[Ṫ(t)Y(t)] is not in the span of U(t), it results in U̇(t) �= 0. This built-in
adaptivity of the DB allows U(t) to ‘follow’ the data instantaneously. The Y(t) coefficients are
updated by projection of Ṫ(t) onto the space spanned by U(t) (see equation (2.12)). Therefore, the
evolution equation of Y(t) captures the evolution of T(t) within the subspace U(t).

The model-driven counterpart of equations (2.9) and (2.10) is the DO decomposition [11]. In
the DO decomposition of SPDEs, a system of deterministic PDEs are derived for the evolution of
the time-dependent orthonormal modes and a system of SODEs are derived for the evolution of
the stochastic coefficients. These two systems coupled with the mean evolution equation must be
solved simultaneously. The DO decomposition does not require observations of the system, since
in the DO formulation evolution equations for U(t) and Y(t) are derived from the model instead
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of the observation. DO is intrusive and obtaining the time-dependent basis requires solving
coupled ODE/PDE systems, which must be derived and solved for the application at hand. On
the other hand, equations (2.9) and (2.10) are not PDEs and they only involve simple matrix vector
operations irrespective of the data generator, i.e. the dynamical system. In other words, the DB
reduction is agnostic with regard to the underlying model that generates the observation and
observations may come from a system whose model is not known. As we demonstrate in §3c,
even if the DB observations are chosen to be the solution of the entire computational domain, DO
and DB are, in general, not equivalent, i.e. DO and DB bases do not span the same subspace. This
is mainly because the DB samples, i.e. the columns of T(t), are the solution of the state equation
and therefore they represent the true solution, while in the DO decomposition the samples are
generated in the reduced subspace and therefore they are affected by the reduced-order modelling
error. Finally, the DB reduction can be applied to nonlinear observables of the dynamical system
or partial observations. See §3d for the demonstration of the latter feature of DB.

(c) Workflow and computational complexity
The DB reduction is governed by time-continuous evolution equations (2.11) and (2.12). For
time-discrete data these equations must be discretized in time. Here we summarize all the steps
required for solving equations (2.11) and (2.12).

Step 1. Given the time-discrete realizations in the form of T̃k, k = 0, 1, 2, . . . , K we compute zero-
mean by subtracting the instantaneous sample mean from the data: Tk = T̃k − E[T̃k]11×s, where
11×s is a row vector of size s whose all elements are equal to 1.

Step 2. We compute the initial condition for Y0 and U0 by performing Karhunen–Loève (KL)
decomposition of the T0 at t = 0. This follows:

T0 =
r∑

i=1

√
λiviz

T
i + E0,

where vectors vi ∈ R
n are an orthonormal basis, zi ∈ R

s are the stochastic coefficients, λi are their
corresponding eigenvalues and E0 is the reduction error. The initial conditions for U(t) and the
stochastic coefficients Y(t) are then given by: ui0 = vi and yi0 = √

λizi for i = 1, 2, . . . , r.
Step 3. The time derivative of the observations Ṫ(t) can be estimated via finite difference

schemes. For example, the fourth-order central finite difference approximation takes the form
of

Ṫk = −Tk+2 + 8Tk+1 − 8Tk−1 + Tk−2

12	t
+ O(	t4).

For the first two time steps one-sided finite-difference schemes may be used.
Step 4. Evolve the DB and the stochastic coefficients to the next time step k using a time-

integration scheme. We use the fourth-order Runge–Kutta scheme. A comparison with a lower-
order time integration scheme is given in the last demonstration case.

Step 5. Perform a Gram–Schmidt orthonormalization on the DB U(t). Although the DB remains
orthonormal by construction, the numerical orthonormality of U(t) may not be preserved owing
to the nonlinearity of the evolution equations (2.11) and (2.12). An enforcement of orthonormality
of U(t) resolves this issue. Now steps 3–5 can be repeated in a time-loop until completion of all
time steps.

A quick inspection of the evolution equations (2.11) and (2.12) reveals two favourable
properties with regard to the computational cost and memory storage requirement of the DB
reduction. (i) The computational complexity of solving the evolution equations (2.11) and (2.12)
is O(rns), i.e. linear computational complexity with respect to the reduction size r, the size of the
observations in state space n and the sample size s. We note that given that r is often a small
number, i.e. r � n and r � s, the cost of inverting the covariance matrix C(t) is often negligible.
(ii) The memory storage requirement is also linear with respect to n, r and s. This is because at each
time instant only computation of Ṫ(t) is required, which can be computed from a few snapshots
of T(t). This allows for loading matrix T(t) in small time batches. The linear computational
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and memory complexity of the DB reduction may be exploited for applications with very large
datasets.

(d) Mode ranking within the subspace
In this section we present a ranking criterion within the dynamic subspace U(t). This can be
accomplished by using the reduced covariance matrix C(t), which, in general, is a full matrix and
this implies that the Y(t) coefficients are in general correlated. The uncorrelated Y(t) coefficients
may be computed via the eigen-decomposition of the covariance matrix C(t). To this end, let

C(t)ψ(t) =ψ(t)Λ(t) (2.13)

be the eigenvalue decomposition of matrix C(t), where ψ(t) ∈ R
r×r is a matrix of eigenvectors of

C(t) and Λ(t) = diag(λ1(t), λ2(t), . . . , λr(t)) is a diagonal matrix of the eigenvalues of matrix C(t).
The uncorrelated Y(t) coefficients and the DB associated with these uncorrelated coefficients,
denoted by Ŷ(t) and Û(t), are obtained by an in-subspace rotation,

Ŷ(t) = Y(t)ψ(t), Û(t) = U(t)ψ(t).

It is easy to verify that Ŷ(t) coefficients are uncorrelated, i.e. E[Ŷ(t)Ŷ(t)T] =Λ(t). We adopt a
variance-based ranking for {Ŷ(t), Û(t)}. Since matrix C(t) is positive semidefinite, without loss of
generality, let λ1(t) ≥ λ2(t) ≥ · · · ≥ λr(t) ≥ 0, where λi(t) is the variance of ŷi(t).

Since {Ŷ(t), Û(t)} are obtained by an in-subspace rotation of {Y(t), U(t)}, they are equivalent
representations of the low-rank dynamics, i.e. Û(t)Ŷ(t)T = U(t)ψ(t)ψ(t)TY(t)T = U(t)Y(t)T, where
we have used ψ(t)ψ(t)T = I, since eigenvectors of a symmetric matrix (C(t)) are orthonormal. In
all the demonstration cases in this paper, we use the ranked uncorrelated representation of the
DB for the analysis of the results. For the sake of simplicity in the notation, we use {Y(t), U(t)}
to refer to the ranked uncorrelated representation instead of {Ŷ(t), Û(t)}, noting that both of these
representations are equivalent.

3. Demonstration cases

(a) Stochastic advection equation
As the first example, we apply DB reduction to a one-dimensional stochastic advection equation.
As we will show in this section, the stochastic advection equation chosen here is exactly two
dimensional, when expressed versus the DB. It also has an exact analytical solution for the DB U
and the stochastic coefficients Y, which enables an appropriate verification of the DB algorithm.
The stochastic advection equation is given by

∂u
∂t

+ V(ξ )
∂u
∂x

= 0, x ∈ [−1, 1], t ∈ [0, Tf], (3.1)

subject to periodic boundary conditions at the ends of the spatial domain x ± 1 and the initial
condition of u0(x; ξ ). In the above equation Tf is the final time. The solution to the above equation
is a stochastic random field in the form of u(x, t; ξ ). The stochastic advection speed V(ξ ) and the
deterministic initial condition are chosen to be

V(ξ ) = v + σξ , u0(x; ξ ) = sin πx,

where ξ is a one-dimensional uniform random variable defined on [−1, 1], σ is a constant and v

is the mean of the transport velocity. The exact solution of equation (3.1) is

u(x, t; ξ ) = sin π
(
x − (v + σξ )t

)
,

and its mean and variance are

E[u(x, t; ξ )] = 1
σπ t

sin π (x − vt) sin σπ t
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and

E[u(x, t; ξ )2] − E[u(x, t; ξ )]2 = 1
2

− 1
4σπ t

cos 2π (x − vt) sin 2σπ t − 1
σ 2π2t2 sin2 π (x − vt) sin2 σπ t.

The expectation operator is given by E[u(x, t; ξ )] = ∫1
−1 u(x, t; ξ )ρ(ξ ) dξ , where ρ(ξ ) = 1/2 is the

probability density function. The total variance is equal to

Σ(t) =
∫ 1

−1

(
E[u(x, t; ξ )2] − E[u(x, t; ξ )]2)dx = 1 − sin2 σπ t

(σπ t)2 .

The mean-subtracted stochastic field can be expressed with the following two dimensional
expansion:

u(x, t; ξ ) − E[u(x, t; ξ )] = u1y1 + u2y2, (3.2)

where

u1(x, t) = sin π (x − vt), y1(ξ , t) = cos πσξ t − 1
σπ t

sin πσ t,

u2(x, t) = cos π (x − vt), y2(ξ , t) = sin πσξ t.

It is easy to verify that the two-dimensional expansion of the above random field satisfies the
DB orthonormality condition in the continuous form, i.e.

∫ 1

−1
ui(x, t)uj(x, t) dx = δij, i, j = 1, 2.

The expansion of the stochastic field as expressed above in equation (3.2) is in BO form since
E[yiyj] = 0, i �= j.

The details of solving the evolution equations of the DB U(t) and the stochastic coefficients
Y(t) are as follows. The matrix-valued random observations T(t) are generated by solving the
stochastic advection equation (3.1) at s = 65 collocation points. These sampling points are chosen
to be the roots of the Legendre polynomial of order 65, defined on the interval of ξ ∈ [−1, 1]. The
65 realizations of equation (3.1) are generated using a deterministic solver that uses Fourier modes
of order n = 128 for space discretization and fourth-order Runge–Kutta with 	t = 0.001 for time
advancement. The final time is set to Tf = 10 for all realizations.

We first performed dimension reduction of size r = 2. In figure 1a, the total variance Σ(t)
obtained from the reduction is compared against the exact variance. The total variance of the
low-rank approximation is obtained by Σ(t) =∑r

i=1 λi(t), where λi(t) are the eigenvalues of the
covariance matrix C. We also solved the stochastic advection equation (3.1) using the probabilistic
collocation method (PCM), in which the stochastic solution is approximated as

u(x, t; ξ ) − E[u(x, t; ξ )] =
r∑

i=1

φi(ξ )vi(x, t) + e(x, t; ξ ),

where φi(ξ ) are the Legendre chaos polynomials of order i, vi(x, t) are space–time coefficients and
e(x, t; ξ ) is the expansion error. In figure 1a, the total variance obtained from different reduction
sizes r of the PCM are also shown, where it can be seen that as the size of the PCM expansion
increases the PCM variance follows the exact solution for a longer time, but eventually the PCM
error increases and even a 20-dimensional PCM reduction under-performs the DB reduction with
r = 2. For the long-term error analysis for this problem using the PCE, the reader may refer to
[7]. We note that in the PCM reduction the stochastic basis is fixed a priori, i.e. the polynomial
chaos φi(ξ ), while in the DB reduction the stochastic coefficients yi(ξ , t) are time dependent and
intuitively this enables the stochastic coefficient to adapt instantaneously to the data according to
the variational principle (2.6).

In figure 1b the covariance eigenvalues of the DB reduction with r = 3 are compared against
the exact solution. Since the solution is two dimensional when expressed versus the DB, the
third mode must remain inactive. As shown in figure 1b, this is confirmed numerically as
the third eigenvalue does not pick up energy, while the first two eigenvalues are in excellent
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Figure 2. Reduction of the solution of the stochastic advection equation using the dynamic basis (DB): (a) DB and (b) stochastic
coefficient (phase portrait). (Online version in colour.)

agreement with the exact solution. In general small eigenvalues of the covariance matrix may
cause numerical instability owing to the computation of C−1 in equation (2.11). The issue of
singularity of matrix C can be resolved by computing the pseudo-inverse of the covariance matrix.
See [14] for similar treatment of the singularity of the covariance matrix. In figure 2, the DB and
the stochastic coefficients are compared against the analytical values for two different times. In
both cases excellent agreement is observed.

(b) Nonlinear dynamics: stochastic Burgers
The purpose of this example is to study the effect of nonlinearity in the context of comparing the
DB reduction with the DO decomposition [11]. In both of these reductions an evolution equation
for a time-dependent basis U(t) is derived and a low-rank approximation is obtained by projecting
the full-dimensional model (for DO) or data (for DB). A comparison with BO is not presented as
DO and BO are equivalent [13]. To this end, we consider the Burgers equation:

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2 , x ∈ [0, π ], t ∈ [0, 1], (3.3)
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with ν = 0.005 and subject to periodic boundary conditions and random initial conditions,

u(x, 0; ξ ) = ub(x) + u′(x; ξ ), (3.4)

where

ub(x) = 0.5(exp(cos(x)) − 1.5) sin(x + 2π · 0.37)

and

u′(x; ξ ) = σ1ξ1 sin(2πx) + σ2ξ2 sin(3πx),

where ξ1 and ξ2 are two independent uniform random variables with unit variance in the interval
[−1, 1] and σ1 and σ2 are the respective standard deviations in each random dimension. To
generate data T(t) for the DB, equation (3.3) is sampled at 64 collocation points in the ξ1 − ξ2 space.
These points were generated by the tensor product of the roots of the seventh-order Legendre
chaos polynomials in each random direction. For the sake of comparison, the same collocation
points are used to solve the evolution dY/dt in the DO formulation. For the DO formulation of
the Burgers equation, see [14]. Third-order Runge–Kutta is used to integrate both DO and DB
equations in time with the same 	t = 0.001 and the Fourier spectral method with n = 1024 points
is used for the space discretization. The same number of Fourier modes is used to solve the DO
equation and to generate samples for T(t).

We also compared the DB/DO reduction with the KL decomposition, which is the optimal L2
reduction in the sense of the reconstruction error,

E(t) = ‖E[UYT − T]2‖F. (3.5)

The KL decomposition requires an eigenvalue problem to be solved for each time instant,
which for s � n has O(n2) and O(s3) computational complexity to compute and invert the
full covariance matrix C ∈ R

s×s, respectively, and similarly for n � s has O(n3) and O(s2)
computational complexity. This operation can be cost prohibitive for large datasets, e.g. extreme-
scale computing applications [21]. On the other hand, in the DB formulation, the variational
principle is formed with respect to the rate of change in the data (see equation (2.4)), whose
optimality condition yields computationally scalable evolution equations for U(t) and Y(t).

In figure 3 the results for DB, DO and KL reductions are shown. We chose a reduction size of r =
5 in all cases. Two cases are considered, as follows. Case I: σ1 = σ2 = 0.05 and case II: σ1 = σ2 = 0.5.
In the first row of figure 3 the reconstruction error E(t) (figure 3a) and the eigenvalues Λ(t) of the
covariance matrix C(t) (figure 3b) are shown. For the KL reduction, r largest eigenvalues of the full
covariance matrix are shown. Similarly, the second row shows the results for the reconstruction
error and the eigenvalues of the covariance matrix for case II. In figure 3b,d the energy of the mean
λm(t) = 〈

u(t), u(t)
〉

is also shown, where u(t) is the sample mean, i.e. u(t) = E[T(t)]. It is clear that
for case I the energy of the mean is roughly two orders of magnitude larger than the variance,
i.e. the sum of all eigenvalues. In that sense, the random initial condition amounts to a small
perturbation around the mean state and, therefore, the evolution of the random initial condition
can be approximated by linearized dynamics around the mean state u(t). It is clear that for this
case the DB, DO and KL reductions are nearly identical. However, for case II, the nonlinear effects
are much stronger, as evidenced by observing that the energy of the mean is comparable to the
eigenvalues of the covariance matrix; see figure 3d. In this case a significant discrepancy between
DO and DB reductions is observed, while DB is closer to KL with smaller reconstruction error;
see figure 3c.

One source of discrepancy between DO and DB is that, in the DO formulation, the samples
are generated on the fly by the reduced-order model. Therefore, the samples generated by DO
deviate from the truth. This is not, however, the case in DB, where the samples, represented by
T(t), are the truth. On the other hand, in the case of linear dynamics, the discrepancy between the
samples generated by DO and the truth approaches zero. For the proof, see appendix A of [14]
and theorem 2.4 in [18]. This explains why the DO and DB are nearly identical for linear regimes,
i.e. case I, and are different for nonlinear regimes, i.e. case II.
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〉
, where u(t)= E[T(t)]. (a,b) σ1 = σ2 = 0.05 and

(c,d)σ1 = σ2 = 0.5. (Online version in colour.)

(c) Transient instability: Kuramoto–Sivashinsky
One of the main utilities of a low-rank approximation of high-dimensional dynamical systems is
to provide an interpretable explanation of complex spatio-temporal dynamics. In this section, we
demonstrate the application of the DB reduction to the one-dimensional stochastic Kuramoto–
Sivashinsky equation. This equation has been widely studied for chaotic spatio-temporal
dynamics in wide-ranging applications, including reaction–diffusion systems [22], fluctuations
in fluid films on inclines [23] and instabilities in laminar flame fronts [24]. The Kuramoto–
Sivashinsky equation exhibits intrinsic instabilities and as a result the stochastic perturbations may
undergo a significant growth. The spontaneity of the instability makes it a challenging problem
for any reduction technique as the reduced subspace during the transition could be very different
from that of the equilibrium states. We apply the DB reduction to realizations of the Kuramoto–
Sivashinsky system to demonstrate how the U(t) ‘follows’ the dynamics as the observations
undergo a transient instability. This transient instability is visualized in figure 4a, where a
sudden transition occurs near t = 0.75. The solution shown in figure 4a is one realization of the
Kuramoto–Sivashinsky equation with the following set-up. We consider Kuramoto–Sivashinsky
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Figure 4. Kuramato–Sivashinsky: (a) solution u(x, t) shows a sudden transition; covariance kernel of the random perturbation
with correlation length (b) lc = 2.5 and (c) lc = 0.05. (Online version in colour.)

equation
∂u
∂t

= u
∂u
∂x

− ∂2u
∂x2 − ε

∂4u
∂x4 , x ∈ [−1, 1], t ∈ [0, Tf], (3.6)

with ε = 0.01 and subject to random initial condition

u(x, 0; ξ ) = ub(x) + u′(x; ξ ), x ∈ [−1, 1]. (3.7)

In the above equation ub(x) is chosen to be the terminal solution of equation (3.6) after long-
time integration. The random perturbation of the initial condition, denoted by u′(x; ξ ), is set to
have periodic covariance given by

K(x, x′) = σ 2 exp

(
−2 sin2(π (x − x′))

l2c

)
,

where σ is the standard deviation and lc is the correlation length. We perform KL decomposition
∫ 1

−1
K(x, x′)φi(x

′) dx′ = λiφi(x),

where λi and φi(x) are the ith eigenvalue and eigenfunction of the covariance kernel. The random
perturbation is then approximated as

u′(x; ξ ) =
d∑

i=1

√
λiξiφi(x) + ε,

where ξi ∈ [0, 1] are independent uniform random numbers with unit variance. The dimension d is
chosen such that 99% of the energy is captured by the KL decomposition. Decreasing lc increases
the number of dimensions required to capture the energy threshold. We consider two cases of low-
dimensional and high-dimensional random perturbations with lc = 2.5 and lc = 0.05, respectively.
The covariance kernels for these two correlation lengths are shown in figure 4.

Three-dimensional random perturbation. We consider a correlation length of lc = 2.5 and σ = 0.1.
The three-dimensional (d = 3) expansion of the KL decomposition captures more than 99% of the
energy of the covariance kernel. We sample the Kuramoto–Sivashinsky equation at probabilistic
Q = 5 collocation points in each ξi direction; therefore, the total number of samples is s = 53.
Correspondingly, the sample weights wξ are the probabilistic collocation weights. We use chebfun
[25] as a blackbox solver to solve the Kuramoto–Sivashinsky equation (3.6) for s = 53 realizations
of the random initial condition. The solution is post-processed with fixed Chebyshev polynomial
order n = 256. Matrix T is sampled at discrete times with a constant time interval of dt =
0.001 from t = 0 to Tf = 1.2. This time interval encompasses the transition period that occurs,
0.6 < t < 1.0.

We perform DB reduction with size r = 4. In figure 5a, the eigenvalues of the reduced
covariance matrix versus time are shown. The eigenvalues of the covariance matrix represent
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Figure 5. Dynamic basis (DB) reduction for the Kuramoto–Sivashinsky equation with reduction size r = 4. (a) Eigenvalues of
reduced covariance matrix. The first three modes at different time instants: (b) u1, (c) u2 and (d) u3. (Online version in colour.)

variance or the energy associated with the DB. The first three DBs associated with the three largest
eigenvalues of the covariance matrix are shown in figure 5b–d.

We first observe that the energy of the first mode remains roughly constant for 0 < t < 0.5.
However, the second and third modes undergo four orders of magnitude growth during the
same period. Correspondingly, the first DB remains nearly static for 0 < t < 0.5 (see figure 5b).
However, u2 and u3 are evolving during the same time interval (figure 5c,d). The second and
third modes have near-eigenvalue crossings periodically in this interval, which causes very
rapid changes in the modes when their eigenvalues become close. The significant growth of the
energy of the second and third modes reveals the transient unstable directions of the dynamical
system. However, these two modes are ‘buried’ underneath the most energetic mode, e.g. the first
mode. We note that detecting the unstable directions is crucial for control of these systems [26].
Detecting these directions can be used in building precursors of sudden transitions or rare events
in transient systems.

We also computed DMD modes to compare against the DB reduction. DMD has been very
successful as a diagnostic tool to characterize complex dynamical systems. However, it is difficult
for DMD to handle transient phenomena. To this end, we computed the DMD modes for a
deterministic realization of the Kuramoto–Sivashinsky equation. The realization is generated by
solving the Kuramoto–Sivashinsky equation for the collocation point ξ0 = (−0.91, −0.54, 0.91).
This collocation point is chosen arbitrarily and any other collocation point would result in the
same qualitative observations that we make in this section. To compute the DMD modes we
first performed singular value decomposition (SVD) of the mean-subtracted snapshots of the
Kuramoto–Sivashinsky equation in the span of t ∈ [0, Tf] for ξ0 = (−0.91, −0.54, 0.91). The SVD
truncation threshold e =∑n

i=1 σi/
∑N

i=1 σi was set to 99%, where σi are the singular values and N
is the total number of snapshots. The 99% threshold resulted in n = 11 low-rank approximations.
We then computed the DMD modes Φ according to the procedure explained in [8]. The DMD-
reconstructed data were then computed using: u(t) �∑n

i=1Φk exp(ωkt)bk, where bk is the initial
amplitude of each mode, Φk’s are the DMD eigenvectors and ωk’s are the eigenvalues associated
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Figure 6. Reconstruction of a Kuramoto–Sivashinsky sample with: (a) true solution; (b) reconstruction with dynamic mode
decomposition and (c) reconstruction with dynamic basis. (Online version in colour.)

Table 1. Reconstruction error of the Kuramoto–Sivashinsky equation: comparison between dynamic mode decomposition
(DMD) and dynamic basis (DB).

r 2 4 6 8

error (DMD) 9.01×10−2 9.027×10−2 9.18×10−2 9.24×10−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

error (DB) 2.10×10−1 6.92×10−3 1.88 × 10−3 8.92×10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

with DMD modes. In figure 6, we compare the reconstruction of the DMD with n = 11 and
DB with r = 4. The DB reconstruction obtained by: u(t) �∑r

i=1 Ys0,i(t)ui(t), where yi(t, ξ0) are
the stochastic coefficients associated with ξ0 = (−0.91, −0.54, 0.91), i.e. a fixed row (s) of matrix
Y. It is clear that DMD fails to capture the transient instability, while DB reconstruction looks
qualitatively accurate.

We perform a quantitative comparison between DMD and DB. We rank the n = 11 DMD modes
based on their growth rates from increasing to decreasing, and we perform DMD reconstruction
u(t) �∑r

i=1Φk exp(ωkt)bk for r = 2, 4, 6 and 8. We also perform DB for the same reduction sizes.
We then compute the reconstruction error: ε2 =∑K

k=1 ‖utrue(tk) − u(tk)‖2/K, where K is the total
number of snapshots and u(tk) is the reconstructed solution based on DMD or DB. In table 1,
the reconstruction errors ε for DB and DMD are shown. DMD is incapable of converging to the
true solution as the size of DMD modes increases; however, DB converges to the true solution as
the reduction size increases. The limitation of DMD for capturing transient dynamics has been
recognized before; see for example [9], chapter 1, section 1.5.2.

One-hundred-dimensional random perturbation. In this section we present the results of DB
reduction of a 100-dimensional random initial condition with a correlation length of lc = 0.05
(figure 5c). To capture the small scales of the random initial condition the state space is represented
with a Chebyshev polynomial of order n = 1024. We draw Monte Carlo samples of the initial
condition with sample sizes of s = 1000 and s = 5000. We note that these sample sizes are quite
small given the high dimensionality of the random space. However, as we demonstrate here
the DB reduction extracts the low-dimensional structure of the observables despite the severely
low number of samples. We choose a reduction size of r = 6. In figure 7 the eigenvalues of the
covariance matrix for the sample sizes are shown. As is clear, the DB reductions with sample sizes
of 1000 and 5000 are very close before and during the transition. This implies that, despite the high
dimensionality of the random space, the transient response has a low-dimensional structure—
albeit a highly time-dependent one—that is effectively captured with the proposed reduction with
severely sparse samples.
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(d) Transient vertical jet
In this section we perform dynamic reduction for a two-dimensional transient vertical jet flushed
into quiescent background flow. The jet is driven by random boundary conditions as described in
this section. We note that, in the DO/BO formulation, it is still not known how to determine
the boundary condition for the DO/BO modes in the case of random boundary conditions
[20]. However, in the DB formulation the boundary conditions for the DB modes are optimally
determined via the variational principle. The schematic of the problem is shown in figure 8a. To
generate the samples, we performed direct numerical simulation (DNS) of the two-dimensional
incompressible Navier–Stokes equations,

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u

and
∇ · u = 0,

where u(x, t; ξ ) is the random velocity field with two components of u = (u, v) and the spatial
coordinates of x = (x, y), and p(x, t; ξ ) is the random pressure field and Re = 500 is the Reynolds
number. We consider a stochastic jet velocity given by

u(x, t; ξ ) = (
1 + u′(x, ξ )

) (
1 − (x/r)2

)
exp (−0.823(x/r)4). (3.8)

The mean of the prescribed jet boundary condition is similar to that found in previous studies
[27,28]. The random component of the boundary condition is represented by a uniform random
field with the covariance kernel specified by

K(x, x′) = σ 2 exp

(
− (x − x′)2

l2c

)
,

where lc = 0.5 and σ = 0.01. The dimension d = 2 is chosen such that 99% of the energy is captured
by the KL decomposition. We performed DNS using the spectral/hp element method with Ne =
1604 and a spectral polynomial order of p = 5. With these settings, the size of the discrete phase
space is roughly n = 115 000 when accounting for the two components of the velocity vector field.
The time integration was performed using the third-order stiffly stable scheme [29] with time
intervals of 	t = 5 × 10−3. We sample the DNS at PCM points with Q = 6 quadrature points in
each random dimension. Therefore, the total number of samples is s = Q2 = 36.
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Figure 8. Transient vertical jet in quiescent flow. (a) Schematic of the problem. (b) The threemost energetic proper orthogonal
decomposition (POD) modes. (Online version in colour.)

As a reference reduction, we first computed the POD modes. Since POD modes are often used
in deterministic flows, we explain how these modes are computed in a stochastic setting. To do
so, we first formed the matrix T that contains all mean-subtracted snapshots of all 36 samples, i.e.
the entire DNS data. We then performed SVD of this matrix. The POD modes are then computed
as the left singular eigenvectors of matrix T. Therefore, the computed POD modes are an optimal
basis for the entire DNS data in the second norm sense. In figure 8b, the first three POD modes
associated with the largest singular values are shown.

We solved the evolution equations (2.11) and (2.12) with r = 3 with a fourth-order Runge–Kutta
integration scheme. The time snapshots of matrix T were obtained by skipping every three time
steps of the DNS, i.e. the time interval of DB evolution is 	t = 2 × 10−2 .

In figure 9, we show the results of the state of the DB for three time snapshots at t1 = 2,
t2 = 6 and t3 = 10 time units, with each row showing the results at a fixed time. For the purpose
of visualizing the mean, we solved a passive scalar transport equation along with the Navier–
Stokes equation with Schmidt number Sc = 1. See [18] for more details of a similar approach
for visualization. In the leftmost column, the mean data are visualized by the scalar transport
intensity. The mean shows the puff growing in size as the jet entrains the quiescent background
flow while advecting upward. In the middle three columns, the first three most dominant
dynamic bases are visualized by their vorticity: ωzi = ∂ui/∂y − ∂vi/∂x. The evolution of the DB
along with the data is clearly seen. The DB reveals the spatio-temporal coherent structures in the flow.
Similar to the POD modes (figure 8b), the higher modes of the DB show finer spatial structures.
However, the POD modes are static and they are optimal in a time-average sense, as opposed to
the DB that evolves according to Ṫ. We will compare the POD reduction error with that of the DB.
In the rightmost column, the low-dimensional attractor is visualized by plotting the iso-surface of
the joint probability density function πy1y2y3 of the three most dominant stochastic coefficients: y1,
y2 and y3. Since the DNS are sampled at PCM points, the PCE is used to generate more samples
for visualizing πy1y2y3 in the post-processing stage. The attractor clearly shows a low-dimensional
manifold as it evolves in time.

We now leverage the data-driven feature of the DB reduction and we apply it to partial
observations. To this end, we applied the DB with a reduction size of r = 3 to a subset of the
observations, as shown by the circle in figure 10. Therefore, the data matrix T only includes points
that are inside the circle in figure 10 and points outside of the circle are not included in the DB
calculation. The extracted DBs associated with the three modes are also shown in the three middle
columns of figure 10 for t = 2, 6 and 10. In this case the dynamics represent a locally orthonormal
basis. At t = 2, the vortex has not reached the region of interest (ROI); however, owing to the
incompressibility of the flow, the random boundary conditions affect the entire domain and the
DB modes capture this effect with more strength in the lower part of the ROI. The attractor at
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Figure 9. Dynamic basis reduction of a transient vertical jet in quiescent flow. Left: Flow mean visualized by a passive scalar.
Middle: The three most dominant dynamics modes are visualized by vorticityωz . Right: The iso-surface of the joint probability
density function πy1y2y3 of the first three dynamic modes. Each row shows the state of the reduction at a fixed time with first
row: t1 = 2; second row: t2 = 6; and third row: t3 = 10. (Online version in colour.)

the corresponding times is shown in the right column of figure 10. The low-dimensional attractor
exhibits a different structure from that of the full domain shown in figure 9. Applying the DB
reduction to a subset of observations enables the extraction of local low-dimensional structures
by ‘zooming in’ to a ROI. Moreover, this enables the employment of the DB reduction in a domain
decomposition scheme [30], where each domain has a set of locally orthonormal DBs. This is in
contrast to the DO/BO decompositions, where neither of the decompositions can be applied to
a subset of the full domain. This is because both DO and BO are model driven and as such they
would require the specification of the boundary conditions for the mean and the spatial modes at
the boundaries of the ROI. Clearly, these time-dependent values at the arbitrary boundaries are
not known.

In figure 11a, we make a comparison between POD and DB reconstruction errors, given by
equation (3.5), in which the POD mode U represents the first r dominant POD modes and
Y is obtained via the orthogonal projection of the data onto U, i.e. Y(t) = 〈

U, T(t)
〉
. As shown

in figure 11, the reduction of the DB with r = 2 is comparable to that of POD with r = 20
for long time, and in the early evolution (i.e. t < 4) the error of DB (r = 2) is smaller than
that of POD with r = 50. A similar behaviour is observed for DB r = 3, 4 and 5, where a 10-
fold increase in POD reduction size is required to have a comparable reduction error with
DB. We also observe that the DB error increases with time. This is the result of two effects:
(i) as the jet advects upward, the uncertainty grows and more modes are required to better
estimate the observations; and (ii) the effect of unresolved modes in the DB reduction. In the case
of drastic reduction, for example r = 2, discarding the unresolved modes will lead to an increase
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Figure 10. Dynamic basis reduction of a transient vertical jet in quiescent flowwith a clipped domain. Only data points that lie
inside the circle are used in the dynamic basis reduction. Left: Flowmean visualized by a passive scalar. Middle: the three most
dominant dynamics modes are visualized by vorticityωz . Right: The iso-surface of the joint probability density functionπy1y2y3
of the first three dynamic modes. Each row shows the state of the reduction at a fixed time with first row: t1 = 2; second row:
t1 = 6; and third row: t3 = 10. (Online version in colour.)

in error over time. The effect of unresolved modes can be properly studied in the Mori–Zwanzig
formalism [31]. As can be seen in figure 11a increasing the number of DBs significantly decreases
the error and the growth rate of the error.

In figure 11b, we show the results of different time discretization schemes for: (i) computing
Ṫ with two different schemes of first-order Euler explicit (EE1) and fourth-order central finite
difference (FD4) and (ii) the time advancement of U(t) and Y(t) via equations (2.11) and (2.12)
with EE1 and fourth-order Runge–Kutta (RK4). All four combinations of the above schemes are
considered with the identifiers in the form of X-Y, where the first part of the identifier (X) shows
the discretization scheme used for estimating Ṫ and the second part of the identifier (Y) shows
the time-advancement scheme for solving equations (2.11) and (2.12). In particular we considered
these schemes: EE1-EE1, EE1-RK4, FD4-EE1 and FD4-RK4. We used DB with a size of r = 5 for all
these schemes. The errors of schemes EE1-EE1 and FD4-EE1 are very close—suggesting that the
time-advancement error of solving equations (2.11) and (2.12) is the primary source of error and
increasing the accuracy of estimating Ṫ does not improve the overall accuracy. Comparing the
errors of EE1-EE1 with those of EE1-RK4 confirms that the error can be reduced by increasing the
accuracy of the time integrator of the evolution equations for U and Y. However, comparing
the errors of EE1-RK4 with those of FD4-RK4 demonstrates that the primary contributor to the
error for the scheme EE1-RK4 is the estimation of Ṫ. The totality of these observations shows
that both the accuracy of estimating Ṫ and solving the evolution equations of the DB affect the
reduction error potentially significantly. Obviously, if 	t is decreased, the contribution of the time-
discretization error will become less significant than that of the reduction error.
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Figure 11. (a) Comparison of the reduction error between the dynamic basis (DB) and proper orthogonal decomposition (POD).
(b) Effect of the discretization scheme for computing Ṫ and evolution of the DB. First-order Euler explicit (EE1), fourth-order
central finite difference (FD4) and Runge–Kutta (RK4). Identifiers are shown in the form of X–Y: X shows the discretization
scheme used for estimating Ṫ and Y shows the time-advancement scheme for solving the evolution equation for the DB. (Online
version in colour.)

4. Conclusion
The objective of this paper is to develop a reduced description of the transient dynamics that
relies on the observables of the dynamics. To this end, we present a variational principle whose
optimality conditions lead to a closed-form evolution equation for a set of time-dependent
orthonormal modes and their associated coefficients, referred to as the dynamic basis. The DB is
driven by the time derivative of the random observations, and it does not require the underlying
dynamical system that generates the observables. In that sense, the proposed reduction is purely
observation driven and may apply to systems whose models are not known.

The application of the DB was demonstrated for a variety of examples. (i) The advection
equation with random wave speed for which the exact solution for the DB was derived
and was used for validation purposes. (ii) Stochastic Burgers equation, for which DB
reduction was compared with KL and DO decompositions. (iii) Kuramoto–Sivashisky equation
subject to random initial conditions where it was shown that the DB captures the transient
intrinsic instability—even in the presence of a high-dimensional random initial condition. The
performance of the DB reduction was compared against the DMD. (iv) Navier–Stokes equations
subject to random boundary conditions for which we compared the effectiveness of the DB versus
POD, as an example of static-basis reductions.

The DB evolution equation has a linear computational complexity with respect to the number
of observables and the number of random realizations. This is a favourable feature if applications
of large dimension are of interest, for example weather forecast, ocean models and turbulent
flows.
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Appendix A. Optimality condition of the variational principle
In the following we show that the first-order optimality condition of the variational principle (2.6)
leads to closed-form evolution equations for U and Y. For the sake of brevity we drop the explicit
dependence on (t) in the following derivation. We first observe that

G(U̇, Ẏ) =
(

u̇T
i Wxu̇j

) (
yT

i Wξyj

)
+
(

uT
i Wxuj

) (
ẏT

i Wξ ẏj

)
+ 2

(
u̇T

i Wxuj

) (
yT

i Wξ ẏj

)
− 2u̇T

i WxṪWξyi − 2uT
i WxṪWξ ẏi + ∥∥E[Ṫ]2∥∥

F + λij

(
uT

i Wxu̇j − φij

)
.

The first-order optimality condition requires
∂G
∂u̇k

= 0 and
∂G
∂ẏk

= 0 for k = 1, 2, . . . , r. We first

observe that the gradient of G with respect to u̇k can be expressed as

∂G
∂u̇k

= 2Wxu̇j

(
yT

k Wξyj

)
+ 2Wxuj

(
yT

k Wξ ẏj

)
− 2WxṪWξyk + λjkWxuj = 0. (A 1)

To eliminate λkj, we take the inner product of the above equation by ul

uT
l

∂G
∂u̇k

= 2φlj

(
yT

k Wξyj

)
+ 2δlj

(
yT

k Wξ ẏj

)
− 2uT

l WxṪWξyk + λjkδlj = 0,

where we have made use of the definition of φlj(t) := 〈
ul, u̇j

〉
. Rearranging the above equation

results in
λlk = −2φlj

(
yT

k Wξyj

)
− 2

(
yT

k Wξ ẏl

)
+ 2uT

l WxṪWξyk.

After multiplying equation (A 1) from the left by W−1
x /2 and substituting λjk from the above

equation we obtain

u̇j

(
yT

k Wξyj

)
=
(

I − uju
T
j Wx

)
ṪWξyk + ujφjl

(
yT

k Wξyl

)
.

In the vectorized form the above equation can be written as

U̇ =
(

I − UUTWx

)
ṪWξYC−1 + Uφ,

where Cij = yT
i Wξyj is the covariance matrix. Similarly,

∂G
∂ẏk

= 2Wξ ẏj

(
uT

k Wxuj

)
+ 2Wξyj

(
u̇T

j Wxuk

)
− 2Wξ ṪTWxuk = 0. (A 2)

In the above expression we have made use of (u̇T
i Wxuj)(yT

i Wξ ẏj) = (yT
i Wξ ẏj)(u̇

T
i Wxuj) since

both (u̇T
i Wxuj) and (yT

i Wξ ẏj) are scalars. By multiplying the above equation (A 2) by W−1
ξ

/2 from

the left and replacing uT
k Wxuj = δkj and u̇T

j Wxuk = φkj = −φjk, we obtain

ẏk = ṪTWxuk + yjφjk.

In the vectorized form the above equation can be expressed as

Ẏ = ṪTWxU + Yφ.

Appendix B. Proof of equivalence of reductions
Theorem B.1. Suppose that {Y, U} and {Ỹ, Ũ} satisfy the evolution equations (2.7) and (2.8) with

different choices of φ functions denoted by φ ∈ R
r×r and φ̃ ∈ R

r×r, respectively. We also assume that
the two reductions are initially equivalent, i.e. U(0) = Ũ(0)R0 and Y(0) = Ỹ(0)R0, where R0 ∈ R

r×r is
an orthogonal rotation matrix. Then {Y, U} and {Ỹ, Ũ} are equivalent for t > 0, with a rotation matrix
R(t) ∈ R

r×r governed by the matrix differential equation Ṙ = Rφ − φ̃R.
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Proof. We replace U = ŨR and Y = ỸR into the evolution equations (2.7) and (2.8). The evolution
of the DB can be written as

U̇ = ˙̃UR + ŨṘ

=
(

I − ŨŨ
T

Wx

)
ṪWξ ỸRC−1 + ŨRφ.

Therefore,

˙̃U =
(

I − ŨŨ
T

Wx

)
ṪWξ ỸRC−1RT + Ũ(RφRT − ṘRT)

=
(

I − ŨŨ
T

Wx

)
ṪWξ ỸC̃

−1 + Ũφ̃,

where C̃ = E[Ỹ
T

Ỹ] = RCRT and, therefore, C̃
−1 = RC−1RT, where C are C̃ are similar matrices

and have the same eigenvalues. In the last equation we have used Ṙ = Rφ − φ̃R and made use of
the identity R−1 = RT. The evolution of the stochastic coefficients can be written as

Ẏ = ˙̃YR + ỸṘ

= ṪTWx
˙̃UR + ˙̃YRφ.

Therefore,

˙̃Y = ṪTWx
˙̃U + ˙̃Y(RφRT − ṘRT)

= ṪTWx
˙̃U + ˙̃Yφ̃.
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