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Abstract

Animal movement networks are essential in understanding and containing the spread of

infectious diseases in farming industries. Due to its confidential nature, movement data for

the US swine farming population is not readily available. Hence, we propose a method to

generate such networks from limited data available in the public domain. As a potentially

devastating candidate, we simulate the spread of African swine fever virus (ASFV) in our

generated network and analyze how the network structure affects the disease spread.

We find that high in-degree farm operations (i.e., markets) play critical roles in the disease

spread. We also find that high in-degree based targeted isolation and hypothetical vaccina-

tions are more effective for disease control compared to other centrality-based mitigation

strategies. The generated networks can be made more robust by validation with more data

whenever more movement data will be available.

Introduction

Animal movement networks are important to model disease outbreaks and identify the path-

ways of disease spread. In the US, pig farm data including herd sizes, geolocations, and move-

ments between farms are difficult to obtain due to the sensitive nature of data and potential

economic risk of making such information public. Epidemiologists and other researchers who

need such data have to rely on models that can disaggregate available county or state level data.

One such example is the work of Burdett et al., who developed a simulation model to quantify

pig population and generate geolocation of individual farms [1]. However, this model does

not produce movement data. In another work by Valdes-Donoso et al., machine learning tech-

niques were used to predict movement networks in the State of Minnesota [2]. A recent work

uses a maximum information entropy approach to estimate movement probabilities among

swine farms [3] and suggests that the ‘small-world phenomenon’ could make the US swine

industry vulnerable to infectious disease outbreaks. Despite several efforts, pig level networks

in the US swine industry are not readily available for simulating disease outbreaks. One way to
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overcome this issue is to design a network generator that can produce synthetic swine net-

works given some of the available movement network characteristics and census data.

There has been substantial work in the area of graph generation. The most basic random

graph model is the Erdös—Rényi model [4] that can produce graphs with a certain edge proba-

bility between any pair of vertices. The vertex degrees of such random graphs follow the Pois-

son distribution [5]. There are several mechanisms to generate graphs with prescribed degree

sequences. Milo et al. describes [6] two mechanisms: switching algorithm [7, 8] and matching

algorithm [5, 9]. In the switching algorithm, graphs are generated based on a degree sequence

and the edges are shuffled without changing the degrees to introduce randomness. The match-

ing algorithm is also called the configuration model [10] where stubs (open ended handles) are

assigned to vertices and later joined pairwise completely at random. Our limited movement

data situation with a swine movement network presents us with a unique challenge where we

have several different vertex types with their given average in/out degrees and their range of

values [2]. We also have the probability of having a directed edge from one vertex type to

another. Using these two sets of data, we design a network generator that uses a modified ver-

sion of the configuration model and the generalized random graph model [10]. Generated ran-

dom graphs have been used for various purposes that includes running outbreak simulations

[11] and predicting the impacts of disease control [12]. Pig movement networks have been

analyzed and found to be useful in predicting the risk of infectious disease outbreaks [13]. The

effects of immunizations based on network centrality metrics have been explored before [14,

15] for human diseases and such studies can suggest efficient strategies for disease control. In

this paper, we use several proven network metrics to understand disease spreading phenomena

in pig networks.

African swine fever (ASF) is a highly contagious infection that poses as a threat for the pork

industry due to its high mortality and no effective vaccine or cure [16]. Several recent out-

breaks in Romania, Bulgaria and Belgium have already threatened European pork producers

[17, 18]. China, the largest pork producing country has an ongoing ASF outbreak and has

reportedly culled 1,170,000 hogs as of 3rd October 2019 [19]. They reported their first outbreak

in early August 2018 and since then there have been about 158 outbreaks in 32 provinces [19].

Several major Chinese pork producers have cut their profit forecasts, some of them are expect-

ing as much as 80% reduction compared to 2017 [20]. The Chinese officials have undertaken

several methods in order to control the outbreaks that include, culling of all pigs within 3km

of the infected area, pig movement restrictions, surveillance around containment/protection

zones, and destruction of pig products [21]. The analysis of Herrera-Ibata et al. finds that

although US has a low risk of ASF introduction overall, multiple states such as Iowa, Minne-

sota, and Wisconsin are the ones to be more vigilant about for an ASF introduction by the

legal import of live pigs [22]. There have been several attempts to model ASF outbreaks. Bar-

ongo et al., used a stochastic compartmental model to investigate the effects of control mea-

sures on ASFV and found that early intervention can help in managing the ASF epidemics

[23]. The effects of residue from deceased animals were included in the work of Halasa et al.

to simulate the spread of ASFV [24]. Using transmission experiments on the Georgia 2007/1

ASFV strain, Guinat et al. estimated pig-to-pig transmission parameters for both within pen

and between pen infections and they found the reproductive ratios to be 5.0 and 2.7 respec-

tively [25]. On the other hand, Gulenkin et al. estimated the basic reproductive ratio for the

outbreaks in the Russian Federation to be 8-11 within the infected farms and 2-3 between

farms [26]. Barongo et al. also estimated this ratio for Uganda outbreaks to be in the range of

1.58-3.24 depending on various estimation methods they used [27]. In another work, Guinat

et al. inferred transmission parameters using pig mortality data [28]. A recent work by Hu

et al. used Bayesian inference on previous transmission experiments [25] to account for
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unobserved infection times and latent periods [29]. Most of the ASFV research is focused on

parameter estimates while several others investigate virus importation risk in US mainland.

Despite the numerous studies, there is a lack of knowledge on how the swine industry in the

US would be affected in case an ASFV outbreak starts in the US.

The contributions of this paper are several: i) we propose a swine movement network gen-

erator, ii) we run ASFV epidemic simulations and compare how different farm operation

types affect the outbreak dynamics, and iii) we analyze and compare the effectiveness of multi-

ple centrality based targeted control measures. In the Results section, we describe our gener-

ated farm level network along with the outcomes of preliminary network analyses. We also

explain the ASFV outbreak simulation results and compare different operation types as

sources of infection. Finally, we investigate the impact of different disease control strategies.

The Materials and Methods section contains detailed information on swine movement data,

network generation, analysis methods, ASFV epidemic model, and its parameters. The pseu-

docodes for the algorithms are detailed in S1 Appendix.

Results

Movement network

The generated farm level movement network is shown in Fig 1. This directed network contains

84 farms from two Minnesota counties (Stevens and Rice). There are five different swine oper-

ations marked as: Boar Stud (B), Farrow (F), Nursery (N), Grower (G), and Market (M) with

3, 22, 12, 39, and 8 sites respectively. A visual inspection of Fig 1 suggests that the movement

of pigs start from farrow and nursery operations and end at the markets while a large number

of grower farms lie in those paths. We also analyze the node centrality measures of the gener-

ated network which are shown in Fig 2. As the network is generated based on degree centrality

data (Table 2), it is expected that the results shown in this figure (Kin and Kout) would resemble

it. The market operations have significantly high in-degree centralities (median value of 9)

while the nursery operations have high out-degree centralities (median value of 3) followed

by farrow and grower operations (both with median values of 2). The farrow operations have

high betweenness values (median of 8.9167) followed by grower operations (median of 4).

To understand how the connectivity in the farm network can be disrupted, we perform a

robustness analysis. Based on the node centrality measures of the network, we rank the nodes

in a decreasing order and create three lists (Kin, Kout, and BC). Going through those lists, we

remove (isolate) nodes one by one from the network and compute the largest connected com-

ponent in every step. The results are depicted in Fig 3, where the relative sizes of the largest

components are plotted against three centrality based node removal/isolation schemes. While

all three schemes decrease the component sizes, the removal of high Kin nodes demonstrates

relatively better outcome in breaking the network. Approximately 94.1% of the farms in total

can be isolated from the original network by isolating only 33.3% of the high in-degree farm

nodes. For the other two schemes, isolation of 33.3% high centrality (BC and Kout) farms will

isolate about 38.1% of the farms in total. The in-degree centrality based isolation strategy

shows a significant (about * 2.5 times) improvement over other options.

Outbreak dynamics

In a generated swine pig level network of the two Minnesota counties, we introduce an ASFV

outbreak by choosing a pig farm uniformly at random as the seed farm. Within this selected

farm, we infect at most 10 (if there are more than 10) pigs to introduce the pathogen and

observe the progression of the disease spread. The averaged out results of 1000 independent

simulations are shown in Fig 4. We use the parameter values given in Table 5. For the infection
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rate, β, we use the median value given in Table 5 along with the values 25% above and below

the median as indicated in the legends of the plots in Fig 4. We observe outbreaks lasting about

378 days for the median value of β which infects about 1.84% [95% CI 1.65 2.03] of the pork

population. For a network of 249,150 pigs, this roughly translates to about 4,584 [95% CI 4,111

5,047] pigs dying from the outbreak. A 25% increase in β would lengthen the outbreak dura-

tion by about 33% and affect twice as many pigs. A 25% reduction in β shortens the outbreaks

by 32% and reduces the outbreak size by 59.8%. For the β value around the median and above,

the outbreak reaches its peak within 95-100 days and for the β values below the median, the

outbreaks do not surpass the initial fraction of infected pigs.

Fig 1. Generated farm level swine movement network. The graph shows the generated network at the farm level. The solid circles

(nodes) indicate swine operations and the gray arrows connecting them indicate pig shipments with directions. The swine

operations (nodes) are labeled according to their types: Boar Stud (B), Farrow (F), Nursery (N), Grower/Finisher (G), and Market/

Slaughterhouse (M).

https://doi.org/10.1371/journal.pone.0225785.g001
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For the results of Fig 4, we infected about 10 pigs in a farm that was chosen uniformly at

random from all the farms. As there are five different pig operation types in our network, we

would like to evaluate how each type affect the outbreaks. We run independent sets of simula-

tions where we target a specific operation type (boar stud, farrow, nursery, grower, and mar-

ket) in each set. We select an operation of that particular type and use it to seed the infection.

It is important to note that, the number of pig operations in each type/category is different.

The pig population also vary among operations. In our generated network, we have approxi-

mately 3.82%, 28.72%, 11.73%, 44.86%, and 10.87% pigs in Boar Stud, Farrow, Nursery,

Grower, and Market operations respectively. The outcomes are shown in Fig 5. Here, we

define the term ‘Epidemic Attack Rate’ as,

Epidemic Attack Rate ¼
Number of pigs infected during the outbreak

Total number of pigs
ð1Þ

We find that, the markets are most capable among the five types in spreading the infection

while grower and farrow farm types are the second and third most important to consider.

Fig 2. Centrality measures of the generated network. The three set of boxplots show three different centrality

measures as marked (In-degree (Kin), Out-degree (Kout), and Betweenness (BC)). The five different pig operations are

marked in the horizontal axes as: Boar Stud (B), Farrow (F), Nursery (N), Grower/Finisher (G), and Market/

Slaughterhouse (M). Each boxplot shows the range between 25th and the 75th percentiles (blue box) and the median

(red line). The values outside 1.5 times the inter-quartile range are marked as outliers (+ signs).

https://doi.org/10.1371/journal.pone.0225785.g002
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Fig 3. Network robustness analysis by the gradual removal/isolation of farm nodes. The farm nodes are removed in a decreasing order of different

centrality measures and the size of the largest weakly connected component (at the farm-level) is plotted. Both of the axes are plotted as fractions of total

farms in the network. For the removal of nodes, they are separately ranked with three independent centrality measures: high betweenness centrality

(BC), high out-degree centrality (Kout), and high in-degree centrality (Kin).

https://doi.org/10.1371/journal.pone.0225785.g003

Fig 4. Time series outbreak results. Simulated outbreak dynamics in the generated swine network. The results shown above are the averages of 1000

independent simulations. To start each outbreak, a herd/farm was selected uniformly at random where we infected up to 10 pigs which were selected

randomly from that particular herd. The simulations were run for three different β values (1.672, 1.254, and 2.090) which are shown using different line

styles and colors as indicated by the legends. The shaded regions in the plots show 95% confidence intervals. The left plot shows the fraction of infected

pigs and the right plot shows the fraction of removed (dead) pigs over time for the generated pig network.

https://doi.org/10.1371/journal.pone.0225785.g004
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Although grower farms have 4.13 times the population of the market sites, the market sites

cause 1.98 times bigger outbreaks (0.0406 [95% CI 0.0398 0.0414]) compared to grower sites

(0.0205 [95% CI 0.0199 0.0212]). Despite that, the duration of the outbreaks caused by the far-

row, grower, and market sites are quite comparable (387 [95% CI 374 401], 399 [95% CI 392

409], and 423 [95% CI 416 431] days respectively). The large populations in the grower and

farrow farms explain have contributions towards their large outbreaks. Market sites, on the

other hand, are potent infection spreaders due to their high connectivity (high in-degree cen-

trality) with remaining farm types.

Control measures

Due to the lack of cure for African swine fever virus, movement restriction remains a key con-

trol method for the policy makers. For this experiment, we use three different network central-

ity measures (in-degree centrality, Kin, out-degree centrality, Kout, and betweenness centrality,

BC) for the farm nodes and sort the farms in a descending order based on these measures.

Next, we gradually place movement restrictions on an increasing number of farms selected

from the sorted lists and run outbreak simulations. The attack rates and the outbreak lengths

are compared in Fig 6 for three different network centrality measures. Placing movement

restrictions based on in-degrees (Kin) demonstrate the best performance in disease control

while restrictions based on betweenness centralities (BC) perform the worst. Isolation of top 5

farms based on Kin shows about 63.04% [95% CI 61.96 64.13] reduction in the outbreak size

(attack rate) and 51.59% [95% CI 50.26 52.91] reduction in outbreak duration compared to the

situation without any control measure (Fig 4). For the Kout and BC based isolation schemes,

we observe 19.6% [95% CI 16.85 21.74] and 4.9% [95% CI 1.63 7.61] reductions respectively in

outbreak sizes with 8.5% [95% CI 6.61 11.64] and 6.4% [95% CI 4.5 8.47] reductions respec-

tively in outbreak durations when we isolate 5 farms.

As there is no effective vaccine for ASF, we model hypothetical vaccines with 80% efficacy.

This efficacy value has been mentioned in other cases as a nominal requirement to make a vac-

cine marketable [30]. For our model, it means that, 80 out of 100 vaccinated pigs will be fully

Fig 5. Outbreak analysis based on source of infection. Simulated outbreak statistics in the generated swine network. The results shown above are the

averages of 10,000 independent simulations. The 95% confidence intervals are shown in red error bars. To start each outbreak, a pig operation was

chosen from a given type (either Boar Stud, Farrow, Nursery, Grower, or Market) and up to 10 pigs from that operation were infected. The left plot

shows the epidemic attack rates as defined in Eq 1 and the right plot shows the duration of outbreaks.

https://doi.org/10.1371/journal.pone.0225785.g005
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immune to the invading pathogen. We use the same set of centrality based sorting strategies to

select farms for vaccinations (in-degree Kin, out-degree Kout, and betweenness centrality, BC
measures). The results are shown in Fig 7. Once again, immunizing farms based on high in-

degree (Kin) is found to be the most effective strategy while immunization based on high

betweenness centrality (BC) is found to be least effective in disease control. Vaccination of

top 5 farms based on Kin shows about 59.78% [95% CI 58.70 60.87] reduction in the outbreak

size (attack rate) and 44.18% [95% CI 42.86 45.77] reduction in outbreak duration compared

to the situation without any control measure (Fig 4). For the Kout and BC based immunization

Fig 6. Comparison of different targeted isolation schemes based on farm node centrality measures. Three different movement restriction strategies

(high in degree, Kin, high out degree, Kout, and high betweenness, BC) are compared. For each strategy, different number of farms are isolated from a

centrality based sorted descending list. The left plot shows the epidemic attack rates and the right plot shows the epidemic lengths. The data points are

mean values computed from 10,000 stochastic simulations and the shaded regions show 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0225785.g006

Fig 7. Comparison of different targeted vaccination schemes based on farm node centrality measures. Three different vaccination strategies (high

in degree, Kin, high out degree, Kout, and high betweenness, BC) are compared. For each strategy, different number of farms are immunized from a

centrality based sorted descending list. The hypothetical vaccines are 80% effective. The left plot shows the epidemic attack rates and the right plot

shows the epidemic lengths. The data points are mean values computed from 10,000 stochastic simulations and the shaded regions show 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0225785.g007
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schemes, we observe 17.93% [95% CI 15.22 20.65] and 3.8% [95% CI 0.54 7.07] reductions

respectively in outbreak size with 5.56% [95% CI 2.91 7.67] and 5.03% [95% CI 2.12 7.94]

reductions respectively in outbreak duration when we vaccinate 5 farms. The comparative

results of the vaccination strategies resemble the results found in the previous experiment for

movement restriction measures.

Conclusion

In this study, we have proposed a method to generate movement networks from available data

on the US swine industry, where we have utilized movement network characteristics available

for two counties in Minnesota. Using the generated farm-level movement network, we have

analyzed multiple centrality properties and performed a robustness analysis to obtain a better

insight into the network structure. Using the generated pig-level contact network, we formu-

lated a stochastic SEIR model for the transmission of African swine fever. We ran outbreak

simulations and examined time-series data with different pig operation types as sources of

infection and compared the outcomes. Finally, we analyzed and compared the outcomes of

centrality-based targeted isolation and vaccination methods.

The outbreak simulations show that if ASFV is introduced in a random herd, and it is

allowed to spread unchecked, it may affect approximately 1.84% of the total swine population

with high probability for the two counties in our consideration. Among the five different farm

types, infecting the pig population in the market operations causes the most significant out-

breaks. The high connectivity of the markets with other farm types and the both-way transmis-

sion caused by fomites (e.g., transport vehicles) are the reasons behind such high impact of the

markets. The large populations in grower and farrow farm types also make them significant in

spreading ASFV infections. Control measures can target these farm types in the event of such

outbreaks. In our preliminary farm network analysis, we find that the nursery operations have

high out-degrees while the market operations have high in-degrees. We also find that grower

operations have high betweenness centrality values. A network robustness analysis reveals that

isolating high in-degree farms disrupt the connectivity in the network the most compared to

using other centrality measures.

When we examine the impact of centrality-based targeted control measures, the outcomes

reinforce our results from the preliminary analysis. We have examined two different control

measures with outbreak simulations: movement restriction and hypothetical vaccine. In both

cases, we find that controlling farms with high in-degree proves to be beneficial in containing

the disease spread. Implementing control in high out-degree farms proves to be slightly better

than doing so in high betweenness farms, while both are inferior compared to high in-degree

based targeted control. In a separate independent analysis (Fig 5), market operations have

proven to be the most potent sources of infections in causing relatively more significant out-

breaks compared to other farm types. As the market operations have very high in-degree, our

results consistently suggest that these sites should be prioritized in the case of ASFV outbreaks.

Limited public data availability on swine movement in the US compels us to rely on proba-

bilistic network-generation methods to close analytical gaps. Available data on Stevens and

Rice counties of Minnesota aided the construction of the movement network. However, these

data may be inadequate for the extrapolation of more extensive swine-movement networks.

Despite that, our generated network has degree distributions that agree with the given data

and the real-world characteristics of the swine production industry. If additional data for

movement networks in other locations become available, our network generation algorithms

can be used with little or no modifications, depending on the data. We also made a simplifying

assumption of having one operation type at a single site, while in practice, there can be
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multiple operation types. In addition to that, individual-based simulation models are limited

due to computational complexities caused by a large population. Metapopulation models can

be a viable solution when considering state-level networks. The network generation techniques

can be improved further if more data on swine production operations is made available. Dis-

tributed databases could be used to improve traceability and data sharing for the agriculture

production supply chain. Further efforts could be made in performing surveys, raising aware-

ness, and motivating the livestock industry to participate in data exchange to support research

solutions that can benefit the industry operations.

Materials and methods

US swine data

We generate the swine movement network utilizing some of the network characteristics (mix-

ing matrix, in-degree, and out-degree centralities) reported in the Valdes-Donoso [2] paper.

The mixing matrix is given in Table 1 and the centralities are shown in Table 2. We define sev-

eral pig operation types that include farms and markets. Using the operation type distribution

described in the same work [2], we classify 5 different pig operations (Boar Stud, Farrow,

Nursery, Grower, and Market) as shown in Table 3. The operation types are defined below,

• Boar Stud. These farms are used to keep male boars for breeding.

• Farrow. Sows are moved to these farrowing farms to give birth (farrow). Piglets stay here up

to 3 weeks.

• Nursery. Piglets are moved to nursery after weaning where they could stay up to 8 weeks.

• Grower. Pigs are moved from nursery to grower/finisher farms where they will gain market

weight at about six months of age.

• Market. The market type includes buying stations and/or slaughter plants.

Table 1. Mixing matrix (probability of movement from row type to column type) for swine movement network

[2]. The pig operation types are abbreviated as B (Boar Stud), F (Farrow), N (Nursery), G (Grower), and M (Market).

B F N G M

B 0.00 0.00 0.00 0.00 0.01

F 0.00 0.03 0.04 0.09 0.10

N 0.00 0.00 0.00 0.13 0.00

G 0.01 0.10 0.00 0.07 0.40

M 0.00 0.00 0.00 0.00 0.02

https://doi.org/10.1371/journal.pone.0225785.t001

Table 2. Movement network degree centrality data [2].

B F N G M

In-degree Average 0.67 0.92 0.77 1.05 11.73

SE 0.67 0.14 0.1 0.07 3.59

Max 2 5 2 5 57

Out-degree Average 1.00 2.08 3.07 1.74 0.46

SE 0 0.26 0.62 0.15 0.18

Max 1 8 12 12 3

https://doi.org/10.1371/journal.pone.0225785.t002
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Obtaining data from United States Department of Agriculture—National Agricultural Sta-

tistics Service (USDA-NASS) [31], we find that two counties (Rice & Stevens) of Minnesota

have 84 farms and 249,150 pigs in total. We take the 84 farms and as the operation types are

unknown, assign types randomly based on the distribution shown in Table 3.

Availability of operation type distribution data is incomplete as well, there are several sup-

pressed data fields. We allot pigs in those unknown fields randomly and make sure that the

aggregate statistics are maintained. The adjusted combined statistics for Stevens and the Rice

counties are provided in Table 4.

While the USDA-NASS data provide the total number of farms and pigs in a size class, it is

impossible to infer the number of pigs at individual farms. Hence, we use a random allocation

mechanism to assign the number of pigs for each farm while maintaining the aggregate statis-

tics of Table 4. Once we generate the network edges, we assign a weight to them to indicate

amount/rate of movement via that edge. According to the work of Spencer R. Wayne [32], the

Rice and the Stevens counties experience mean shipment of 21 and 15 per year and median

shipment of 10 and 7 per year respectively. Based on those values, our combined network is

estimated to have mean shipment of 17.38 per year and median shipment of 8.5 per year. We

use lognormal distribution and assign randomly generated shipment rate values to network

links.

Network terminology

We use several network structure and analysis related terminologies throughout this paper.

These terminologies are described below,

• Network/Graph. A network (also called graph) is a structure consisting of nodes (also

called vertices) and links (also called edges). A link connects two vertices and it can be either

directed or undirected.

• Stub. A stub is half a link. It’s a link with a node on one end and an empty handle on the

other end. Empty handles of two stubs can be joined together to form the link and thus cre-

ate a connection between two nodes.

Table 4. Distribution of pigs in Stevens and Rice counties of Minnesota.

Farm Size No. of Farms No. of Pigs

1 to 24 17 204

25 to 49 0 0

50 to 99 0 0

100 to 199 2 300

200 to 499 3 700

500 to 999 11 7,904

1,000+ 51 240,042

Total 84 249,150

https://doi.org/10.1371/journal.pone.0225785.t004

Table 3. Pig operation type distribution.

Boar Stud(B) Farrow(F) Nursery(N) Grower(G) Market(M)

1.27% 27% 12.66% 51.9% 7.17%

https://doi.org/10.1371/journal.pone.0225785.t003
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• Path, Shortest Path. A path is a sequence of links which joins a sequence of vertices which

are all distinct. A shortest path is the minimum length path between two nodes in a network.

• Connected Component. A connected component (also referred to as a component) is a sub-

set of nodes where there is a path between every pair of nodes in that subset. Two distinct

components aren’t connected by any path. If all nodes in a component are connected via bi-

directional paths then the component is strongly connected, otherwise it is called weakly

connected (path in one direction). In this paper, we consider weakly connected components

as transmission can happen in the reverse direction of the animal movement via fomites (e.g.

transport vehicles).

We use several centrality measures to determine the importance of the nodes. The centrality

measure can quantitatively characterize how important a node is in the network.

• Degree Centrality. The degree (K) of a node is the number of links associated with that

node. In case of directed networks, we define in-degree (Kin) as the number of links going

into the node and out-degree (Kout) as the number of links coming out of the node.

• Betweenness Centrality. There is a shortest path for every pair of nodes in a connected com-

ponent. The betweenness centrality (BC) of a node is the total number of shortest paths that

pass through that node (not counting the paths starting from or ending at that node).

Network generation

The swine network is synthesized using the available swine farm and movement related data

described in the previous section. The network generation process is completed in several stages:

1. Assign each farm node a single operation type randomly based on the farm type distribu-

tion given in Table 3.

2. Assign directed in and out-degree values or handles (stubs) to each farm node randomly

based on the degree distribution given in Table 2.

3. Connect out-handle (stub) of a farm node to in-handle (stub) of another farm node ran-

domly, based on the mixing matrix given in Table 1.

4. Assign shipment rate values to all the directed links from a lognormal distribution with the

obtained mean and the median shipment rate values.

5. Assign each farm a certain number of pigs randomly, based on the distribution given in

Table 4.

6. Generate the within-farm undirected contact links among the pigs based on the Erdös—

Rényi process with 50% probability.

7. Convert the shipment rates of farm links into probabilities and generate between-farm

undirected contact links for the pigs based on those rates.

We generate a farm level movement network at step 4 and a pig level contact network at

step 7. It is necessary to mention that, working with a graph that has 249,149 nodes, is compu-

tationally intractable due to the large number of within-farm links among the pigs. Hence,

we scale down the pig population by a constant factor of 20, which makes the network small

enough to be computationally feasible, while retaining sufficient pig nodes to maintain con-

nectivity properties of the farm level network. As a consequence, most of our ASF model

results are qualitative investigations of outbreak behavior.
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ASFV epidemic model

Our network based epidemic model is shown in Fig 8. Using the farm level movement net-

work, we generate a pig level movement network. In this network, each node is an individual

pig and the links connecting a node to other nodes indicate interactions with other pigs

(nodes). A pig has a lot more links to other pigs within the same farm compared to pigs which

are at other farms. The links to other farms are generated based on the movement network. In

Fig 8, a host node (pig) is marked using a solid circle and the links to other nodes are marked

by the solid lines. A host (pig) can get exposed from any of its infected neighbors at the rate of

β, which is defined as the infection rate. For modeling African swine fever infection dynamics,

we divide the pig population into four groups: Susceptible (S), Exposed (E), Infected (I), and

Removed/Dead (R). The healthy pigs which are free from ASF infection are classified as Sus-

ceptibles. If such a healthy pig comes into contact with infected pigs containing the virus, it

may get infected at the rate βYi(t), where Yi(t) is the number of infected neighbors of node i at

time t. If the transmission of pathogen occurs, a healthy pig enters into the Exposed group

where it stays for the duration of the incubation period. On average, this period is denoted by

1/σ. Once it shows symptoms, it moves into the Infected group. It stays there for an average

time of 1/γ before it is removed. As for ASF, the mortality is assumed to be 100% and no pig

recovers. Hence, all infected pigs die at the end of the infected period. However, in multiple

cases for our simulations, we will hypothetically vaccinate pigs. Based on the vaccine efficacy,

alive pigs may move to the removed class too.

The model parameters are shown in Table 5. The last column in this table mentions the dif-

ferent sources from where we obtained the parameter values. For β, we used estimated data

from [28] where median transmission rate values were computed for 9 herds. These values are

listed in Table 6. We take the weighted median from this set of data and use that β value in our

simulations. We use the well-developed GEMFsim [33] tool to run our simulations.

Fig 8. ASF epidemic model. The network based SEIR epidemic model for African swine fever virus. The black solid circles indicate host nodes

(individual pigs) and the solid lines connecting them indicate contacts (direct or fomites) that can act as infection pathways of ASFV. Each node can be

in any of the four states, Susceptible (S), Exposed (E), Infected (I), or Recovered (R). The rates at which a host can move from one state to another are

indicated by the parameters (See Table 5) adjacent to corresponding arrows. Here, Yi(t) is the number of infected contacts of node i at time t.

https://doi.org/10.1371/journal.pone.0225785.g008

Table 5. ASFV epidemic model parameters.

Symbol Definition Range Value Reference

β Transmission Rate 0.7–2.2 1.6719 [28] [29]

1/σ Latent Period - 7.78 [28]

1/γ Infectious Period - 8.3 [28]

https://doi.org/10.1371/journal.pone.0225785.t005
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