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Abstract

Purpose Oligodendrocytes (OLGs) damage and myelin distraction is considered as a critical step in many neurological disorders
especially multiple sclerosis (MS). Cuprizone (cup) animal model of MS targets OLGs degeneration and frequently used to the
mechanistic understanding of de- and remyelination. The aim of this study was exploring the effects of metformin on the OLGs
regeneration, myelin repair and profile of neurotrophic factors in the mice brain after cup-induced acute demyelination.
Methods Mice (C57BL/6 J) were fed with chow containing 0.2% cup for 5 weeks to induce specific OLGs degeneration and
acute demyelination. Next, the cup was withdrawn to allow one-week recovery (spontaneous remyelination). At the end of this
period, mature OLGs markers, myelin-associated neurite outgrowth inhibitor protein A (NogoA), premature specific OLGs
transcription factor (Olig2), anti-apoptosis marker (survivin), neurotrophic factors, and AMPK activation were monitored in
the presence or absence of metformin (50 mg/kg body weight/day) in the corpus callosum (CC).

Results Our finding indicated that consumption of metformin during the recovery period potentially induced an active form of
AMPK (p-AMPK) and promoted repopulation of mature OLGs (MOG™ cells, MBP* cells) in CC through up-regulation of
BDNF, CNTF, and NGF as well as down-regulation of NogoA and recruitment of Olig2™ precursor cells.

Conclusions This study for the first time reveals that metformin-induced AMPK, a master regulator of energy homeostasis,
activation following toxic demyelination could potentially accelerate regeneration and supports spontaneous demyelination.
These findings suggest the development of new therapeutic strategies based on AMPK activation for MS in the near future.
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(NTPs) and neurotrophic factors (NTFs). NTFs, with are
expressed in the brain of vertebrates, play a significant role
in the evolution, repair, and growth of the nervous system and
also mediate metabotropic effects [3, 4]. It seems that NTFs
have a significant role in the pathogenesis of MS, because the
minimum change in their plasma levels causes disturbances in
neuroendocrine-immune system interactions [5]. Therefore, in
the field of regenerative medicine main NTFs such as nerve
growth factor (NGF), brain-derived neurotrophic factor
(BDNF), and ciliary neurotrophic factor (CNTF) have been
of particular interest. It has been reported that NGF induces
axonal survival, protection, differentiation and regeneration of
oligodendrocytes (OLGs) and facilitates OLGs precursors
cells (OPCs) to migrate and proliferate to the demyelination
regions [6]. It is noteworthy that NGF induces BDNF produc-
tion as another integral neurotrophin involved in myelination
[6]. Recent studies have shown that BDNF potentially pro-
motes myelination through direct effects on OLGs survival
and indirect effects on neurons and changing the axonal sig-
nals that control myelination [7, 8]. CNTF is another neuro-
trophic factor that has potent effects on the survival, develop-
ment and differentiation of neurons [9]. CNTF promotes
OLGs survival in central nervous system (CNS) demyelinat-
ing disease [10] and also exert pro-myelination effects in
neuron-OLGs co-cultures by enhancing OLGs maturation
[11]. Kuhlmann et al. showed that treatment with CNTF pro-
moted myelination, reduced infiltration of T cells, and de-
creased microgliosis in experimental autoimmune encephalo-
myelitis (EAE) [12]. On the other hand, it has been recognized
that the expression of neurite outgrowth inhibitor protein A
(NogoA) and its receptor NgR1 inhibits the neuron growth
after CNS injuries or the onset of the MS [13]. Survivin be-
longs to the family of inhibitors of apoptosis proteins (IAPs)
and can be a suitable marker for monitoring of survival vs.
death signals in the brain [14].

Recent studies show metformin can increase neurogenesis and
spatial memory formation suggest that this drug can be used for
enhancing the neural stem cells (NSCs) proliferation [15].
Moreover, metformin has adenosine-monophosphate activated
protein kinase (AMPK)-independent effects crossed through the
blood-brain barrier (BBB). In addition, its anti-senescence and
antioxidant effects could be associated with increasing NTFs
[16]. Interestingly, it has been reported that brain lipids alterations
and AMPK activity could be restored by 100 mg/kg metformin
treatment in the EAE mice, an animal model of MS [17].

Altogether, we proposed that restoring NTFs to normal
concentrations positively affects brain recovery and may be
beneficial after acute or chronic demyelination. However, be-
cause of the complications associated with the administration
of exogenous proteins to the CNS, it is imperative to explore
the possibility of stimulation of endogenous secretion of NTFs
through available medicines. At this paper, in the novel study
the possible NTFs (BDNF, CNTF and NGF) stimulatory
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properties of metformin were examined and effects of metfor-
min on expression of p-AMPK, survivin, oligodendrocyte
transcription factor 2 (Olig2), NogoA, myelin oligodendro-
cyte glycoprotein (MOG), and myelin basic protein (MBP)
were monitored during brain recovery period.

Methods
Animals

Eighty 7-8 weeks-old male C57BL/6 mice (18-20 g) were pur-
chased from Pasteur Institute of Iran. Mice were kept under
standard laboratory with a 12-h light/dark cycle at 20 +22 °C
temperature. Water and food were available ad libitum, chow
was changed and mice were weighed every other day. Ethical
points were observed according to the declaration of Helsinki
and relevant code of ethics from Shahrekord University of
Medical Sciences, regarding minimizing harms during animal
experimentation.

Drugs and chemicals

Bis (cyclohexanone) oxaldihydrazone or cuprizone (cup) and
metformin were purchased from Merck, Darmstadt, Germany.
NogoA and AMPK [alpha 1 (phospho T183) + AMPK alpha
2 (phospho T172)] primary antibodies were obtained from
Abcam, Cambridge, UK. NogoA and (3-actin primary anti-
bodies and all secondary antibodies were obtained from
Santa Cruz, Heidelberg, Germany. All other materials were
of the maximum purity and analytical grade.

Determination of metformin therapeutic
concentration

To examine which doses of metformin are suitable for this study
mice were intraperitoneal (i.p.) administered with four doses of
metformin (25, 50, 100, and 200 mg/kg) during 7 last days and
their average body weight (ABW), AMPK activation, and mor-
tality were monitored. We found that lower dose of metformin
(25 mg/kg) was unable to significantly activate AMPK in the
brain and higher doses of metformin (100, and 200 mg/kg) con-
siderably decreased ABW of mice and lead to higher mortality
rate (data not showed). In comparison, 50 mg/kg of metformin
administration did not significantly affect ABW and otherwise
significantly induced AMPK activation than the other groups.
So, effective dose (50 mg/kg/day) selected as an intervention
concentration. This optimized concentration of MET was rela-
tively accordance with previous in vivo studies in different ani-
mal models [18, 19]. It should mention that usual MET doses
that are given to adult (70 kg body weight) diabetes type 2
patients are between 15 mg/kg/day (orally twice a day) and
37 mg/kg/day (orally in divided doses).
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Study design

Demyelination was induced in mice through feeding a ground
standard rodent chow containing cup (0.2%) for 5 weeks and
then they spent a one-week recovery period without a cup.
Control animals were fed with normal powdered chow.
Animal were randomly divided into four major groups
(Fig. 1): (i) Control group: including of healthy mice that were
fed with normal food for 6 weeks along with injection (i.p.) of
100 puL vehicle (normal saline) every day for the last 7 days,
(i) metformin (met) group: including healthy mice were fed
with normal food for 6 weeks along with injection of metfor-
min dissolved in vehicle during the last 7 days, (iii) free re-
covery group: including healthy mice fed with cup containing
food for 5 weeks, one week recovery without cup, and with
every day injection of vehicle, (iv) metformin recovery group:
including healthy mice fed with cup containing food for
5 weeks, one week recovery without cup, and with every
day injection of metformin (Fig. 1). Group assignments were
blinded for observer during all experimental preformation.

Quantitative reverse transcription PCR (qRT-PCR)
analysis

RNA extraction (total), synthesis of cDNA and qRT-PCR were
done as described before [20]. In brief, animals were anesthe-
tized, perfused with 50 ml of cold PBS and whole brains were
rapidly removed. Dissected the rostral part of corpus callosum
(CC) prepared, snap frozen and for further use stored at —80 °C.
10-20 mg of each samples was used for RNA extraction accord-
ing to the AccuZol™ manufacturer’s instructions (BIONEER,
Daejeon, South Korea) and resolved in 50 pl diethyl
pyrocarbonate (DEPC) water. Approximately 5 pg cleaned
RNA samples were transformed to cDNA in 20 pl reaction

buffer using the AccuPower RT kit (BIONEER, Daejeon,
South Korea). Next, 1 pul of cDNA product was used for RT-
PCR via 2X Greenstar gPCP kit (BIONEER, Dagjeon, South
Korea). The primers information are shown in Table 1.
Amplification parameters were as follows: 95 °C for 10 min
(1 cycle), 95 °C for 20 s (1 cycle) and 58 °C for 45 s (1 cycle)
followed by 95 °C for 30 s (45 cycles). 3-actin values were used
to loading calibration for each independent sample. The AA“
method was used for determining relative changes expression to
the qualified control group [21].

Immunohistochemistry (IHC) analysis

Bran tissue fixation, section preparation (5 um) and mounting
a slide were done as described before [22]. Briefly, fixed (by
immersion in cold acetone) brains were sectioned, rehydrated
(in PBS pH 7.2) and kept on H,O, (0.3%) to block endoge-
nous peroxidase activity. Next, after washing, sections were
blocked for non-specific binding with blocking solution (10%
bovine serum albumin, Triton X-100 (0.05%) in PBS), and
next incubated in permeabilization buffer (Triton X-100
(0.1%) in PBS). Finally, sections were incubated overnight
at 4 °C with the primary antibodies including goat polyclonal
antibodies to NogoA (Abcam, 1:200), as well as rabbit mono-
clonal antibodies to Olig2 (Abcam, 1:500) and next washed
and incubated 4 h with secondary antibodies including fluo-
rescein isothiocyanate (FITC) conjugated mouse anti-goat
IgG (Santa Cruz Biotechnology, 1:500) for detection of
NogoA and Texas red (TR) conjugated goat anti-rabbit IgG
(Santa Cruz Biotechnology, 1:500) for detection of Olig2 di-
luted in antibody buffer (goat serum (5%), Triton X-100
(0.05%) in PBS). In order to nuclei visualization, all samples
were counterstained with 4', 6-diamidino-2-phenylindole
(DAPI) and negative controls were obtained by omitting
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Table 1 Specific primer sequences used in quantitative RT-PCR
Target gene PCR primer sequence (5'-3")
MBP sense: GCTTCTGGAGGGTGATGCC,
antisense: CCAAGAGTCGTCCAGGTCATAG
MOG sense: CAAGAAGAGGCAGCAATGGAG,
antisense: CAGGAGGATCGTAGGCACAAG
BDNF sense: CATCTTCTCAAAATTCGAGTGACAA,
antisense: TGGGAGTAGACAAGGTACAACCC
CNTF sense: GCAGCGGCAGTGATGGAC,

antisense: TCCTGGATGAAACCCTGTAGC
NGF sense: TGGACCCAAGCTCACCTCAG,
antisense: GACATTACGCTATGCACCTCAC

NogoA sense: TACTTACGTTGGTGCCTTGTTC,
antisense: ATGATCTATCTGCGCCTGATGC

Survivin sense: GAACCCGATGACAACCCGATAG,
antisense: GACGGTTAGTTCTTCCATCTGC

[-actin sense: TGAAGATCAAGATCATTGCTCCTC,

antisense: TCAGTAACAGTCCGCCTAGAAG

primary antibody that gave no signal (data not shown). Images
were captured via digital camera under a fluorescence micro-
scope and analyzed by ImageJ (http://rsb.info.nih.gov/ij/)
software [23].

Western blot (WB) analysis

Western blotting was performed as described previously [24].
Briefly, the whole CC was bilaterally micro-dissected on ice
following brain removing and quickly frozen and kept at
—80 °C until further usage. After adding complete protease
inhibitor cocktail (Roche, Mannheim, Germany) tissues were
homogenized, centrifuged, and their protein contents were
measured using the bicinchoninic acid (BCA) method
(Sigma-Aldrich). SDS-PAGE gels (8-10%) was done with
an equal quantity of total protein (25 pg) per lane. The re-
solved proteins were transferred to polyvinylidene fluoride
(PVDF) membranes via electrophoretic transfer system (Bio-
Rad, Miinchen, Germany). Following blocking, the mem-
branes were incubated overnight at 4 °C with the primary
rabbit polyclonal antibodies to p-AMPK (GeneTex, 1:500).
Following the membranes washing with PBS, 0.05%
Tween-20 (PBS-T), all blots were incubated for 4 h at 4 °C
with the secondary goat anti-rabbit IgG antibodies conjugated
with horseradish peroxidase (Santa Cruz Biotechnology,
1:100). The proteins were detected using 3, 3'-
Diaminobenzidine and H,O, as a substrate solution. The [3-
actin antibody was used as an internal control. The bands
intensity was measured using Image] software (http://rsb.
info.nih.gov/ij/) after subtraction of background and band
density normalization.
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Statistical analysis

For each experiment (repeated 3 times), mice were fed control
or cup food and then injected with metformin. Finally, the
obtained results were compared with corresponding vehicle-
injected mice. For quantitative measures, the groups were an-
alyzed using one-way analysis of variance (ANOVA) and
Bonferroni’s post hoc test for multiple group comparisons
was used when appropriate. Conditions were considered sta-
tistically significant at P < 0.05.

Results

Effects of metformin on mRNA expression of BDNF,
CNTF, and NGF

Using a quantitative PCR technique, the effects of metformin on
mRNA expression of important neurotrophic factors were tested
in the CC region of mice after one-week recovery period. PCR
analysis demonstrated a considerable increase in mRNA expres-
sion of BDNF, CNTF, and NGF (P < 0.05), when recovery was
accompanied by metformin treatment compared to the free re-
covery group (Fig. 2). Surprisingly, compared to the control
group, only NGF (P <0.05) expression was decreased signifi-
cantly during the free recovery period (Fig. 2). Treatment of
normal mice with metformin did not have statistically significant
effects on mRNA expression of these neurotrophic factors com-
pared to the control group (Fig. 2).

Effects of metformin on mRNA expression of MBP,
MOG, and survivin

Metformin was administered during the last recovery week
and mRNA expression of mature OLGs markers (MBP,
MOG). Also, anti-apoptosis marker (survivin) in CC region
of mice after one-week treatment were quantified by quanti-
tative PCR. In the cup group, even after one week of recovery
period MBP, MOG, and survivin expression were significant-
ly lower compared to the control group (Fig. 3). Compared to
the free recovery group, expression levels of MBP and MOG
(P < 0.05) but not survivin were increased significantly in the
metformin group (Fig. 3). Treatment of normal mice with
metformin did not show any statistically significant effects
on mRNA expression of MBP, MOG and survivin compared
to the control group (Fig. 3).

Effects of metformin on the population of NogoA
and Olig2 positive cells

NogoA and Olig2 protein expression during the last recovery
week were tested by IHC staining. Double staining was done
by labeling with two monoclonal antibodies that were specific
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Fig. 2 Effects of metformin (50 mg/kg body weight/day) on mRNA
expression of neurotrophic factors (BDNF/CNTF/NGF). First, the data
normalized with the internal control ((3-actin) and then indicated as fold
change to the control group. Control (gray): normal mice on a regular diet
and injected with vehicle during last week, metformin (black): normal
mice on a regular diet and injected with metformin during last week, free

for NogoA and Olig2. Immunostaining of NogoA after a one-
week free recovery period confirmed a significant increase
(P <0.05) in immune-reactivity and number of positive
NogoA cells in comparison with the control group (Fig. 4).
Surprisingly, metformin treatment during the one-week recov-
ery period significantly decreased (P < 0.05) the immune-
positive NogoA cells (Fig. 4). In contrary, immunostaining
of Olig2 after the one-week free recovery period confirmed

MBP

recovery group (white): model mice with regular diet and injected with
vehicle during last recovery week, metformin recovery group (dotted):
model mice with regular diet and injected with metformin during last
recovery week. Data represent the mean + S.E.M analyzed by two-way
ANOVA. *compared to control group, #compared to free recovery group.
*, # (P < 0.05) with Bonferroni’s correction for multiple comparisons

significant increase (P < 0.05) in the number of positive Olig2
cells in comparison with the control group (Fig. 4).
Furthermore, metformin treatment accelerated the expression
of Olig2 precursor cells during the recovery period in compar-
ison with free recovery group (Fig. 4). Treatment of normal
mice with metformin did not significantly affect on the popu-
lation of NogoA and Olig2 positive cells compared to the
control group (Fig. 4).
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Fig. 3 Effects of metformin (50 mg/kg body weight/day) on mRNA
expression of the mature OLGs markers (MBP, MOG) and the anti-
apoptosis marker (survivin). First, the data normalized with the internal
control (3-actin) and then indicated as fold change to the control group.
Control (gray): normal mice on a regular diet and injected with vehicle
during last week, metformin (black): normal mice on a regular diet and
injected with metformin during last week, free recovery group (white):

model mice with regular diet and injected with vehicle during last recov-
ery week, metformin recovery group (dotted): model mice with regular
diet and injected with metformin during last recovery week. Data repre-
sent the mean+S.E.M analyzed by two-way ANOVA. *compared to
control group, #compared to free recovery group. *, # (P <0.05) with
Bonferroni’s correction for multiple comparisons
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DAPI/Olig2/NogoA

Fig. 4 Effects of metformin (50 mg/kg body weight/day) on population
of the NogoA and Olig2 positive cells. Earliest, positive cells
(immunofluorescence signals) from each independent group were
counted and they mean are calculated. Then the data reported as a fold
change to control group. Control (gray): normal mice on a regular diet and
injected with vehicle during last week, metformin (black): normal mice
on a regular diet and injected with metformin during last week, free
recovery group (white): model mice with regular diet and injected with

Effects of metformin on mRNA expression of NogoA
and Olig2

Using a quantitative PCR technique, the effects of metformin
(50 mg/kg/day) on mRNA expression of NogoA and Olig2
were evaluated in the CC region of mice after a one-week
recovery period. IHC results verified a considerable decrease
in mRNA expression of NogoA (P < 0.05) and an increase in
mRNA expression of Olig2 (P <0.05) when recovery was
accompanied with metformin treatment compared to the free
recovery group (Fig. 5). Treatment of normal mice with met-
formin did not significantly affect on mRNA expression of
NogoA and Olig2 compared to the control group (Fig. 5).

Effects of metformin on AMPK phosphorylation
and activation

To investigate the AMPK activation, WB analysis was per-
formed for phospho AMPK (p-AMPK) through specific
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vehicle during last recovery week, metformin recovery group (dotted):
model mice with regular diet and injected with metformin during last
recovery week. Double staining for Olig2 and NogoA were performed
and arrows indicated some positive signals in CC area. Data represent the
mean+S.EM analyzed by two-way ANOVA. *compared to control
group, #compared to free recovery group. *, # (P<0.05) with
Bonferroni’s correction for multiple comparisons

antibody (Anti-AMPK alpha 1 (p-T183) + AMPK alpha 2
(p-T172) antibody) and p-AMPK/[3-actin protein ratios were
measured in all experimental groups (Fig. 6). The obtained
results showed a significant increase in AMPK activation after
metformin treatment during the recovery period compared to
the free recovery group (P < 0.05, Fig. 6). Treatment of nor-
mal mice with metformin has also statistically significant ef-
fects on activation of AMPK compared to the control group
(P<0.05, Fig. 6).

Discussion

The concept of myelin plasticity suggests flexibility in myelin
construction and function in response to stimulus during de-
velopment and beyond. Although OLGs generation occurs
late in the development, it is continued whole life span at a
lower rate and myelination is thus an imperative event in the
brain developmental courses [25]. MS is a neuro-
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Fig. 5 Effects of metformin (50 mg/kg body weight/day) on mRNA
expression of the premature OLGs marker (Olig2) and the growth inhib-
itory marker (NogoA). First, the data normalized with the internal control
(-actin) and then indicated as fold change to the control group. Control
(gray): normal mice on a regular diet and injected with vehicle during last
week, metformin (black): normal mice on a regular diet and injected with
metformin during last week, free recovery group (white): model mice

inflammatory disease characterized by CNS demyelination,
axonal loss, and brain dysfunctions [26]. The recovery poten-
tial of OPCs in MS was supported by environmental stimulus
and migration to the damaged site. This potential is dramati-
cally detectable after massively migration of myelinating
OLGs to the site of the lesion [27]. Moreover, it has been
reported that control of inflammatory mediators and the reduc-
tion of oxidative stress signals could have a positive indirect
effect on the MS lesion recovery process [20, 28]. As OLGs
were highly susceptible to oxidative stress, active demyelin-
ation often occurs after redox-induced OLGs damages or un-
moral pathologic conditions and irregular spontaneous
remyelination may occur to a certain extent [29].

As cup toxin is a copper chelator and inhibits copper-
dependent enzymes such as superoxide dismutase (SOD), is
leads to accumulation of reactive oxygen spices (ROS) and se-
lective death of OLGs and resulting to the demyelination of white
matter in the brain. During several weeks after the withdrawal of
cuprizone, an almost complete recovery of myelin is observed
and OPCs are the main population of cells involved in the myelin
recovery under these pathological conditions. OPCs formed in
the subventricular zone (SVZ) typically migrate to the CC and
cortex and after maturation are involved in the repair process
[30]. Here, we showed that MBP and MOG as most frequently
mature OLGs indicators, and Olig2 as specific OPCs marker,
were overexpressed after administration of metformin during
the recovery period. The increase in the number of Olig2" cells
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with regular diet and injected with vehicle during last recovery week,
metformin recovery group (dotted): model mice with regular diet and
injected with metformin during last recovery week. Data represent the
mean+ S.E.M analyzed by two-way ANOVA. *compared to control
group, #compared to free recovery group. *, # (P<0.05) with
Bonferroni’s correction for multiple comparisons

and thereafter maturation of these cells to MBP" and MOG™" cells
potentially promoted remyelination probably because of the
metformin-induced AMPK activation.

To better elucidate these protective effects, we decided to
evaluate NTFs expression pattern, which was reported to en-
hance OPCs differentiation and maturation [31], in this exper-
imental model of acute toxic demyelination. NGF is the first
member of the NTF family and is essential for the growth,
differentiation, regeneration, development, and neurotrans-
mitter function [32]. Furthermore, it has been reported that
transplantation of CNTF-expressing OPCs after spinal cord
injury could promote functional recovery and remyelination
[33]. It was shown that by an acute model of demyelination,
CNTF could regulate the migration of neural progenitor cells
(NPCs) toward the demyelinated site [34]. The result of a
study with BDNF heterozygous knockout mice proved that
BDNF has an important role in the number of OPCs and
myelin synthesis [35]. So, BDNF is considered as one of the
most promising neurotrophic factors due to its crucial role in
the development and survival of neurons and might contribute
to supporting MS lesions [36].

In this regard, Paintlia et al. demonstrated that metformin
increases the expressions of CNTF and BDNF in EAE animals
[31]. Metformin also enhances the spatial memory formation and
long-term prescription and improves the life and health span in
mice [15, 37]. Smieszek et al. showed that secretion of BDNF by
olfactory ensheathing cells was promoted by consumption of
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Fig. 6 Effects of metformin (50 mg/kg body weight/day) on expression
of phosphor AMPK (p-AMPK) an active form of AMPK. First, the data
normalized with the internal control ((3-actin) and then indicated as fold
change to the control group. Control (gray): normal mice on a regular diet
and injected with vehicle during last week, metformin (black): normal
mice on a regular diet and injected with metformin during last week, free
recovery group (white): model mice with regular diet and injected with
vehicle during last recovery week, metformin recovery group (dotted):
model mice with regular diet and injected with metformin during last
recovery week. Data represent the mean = S.E.M analyzed by two-way
ANOVA. *compared to control group, #compared to free recovery group.
*, # (P <0.05) with Bonferroni’s correction for multiple comparisons

metformin [16]. Patil et al. also showed neuro-protective effect of
metformin in Parkinsonism mice through enhancing of expres-
sion of BDNF in substantia nigra neurons [38]. Other studies
revealed that metformin increased cognition related neurological
scores, P70S6K and BDNF in hippocampal neurons and im-
proved memory formation in passive avoidance task [39]. In
spinal cord injury it was shown that proliferation and differenti-
ation of OPCs were stimulated by BDNF and NTF [40]. Current
evidence suggests that metformin decreased the quantity of ROS,
and cellular senescence as well as affecting on BDNF mRNA
expression and its down-stream genes [16, 41]. In addition, levels
of OPCs signatory genes, neurotrophic factors and MnSOD
mRNA transcripts were raised with metformin-induced AMPK
phosphorylation [29]. Another prospective cohort study showed
that treatment with 850 to 1500 mg/d of metformin hydrochlo-
ride (1,1-dimethylbiguanide hydrochloride) has helpful anti-
inflammatory properties in MS patients [42]. In accordance with
previous reports, we demonstrated that the expression of BDNF,
CNTF, and NGF increased after metformin administration during
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the recovery period. Considering the critical role of NTFs,
metformin-induced AMPK activation probably affects glia phys-
iology and mediates secretion of these growth factors.
Nevertheless, previous data indicated that BDNF expressed by
astrocytes could potentially reverse failures caused after myelin
loss [43], and endogenous sources of CNTF and NGF in such
conditions are poorly defined.

Another key molecule monitored in this study is reticulon 4
or NogoA, a myelin-associated neurite outgrowth inhibitor
marker, and its overexpression in MS lesions suggest that it
signaling may play an important role in the progression of the
disease [44]. Various studies have demonstrated that down-
regulation or silencing (siRNA) of NogoA gene ameliorated
EAE and promoted axonal repair [45]. Neuronal overexpres-
sion of endogenous Nogo receptor (NgR 1) antagonist encour-
ages recovery of motor neurons after spinal cord injury, and
improves regeneration of axons after optic nerve crush in
transgenic mice [46]. An important additional effect of
NogoA-neutralization enhanced remyelination observed after
lysolecithin-induced demyelination of spinal tracts [47]. On
the other hand, OLGs and neuron-specific NogoA knocked
out mice have enhanced dendritic branching and spine densi-
ties in cortical pyramidal neurons [48]. It has been reported
that intravenous or intrathecal injection of high doses of anti-
NogoA antibodies leads to good safety profile in spinal cord
injury and amyotrophic lateral sclerosis (ALS) patient [49]. In
the present study, for the first time, we indicated that
metformin-induced AMPK activation could potentially
down-regulate NogoA in both mRNA and protein level.
However, confirmation of direct or indirect effects of metfor-
min on NogoA needs further investigation.

Conclusion

During last decade, growth of experimental and clinical re-
search in the field of remyelination has led to presenting
new potentials for novel medicinal interventions to modulate
myelin repair in patients suffering from demyelinating dis-
eases. Our results support this concept of remyelination, and
reveal that promotion of myelin repair could be performed
in specific conditions by metformin via up-regulation NTFs,
down-regulation of NogoA and recruitment of Olig2* pre-
cursor cells to the lesion site and induction of their matura-
tion. Altogether, our findings offer a preliminary evidence
for the restorative property of metformin in the demyelinat-
ing diseases.
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